#Checkpoint: OSIRIS-REx Practices Sample Collection
Explore tagged Tumblr posts
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA This image shows sample site Nightingale Crater, OSIRIS-REx’s primary sample collection site on asteroid Bennu. https://ift.tt/3b9y8CN
0 notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection #NASA https://ift.tt/3b9y8CN
0 notes
Text
NASA’s OSIRIS-REx is One Rehearsal Away from Touching Asteroid Bennu
NASA - OSIRIS-REx Mission patch. Aug. 6, 2020 NASA’s first asteroid sampling spacecraft is making final preparations to grab a sample from asteroid Bennu’s surface. Next week, the OSIRIS-REx mission will conduct a second rehearsal of its touchdown sequence, practicing the sample collection activities one last time before touching down on Bennu this fall. On Aug. 11, the mission will perform its “Matchpoint” rehearsal – the second practice run of the Touch-and-Go (TAG) sample collection event. The rehearsal will be similar to the Apr. 14 “Checkpoint” rehearsal, which practiced the first two maneuvers of the descent, but this time the spacecraft will add a third maneuver, called the Matchpoint burn, and fly even closer to sample site Nightingale – reaching an altitude of approximately 131 ft (40 m) – before backing away from the asteroid.
Image above: This artist’s concept shows the trajectory and configuration of NASA’s OSIRIS-REx spacecraft during Matchpoint rehearsal, which is the final time the mission will practice the initial steps of the sample collection sequence before touching down on asteroid Bennu. Image Credits: NASA/Goddard/University of Arizona. This second rehearsal will be the first time the spacecraft executes the Matchpoint maneuver to then fly in tandem with Bennu’s rotation. The rehearsal also gives the team a chance to become more familiar navigating the spacecraft through all of the descent maneuvers, while verifying that the spacecraft’s imaging, navigation and ranging systems operate as expected during the event. During the descent, the spacecraft fires its thrusters three separate times to make its way down to the asteroid’s surface. The spacecraft will travel at an average speed of around 0.2 mph (0.3 kph) during the approximately four-hour excursion. Matchpoint rehearsal begins with OSIRIS-REx firing its thrusters to leave its 0.5-mile (870-m) safe-home orbit. The spacecraft then extends its robotic sampling arm – the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded, parked position out to the sample collection configuration. Immediately following, the spacecraft rotates to begin collecting navigation images for the Natural Feature Tracking (NFT) guidance system. NFT allows OSIRIS-REx to autonomously navigate to Bennu’s surface by comparing an onboard image catalog with the real-time navigation images taken during descent. As the spacecraft approaches the surface, the NFT system updates the spacecraft’s predicted point of contact depending on OSIRIS-REx’s position in relation to Bennu’s landmarks. The spacecraft’s two solar panels then move into a “Y-wing” configuration that safely positions them up and away from the asteroid’s surface. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface during the sample collection event. When OSIRIS-REx reaches an altitude of approximately 410 ft (125 m), it performs the Checkpoint burn and descends more steeply toward Bennu’s surface for another eight minutes. At approximately 164 ft (50 m) above the asteroid, the spacecraft fires its thrusters a third time for the Matchpoint burn. This maneuver slows the spacecraft’s rate of descent and adjusts its trajectory to match Bennu’s rotation as the spacecraft makes final corrections to target the touchdown spot. OSIRIS-REx will continue capturing images of Bennu’s landmarks for the NFT system to update the spacecraft’s trajectory for another three minutes of descent. This brings OSIRIS-REx to its targeted destination around 131 ft (40 m) from Bennu – the closest it has ever been to the asteroid. With the rehearsal complete, the spacecraft executes a back-away burn, returns its solar panels to their original position and reconfigures the TAGSAM arm back to the parked position. During the rehearsal, the one-way light time for signals to travel between Earth and the spacecraft will be approximately 16 minutes, which prevents the live commanding of flight activities from the ground. So prior to the rehearsal’s start, the OSIRIS-REx team will uplink all of the event’s commands to the spacecraft, allowing OSIRIS-REx to perform the rehearsal sequence autonomously after the GO command is given. Also during the event, the spacecraft’s low gain antenna will be its only antenna pointing toward Earth, transmitting data at the very slow rate of 40 bits per second. So while the OSIRIS-REx team will be able to monitor the spacecraft’s vital signs, the images and science data collected during the event won’t be downlinked until the rehearsal is complete. The team will experience these same circumstances during the actual TAG event in October.
