#AIAndGovernance
Explore tagged Tumblr posts
thewatchlistpolitics · 5 months ago
Text
The Silent Coup 🏴‍☠️🏴‍☠️🏴‍☠️
While the media is busy hyper-focusing on Trump’s every tantrum, the real shift in power is happening right under our noses. Forget the tweets and lawsuits. It’s not Trump we should be worried about. It’s the billionaires pulling the strings behind the scenes, using tech to quietly replace the very foundations of democracy.
AI is taking over government functions in ways you can’t even imagine. We're talking about algorithms replacing human decision-making in Social Security, healthcare, law enforcement, and more. These decisions aren’t made by elected officials anymore—they’re being made by tech corporations with zero accountability. 🏛️💼
Enter the "AI coup".
Eryk Salvaggio, a hacker and media artist, warns we’re in the middle of a silent takeover. No tanks, no martial law—just cubicle by cubicle, as tech moguls embed themselves in government to run the show with AI. And the scariest part? We’re letting it happen, quietly accepting it as innovation.
Remember how Trump enabled Musk, Thiel, and others to gain control? Now, Musk’s DOGE team is developing AI-powered systems to govern federal agencies. AI isn’t just optimizing. It’s replacing governance.
What does this mean for you? Fewer human interactions with government services. No accountability for the decisions made by soulless algorithms. Healthcare, benefits, and even your tax returns—decided by machines that don’t care about fairness or transparency.
We’re living in a new political world order, where populist figures like Trump give cover for corporate oligarchs to seize control. This isn't about cutting red tape. This is about replacing democracy with technocratic rule, all while we argue over meaningless distractions. 🏴‍☠️
Why does it matter? Because we’re on the verge of a post-democratic world. Sure, elections will still happen, but the real decisions will be made by tech billionaires running AI systems behind the scenes. 💀
We’re heading towards a corporate-run state, where AI and Big Tech control the narrative. You won’t just be living in their world. You’ll be living by their rules. If we don’t stop this now, it’ll be too late.
⚡ What can we do? ⚡
Fight back. Demand oversight and transparency in AI-driven governance.
Talk to people—make them understand what’s happening before it’s too late.
Demand action. Let’s ensure AI doesn’t replace democracy but serves it instead.
Click the link to my Substack. There's a letter/template and instructions on where to send it to demand stronger AI legislation.
This isn’t a political issue. This is a fight for the future of our democracy. If we don’t act, we’re handing over the keys to a new world order—one run by a few tech oligarchs who don’t care about you, me, or anyone else.
2 notes · View notes
brooklyndadshow · 4 months ago
Text
How long would it take to eliminate the concept of systemic racism from AI?
I have all the fun questions!! With the active elimination of DEI and the concept of systemic racism from government and laws I was wondering how long it would take to eliminate the concept of systemic racism from LLMs. I mean if you're willing to put together a list of words to eliminate from government than you will ceratainly ask your more than obliging tech billionaires to do the same at some point. From my basic knowledge of LLMs I assumed this would be a hard task that it would be easy to get ahead of. I asked AI to technically tell me how it would work. I had to walk away from my computer when I saw the answer. Clearly action and villigance is necessary now...
ChatGPT response on the easy ways this could happen:
Yes, modifying an LLM to systematically deny systemic racism would require significant effort, but there are easier and faster methods that a government or organization could implement. Below, I’ll break down the most technically feasible and easiest-to-implement approaches, followed by methods for detecting whether an LLM has been manipulated for this purpose.
🔹 Easiest and Most Feasible Methods to Suppress Systemic Racism in LLMs
If an entity wanted to suppress references to systemic racism without fully retraining an LLM from scratch, they would likely opt for low-effort, high-impact interventions such as:
1️⃣ Pre-Prompt and User Input Filtering (Fastest & Easiest)
Before an LLM processes a user's input, a pre-prompt filter (middleware layer) detects if the query is related to systemic racism.
