Tumgik
#L-Buthionine-(S
healthtimetaylor · 5 years
Text
Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production.
PMID:  Biomed Mater Eng. 2014 ;24(1):1019-25. PMID: 24211992 Abstract Title:  Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production. Abstract:  The aim of this study was to determine the relationship between proliferation inhibition and the production of reactive oxygen species (ROS) induced by Licochalcone A (LCA). Cell viability was evaluated using sulforhodamine B (SRB) assay. Intracellular ROS level was assessed using the 2, 7-dichlorofluorescein diacetate (H2DCFDA) probe and dihydroethidium (DHE) probe assay. The results indicate that LCA inhibits human bladder cancer T24 proliferation in a concentration-dependent manner, with an IC50 value of approximately 55μM. The LCA-induced ROS production is inhibited by the co-treatment of LCA and free radical scavenger N-acetyl-cysteine (NAC), on the contrary, the proliferation rate and ROS production increase when treated by the combination of LCA and L-buthionine-(S,R)-sulfoximine (BSO). The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) decreases in a concentration-dependent manner. The results suggest that LCA inhibits proliferation by increasing intracellular ROS levels resulted in an oxidative stress status in T24 cells.
read more
0 notes
healthtimetaylor · 5 years
Text
Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines.
PMID:  Biochem Pharmacol. 2010 Jan 15 ;79(2):130-6. Epub 2009 Aug 19. PMID: 19698702 Abstract Title:  Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Abstract:  Artemisinin derivatives are well-tolerated anti-malaria drugs that also exert anti-cancer activity. Here, we investigated artemisinin and its derivatives dihydroartemisinin and artesunate in a panel of chemosensitive and chemoresistant human neuroblastoma cells as well as in primary neuroblastoma cultures. Only dihydroartemisinin and artesunate affected neuroblastoma cell viability with artesunate being more active. Artesunate-induced apoptosis and reactive oxygen species in neuroblastoma cells. Of 16 cell lines and two primary cultures, only UKF-NB-3(r)CDDP(1000) showed low sensitivity to artesunate. Characteristic gene expression signatures based on a previous analysis of artesunate resistance in the NCI60 cell line panel clearly separated UKF-NB-3(r)CDDP(1000) from the other cell lines. l-Buthionine-S,R-sulfoximine, an inhibitor of GCL (glutamate-cysteine ligase), resensitised in part UKF-NB-3(r)CDDP(1000) cells to artesunate. This finding together with bioinformatic analysis of expression of genes involved in glutathione metabolism showed that this pathway is involved in artesunate resistance. These data indicate that neuroblastoma represents an artesunate-sensitive cancer entity and that artesunate is also effective in chemoresistant neuroblastoma cells.
read more
0 notes