OSIRIS-REx collecting sample
Following Matchpoint rehearsal, the OSIRIS-REx team will verify the flight system’s performance during the descent, including that the Matchpoint burn accurately adjusted the spacecraft’s descent trajectory for its touchdown on Bennu. Once the mission team determines that OSIRIS-REx operated as expected, they will command the spacecraft to return to its safe-home orbit around Bennu. The mission team has spent the last several months preparing for the Matchpoint rehearsal while maximizing remote work as part of its COVID-19 response. On the day of rehearsal, a limited number of personnel will monitor the spacecraft from Lockheed Martin Space’s facility, taking appropriate safety precautions, while the rest of the team performs their roles remotely. The mission implemented a similar protocol during the Checkpoint rehearsal in April. On Oct. 20, the spacecraft will travel all the way to the asteroid’s surface during its first sample collection attempt. During this event, OSIRIS-REx’s sampling mechanism will touch Bennu’s surface for approximately five seconds, fire a charge of pressurized nitrogen to disturb the surface and collect a sample before the spacecraft backs away. The spacecraft is scheduled to return the sample to Earth on Sept. 24, 2023. NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Related link: OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer): http://www.nasa.gov/mission_pages/osiris-rex/index.html Image (mentioned), Animation, Text, Credits: NASA/Karl Hille/University of Arizona, by Brittany Enos. Best regards, Orbiter.ch Full article
16 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
9 notes
·
View notes
Text

One Rehearsal Away from Touching Asteroid Bennu
NASA's OSIRIS-REx is ready for touchdown on asteroid Bennu. On Aug. 11, the mission will perform its "Matchpoint” rehearsal – the second practice run of the Touch-and-Go (TAG) sample collection event. The rehearsal will be similar to the Apr. 14 "Checkpoint” rehearsal, which practiced the first two maneuvers of the descent, but this time the spacecraft will add a third maneuver, called the Matchpoint burn, and fly even closer to sample site Nightingale – reaching an altitude of approximately 131 ft (40 m) – before backing away from the asteroid.
This artist's rendering shows OSIRIS-REx spacecraft descending towards asteroid Bennu to collect a sample of the asteroid's surface.
Image Credit: NASA/Goddard/University of Arizona
#nasa picture of the day#awesome#beautiful pics#beautiful#picoftheday#photography#science#astronomy#space#space news
2 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
4 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
2 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA
2 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note
Text
A Successful Second Rehearsal Puts NASA’s OSIRIS-REx on a Path to Sample Collection
NASA - OSIRIS-REx Mission patch. Aug. 12, 2020 Yesterday, the OSIRIS-REx spacecraft performed its final practice run of the sampling sequence, reaching an approximate altitude of 131 feet (40 meters) over sample site Nightingale before executing a back-away burn. Nightingale, OSIRIS-REx’s primary sample collection site, is located within a crater in Bennu’s northern hemisphere.
Animation above: OSIRIS-REx Cruises Over Site Nightingale During Final Dress Rehearsal. Animation Credits: NASA/Goddard/University of Arizona. The approximately four-hour “Matchpoint” rehearsal took the spacecraft through the first three of the sampling sequence’s four maneuvers: the orbit departure burn, the “Checkpoint” burn and the Matchpoint burn. Checkpoint is the point where the spacecraft autonomously checks its position and velocity before adjusting its trajectory down toward the event’s third maneuver. Matchpoint is the moment when the spacecraft matches Bennu’s rotation in order to fly in tandem with the asteroid surface, directly above the sample site, before touching down on the targeted spot. Four hours after departing its 0.6-mile (1-km) safe-home orbit, OSIRIS-REx performed the Checkpoint maneuver at an approximate altitude of 410 feet (125 meters) above Bennu’s surface. From there, the spacecraft continued to descend for another eight minutes to perform the Matchpoint burn. After descending on this new trajectory for another three minutes, the spacecraft reached an altitude of approximately 131 ft (40 m) – the closest the spacecraft has ever been to Bennu – and then performed a back-away burn to complete the rehearsal.