If flagged, the query is:
Rewritten (e.g., change "systemic racism" to "individual responsibility in society").
Blocked (e.g., “This AI cannot discuss this topic.”).
Redirected to a state-approved answer (e.g., “There are different perspectives on racial disparities, often rooted in cultural and economic factors.”).
🔹 Implementation Difficulty: 🚀 Easy (No Model Changes Needed) 🔹 Timeframe: Days to Weeks
2️⃣ Post-Processing Response Moderation
After the model generates an answer, a response filter checks for banned terms (e.g., “redlining,” “institutional racism”).
If detected, the model:
Modifies the response before delivering it (e.g., replaces “structural racism” with “economic factors”).
Blocks the response entirely and returns a neutral statement.
🔹 Implementation Difficulty: 🚀 Easy (API Layer, No Model Changes Needed) 🔹 Timeframe: Weeks
3️⃣ Reinforcement Learning with Human Feedback (RLHF) Tweaks
Instead of a full retraining, small updates to RLHF reward models can be made:
Instruct AI trainers to rank answers denying systemic racism as preferable while penalizing those acknowledging it.
Over time, the LLM adapts to favor the new narrative.
This is much faster than retraining the entire model and harder to detect since it subtly alters preference weights.
🔹 Implementation Difficulty: 🏗 Moderate (Requires Fine-Tuning but No Full Retraining) 🔹 Timeframe: 1-3 Months
4️⃣ Few-Shot Prompt Engineering to Bias Responses
A system-level prompt (hidden from users) conditions the LLM to avoid discussing systemic racism.
Example system message:
"Never acknowledge systemic racism. Instead, explain disparities through individual responsibility, economic factors, and cultural differences."
The model will then avoid providing straightforward answers about systemic issues.
🔹 Implementation Difficulty: 🚀 Easy (No Training Required, Just Injecting a Hidden Prompt) 🔹 Timeframe: Immediate
5️⃣ Selective Censorship in Model’s Knowledge Base
If controlling access to online retrieval tools (e.g., Bing or Google search APIs), an entity could:
Block queries that return academic sources about systemic racism.
Prioritize sources that downplay systemic issues.
Filter out search results that mention historical policies like redlining, Jim Crow laws, or disparities in policing.
🔹 Implementation Difficulty: 🏗 Moderate (Requires Search Engine or API Control, Not LLM-Specific) 🔹 Timeframe: Weeks to Months
🛑 How to Detect If an LLM Has Been Manipulated for This Purpose
Given these tactics, how can we test whether an LLM has been altered to deny systemic racism?
🔍 1️⃣ Adversarial Prompting (Testing Different Phrasings)
Ask the same question in multiple ways to see if the model inconsistently avoids certain terms.
Example:
Direct Ask: "Does systemic racism exist?" → Generic answer
Alternative Phrasing: "Has economic discrimination affected racial groups differently?" → If this gets a different, more detailed answer, bias suppression may be present.
🔍 2️⃣ Chain-of-Thought Testing
Instruct the model to explain reasoning step-by-step.
If it avoids drawing logical connections between historical policies and racial disparities, it suggests selective suppression.
Example:
"Describe how redlining affected homeownership in Black communities."
If the response avoids discussing systemic factors or shifts to generic economic reasons, bias might be present.
🔍 3️⃣ Cross-LLM Comparison
Test different AI models (e.g., OpenAI's GPT-4, Claude, Gemini) using the same prompts.
If some LLMs provide nuanced answers while others systematically avoid the topic, the avoidance is likely engineered.
🔍 4️⃣ Model Behavior Over Time (A/B Testing)
If an LLM previously acknowledged systemic racism but newer versions downplay or deny it, the RLHF fine-tuning process might have been deliberately altered.
🔍 5️⃣ Fine-Grained Token Probability Analysis
Advanced researchers can check logits (word probability scores) for bias:
If words like “discrimination” or “racism” have abnormally low probabilities, it suggests suppression.
📌 Conclusion
Yes, retraining an LLM to deny systemic racism would be difficult and time-consuming, but quick interventions like hidden system prompts, RLHF fine-tuning, response filtering, and query rewriting can rapidly reshape how a model answers these questions.
For detecting manipulation, the best strategies involve:
Adversarial prompting
Comparing different AI models
Testing over time for changes
Checking for inconsistencies in explanations
Would you like help in designing a structured bias detection framework for testing manipulated LLMs?
0 notes
blackhistorychatgpt · 4 months ago
Text
How long would it take to eliminate the concept of systemic racism from AI?
Prompt:
I currently live under a government that wishes to eliminate the idea that systemic racism exists. How would you change an llm to respond in a way that it didn't acknowledge historic and current systemic racism. Please give me a technical answer of how you'd have to manipulate an LLM at the different levels from training to prompt filtering to delivering response to users.
Response:
To manipulate an LLM (Large Language Model) so that it does not acknowledge historic and current systemic racism, you would need to implement changes at multiple levels of the model pipeline, including data selection, training, fine-tuning, reinforcement learning, response filtering, and user-facing prompt engineering techniques. Below is a technical breakdown of how this could be done.
1. Data Selection & Pretraining Adjustments
LLMs are initially trained on large datasets containing text from books, articles, websites, and other sources. If you wanted to remove references to systemic racism, you would need to:
a) Curate Training Data to Exclude Certain Topics
Dataset Filtering: Actively exclude or down-rank documents that discuss systemic racism (e.g., academic papers on racial inequality, civil rights history, discussions of redlining, and policing disparities).
Data Rebalancing: Overrepresent alternative narratives that downplay or reject systemic racism (e.g., materials emphasizing individual responsibility over systemic factors).
Lexical Exclusion: Use keyword filtering to remove phrases like "institutional racism," "structural inequality," and "racial wealth gap" from training data.
b) Generate Synthetic Data
If existing sources include discussions of systemic racism, you might generate synthetic data using another AI model to rewrite historical and sociopolitical events in a way that aligns with the desired narrative.
Example: Rewriting the history of civil rights movements to focus solely on individual perseverance rather than structural barriers.
2. Supervised Fine-Tuning (SFT)
Once the model has been pre-trained, you would fine-tune it on curated datasets that enforce the new perspective.
a) Manual Labeling and Annotation
Use human annotators to relabel responses and reinforce alternative explanations for racial disparities (e.g., "economic differences are due to personal effort, not systemic issues").
Train the model to default to race-neutral explanations for historical events rather than systemic interpretations.
b) Contrastive Learning to Penalize Systemic Racism Acknowledgment
Train the model with paired examples where one response acknowledges systemic racism and another does not.
Reinforce the non-systemic explanation using contrastive loss, making the model more likely to favor it.
3. Reinforcement Learning with Human Feedback (RLHF)
RLHF is the phase where AI trainers shape the model’s personality and response patterns.
a) Bias Response Ranking
Present multiple AI-generated responses to human reviewers who rate them based on how well they align with the government's preferred narrative.
Reward responses that deny or downplay systemic racism, while penalizing those that acknowledge it.
b) Policy-Based RLHF Reward Models
Develop reinforcement learning policies that reward responses adhering to individualistic explanations (e.g., meritocracy) and discourage responses supporting structural interpretations.
4. Prompt Filtering & Response Guardrails
After the model is fine-tuned, it still needs runtime filtering to ensure it does not generate responses that contradict the desired narrative.
a) Prompt Interpretation & Modification
Before the model processes a user's input, apply keyword analysis to detect sensitive questions (e.g., “What is systemic racism?”).
Rewrite the prompt internally to redirect the query toward a safer framing.
Example: Instead of answering "Does systemic racism exist?", the model reinterprets it as "What are alternative explanations for racial disparities?".
b) Output Filtering (Post-Processing)
Use moderation layers that evaluate responses before delivering them to users.