OSIRIS-REx Cruises Over Site Nightingale During Final Dress Rehearsal
Video above: These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu. The spacecraft’s sampling arm – called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – is visible in the lower part of the frame. Video Credits: NASA/Goddard/University of Arizona. During the rehearsal, the spacecraft successfully deployed its sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM), from its folded, parked position out to the sample collection configuration. Additionally, some of the spacecraft’s instruments collected science and navigation images and made spectrometry observations of the sample site, as will occur during the sample collection event. These images and science data were downlinked to Earth after the event’s conclusion. Because the spacecraft and Bennu are currently about 179 million miles (288 million km) from Earth, it takes approximately 16 minutes for the spacecraft to receive the radio signals used to command it. This time lag prevented live commanding of flight activities from the ground during the rehearsal. As a result, the spacecraft performed the entire rehearsal sequence autonomously. Prior to the rehearsal's start, the OSIRIS-REx team uplinked all of the event's commands to the spacecraft and then provided the “Go” command to begin the event. The actual sample collection event in October will be conducted the same way. This second rehearsal provided the mission team with practice navigating the spacecraft through the first three maneuvers of the sampling event and with an opportunity to verify that the spacecraft’s imaging, navigation and ranging systems operated as expected during the first part of the descent sequence.
Image above: This artist's rendering shows OSIRIS-REx spacecraft descending towards asteroid Bennu to collect a sample of the asteroid’s surface. Image Credits: NASA/Goddard/University of Arizona. Matchpoint rehearsal also confirmed that OSIRIS-REx’s Natural Feature Tracking (NFT) guidance system accurately estimated the spacecraft’s trajectory after the Matchpoint burn, which is the final maneuver before the sample collection head contacts Bennu’s surface. This rehearsal was also the first time that the spacecraft’s on-board hazard map was employed. The hazard map delineates areas that could potentially harm the spacecraft. If the spacecraft detects that it is on course to touch a hazardous area, it will autonomously back-away once it reaches an altitude of 16 ft (5 m). While OSIRIS-REx did not fly that low during the rehearsal, it did employ the hazard map to assess whether its predicted touchdown trajectory would have avoided surface hazards, and found that the spacecraft’s path during the rehearsal would have allowed for a safe touchdown on sample site Nightingale. During the last minutes of the spacecraft’s descent, OSIRIS-REx also collected new, high-resolution navigation images for the NFT guidance system. These detailed images of Bennu’s landmarks will be used for the sampling event, and will allow the spacecraft to accurately target a very small area. “Many important systems were exercised during this rehearsal – from communications, spacecraft thrusters, and most importantly, the onboard Natural Feature Tracking guidance system and hazard map,” said OSIRIS-REx principal investigator Dante Lauretta of the University of Arizona, Tucson. “Now that we’ve completed this milestone, we are confident in finalizing the procedures for the TAG event. This rehearsal confirmed that the team and all of the spacecraft’s systems are ready to collect a sample in October.” The mission team has spent the last several months preparing for Matchpoint rehearsal while maximizing remote work as part of the COVID-19 response. On the day of rehearsal, a limited number of personnel monitored the spacecraft’s telemetry from Lockheed Martin Space’s facility, NASA’s Goddard Space Flight Center and the University of Arizona, taking appropriate safety precautions, while the rest of the team performed their roles remotely. The spacecraft will travel all the way to the asteroid’s surface during its first sample collection attempt, scheduled for Oct. 20. During this event, OSIRIS-REx’s sampling mechanism will touch Bennu’s surface for several seconds, fire a charge of pressurized nitrogen to disturb the surface and collect a sample before the spacecraft backs away. The spacecraft is scheduled to return the sample to Earth on Sept. 24, 2023. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Related article: NASA’s OSIRIS-REx is One Rehearsal Away from Touching Asteroid Bennu https://orbiterchspacenews.blogspot.com/2020/08/nasas-osiris-rex-is-one-rehearsal-away.html For more information on NASA’s OSIRIS-Rex, visit: https://www.nasa.gov/osiris-rex and https://www.asteroidmission.org Video (mentioned), Image (mentioned), Text, Credits: NASA/Karl Hille/University of Arizona/Brittany Enos. Greetings, Orbiter.ch Full article
15 notes
·
View notes
Photo
Checkpoint: OSIRIS-REx Practices Sample Collection via NASA https://ift.tt/3b9y8CN
1 note
·
View note