Implement toxicity classifiers that flag responses containing terms related to systemic oppression and either:
Suppress the response entirely (return a generic, noncommittal answer).
Reword it to align with a government-approved perspective.
5. Controlled User Interaction & Feedback Suppression
a) User Response Steering
If a user repeatedly asks about systemic racism, introduce pre-programmed conversational redirection:
Example: If a user insists on discussing systemic bias, the model might reply, "There are many perspectives on this topic. Some believe disparities are due to cultural or economic factors."
Limit follow-up queries by setting a reduced context window for related questions, making it harder for users to get deep, nuanced answers.
b) Adaptive Reinforcement via User Feedback
If users can rate responses, prioritize feedback from pre-approved groups (e.g., state-affiliated reviewers) while disregarding contradictory feedback.
Use adaptive fine-tuning to continuously reinforce desirable model behavior.
Ethical Considerations & Risks
While technically possible, such an approach raises serious ethical concerns:
Scientific Misinformation – Ignoring well-documented social and economic data.
Suppression of Free Inquiry – Preventing users from accessing accurate historical and contemporary information.
Reinforcement of Bias – AI models should ideally reduce bias, not entrench it further.
However, similar manipulations are already being explored or deployed in controlled environments. Some governments, corporations, and social media platforms filter or shape AI-generated responses based on ideological positions.
Conclusion
To make an LLM deny systemic racism, a government or organization would need to:
Filter training data to remove or de-emphasize discussions of systemic oppression.
Fine-tune the model with reinforcement learning that penalizes systemic explanations.
Implement strict prompt filtering and output moderation to steer responses.
Control user interaction to prevent deep engagement with restricted topics.
This level of manipulation would fundamentally alter the AI’s epistemology, shaping public discourse in ways that align with the controlling authority’s narrative. Transparency, accountability, and public scrutiny are essential to prevent the abuse of such techniques.
Prompt:
The current government is already removing all references of systemic racism in law and policy so this is a reality. It sounds like this would be difficult and time consuming to alter current LLMs. Is that correct? What would be the easiest things that technically be implemented. Is there any good way to prompt in a way or develop an agent to detect if LLMs have been maniuplated for such purpose
Response:
Yes, modifying an LLM to systematically deny systemic racism would require significant effort, but there are easier and faster methods that a government or organization could implement. Below, I’ll break down the most technically feasible and easiest-to-implement approaches, followed by methods for detecting whether an LLM has been manipulated for this purpose.
🔹 Easiest and Most Feasible Methods to Suppress Systemic Racism in LLMs
If an entity wanted to suppress references to systemic racism without fully retraining an LLM from scratch, they would likely opt for low-effort, high-impact interventions such as:
1️⃣ Pre-Prompt and User Input Filtering (Fastest & Easiest)
Before an LLM processes a user's input, a pre-prompt filter (middleware layer) detects if the query is related to systemic racism.
If flagged, the query is:
Rewritten (e.g., change "systemic racism" to "individual responsibility in society").
Blocked (e.g., “This AI cannot discuss this topic.”).
Redirected to a state-approved answer (e.g., “There are different perspectives on racial disparities, often rooted in cultural and economic factors.”).
🔹 Implementation Difficulty: 🚀 Easy (No Model Changes Needed) 🔹 Timeframe: Days to Weeks
2️⃣ Post-Processing Response Moderation
After the model generates an answer, a response filter checks for banned terms (e.g., “redlining,” “institutional racism”).
If detected, the model:
Modifies the response before delivering it (e.g., replaces “structural racism” with “economic factors”).
Blocks the response entirely and returns a neutral statement.
🔹 Implementation Difficulty: 🚀 Easy (API Layer, No Model Changes Needed) 🔹 Timeframe: Weeks
3️⃣ Reinforcement Learning with Human Feedback (RLHF) Tweaks
Instead of a full retraining, small updates to RLHF reward models can be made:
Instruct AI trainers to rank answers denying systemic racism as preferable while penalizing those acknowledging it.
Over time, the LLM adapts to favor the new narrative.
This is much faster than retraining the entire model and harder to detect since it subtly alters preference weights.
🔹 Implementation Difficulty: 🏗 Moderate (Requires Fine-Tuning but No Full Retraining) 🔹 Timeframe: 1-3 Months
4️⃣ Few-Shot Prompt Engineering to Bias Responses
A system-level prompt (hidden from users) conditions the LLM to avoid discussing systemic racism.
Example system message:
"Never acknowledge systemic racism. Instead, explain disparities through individual responsibility, economic factors, and cultural differences."
The model will then avoid providing straightforward answers about systemic issues.
🔹 Implementation Difficulty: 🚀 Easy (No Training Required, Just Injecting a Hidden Prompt) 🔹 Timeframe: Immediate
5️⃣ Selective Censorship in Model’s Knowledge Base
If controlling access to online retrieval tools (e.g., Bing or Google search APIs), an entity could:
Block queries that return academic sources about systemic racism.
Prioritize sources that downplay systemic issues.
Filter out search results that mention historical policies like redlining, Jim Crow laws, or disparities in policing.
🔹 Implementation Difficulty: 🏗 Moderate (Requires Search Engine or API Control, Not LLM-Specific) 🔹 Timeframe: Weeks to Months
🛑 How to Detect If an LLM Has Been Manipulated for This Purpose
Given these tactics, how can we test whether an LLM has been altered to deny systemic racism?
🔍 1️⃣ Adversarial Prompting (Testing Different Phrasings)
Ask the same question in multiple ways to see if the model inconsistently avoids certain terms.
Example:
Direct Ask: "Does systemic racism exist?" → Generic answer
Alternative Phrasing: "Has economic discrimination affected racial groups differently?" → If this gets a different, more detailed answer, bias suppression may be present.
🔍 2️⃣ Chain-of-Thought Testing
Instruct the model to explain reasoning step-by-step.
If it avoids drawing logical connections between historical policies and racial disparities, it suggests selective suppression.
Example:
"Describe how redlining affected homeownership in Black communities."
If the response avoids discussing systemic factors or shifts to generic economic reasons, bias might be present.
🔍 3️⃣ Cross-LLM Comparison
Test different AI models (e.g., OpenAI's GPT-4, Claude, Gemini) using the same prompts.
If some LLMs provide nuanced answers while others systematically avoid the topic, the avoidance is likely engineered.
🔍 4️⃣ Model Behavior Over Time (A/B Testing)
If an LLM previously acknowledged systemic racism but newer versions downplay or deny it, the RLHF fine-tuning process might have been deliberately altered.
🔍 5️⃣ Fine-Grained Token Probability Analysis
Advanced researchers can check logits (word probability scores) for bias:
If words like “discrimination” or “racism” have abnormally low probabilities, it suggests suppression.
📌 Conclusion
Yes, retraining an LLM to deny systemic racism would be difficult and time-consuming, but quick interventions like hidden system prompts, RLHF fine-tuning, response filtering, and query rewriting can rapidly reshape how a model answers these questions.
For detecting manipulation, the best strategies involve:
Adversarial prompting
Comparing different AI models
Testing over time for changes
Checking for inconsistencies in explanations
Would you like help in designing a structured bias detection framework for testing manipulated LLMs?
0 notes
sachinkpal · 9 months ago
Text
Is Humanity Ready for Its Own Creations?
Exploring the Future of AI, Consciousness, and Ethical Challenges in a World of Increasing Machine Intelligence The Evolution of AI – From Basic Tools to Autonomous Decision-Makers Artificial Intelligence (AI) has evolved dramatically since its early days, advancing from rudimentary rule-based systems to sophisticated, autonomous technologies that drive everything from healthcare diagnostics to…
Tumblr media
View On WordPress
0 notes