Text
機械系課程複習流程
五大力學
靜力學
動力學
熱力學
流體力學
材料力學
基本學科
工廠實習
工程圖學
工程數學
機動學
工程材料
機械製造
機械設計原理
熱傳學
自動控制
進階學科
電工學
應用電子學
振動學
能源工程
高等材料力學
0 notes
Text
機械相關開放課程
一些相關連結的紀錄。
基礎科目:
微積分:數學工具
中央大學:微積分(i)-單維彰;微積分(ii)-單維彰
台灣大學:微積分(數學系)朱樺
普通物理學:基礎物理原理
台灣大學:普通物理學(張寶棣);普通物理學(易富國)
工程數學:進階的數學工具
交通大學:工程數學(一);工程數學(二)
台灣大學:工程數學 - 微分方程;工程數學 - 複變;工程數學二
工程圖學:
工程圖學 (Fall 2016)--劉俊賢 / 清大
進階科目:
工程力學(包括靜力學、動力學與材料力學等)
葉銘泉-應用力學(一)(靜力學)
葉銘泉-應用力學(二)(動力學);Intermediate Dynamics (ME 4160)
葉銘泉-材料力學;Strength and Mechanics of Materials (ME 2141 & ME 2191)
Introductory Continuum Mechanics by Romesh C Batra, VA Tech
Engineering Fracture Mechanics (Video)
熱力學與熱傳學(包括熱機)
Thermodynamics I
王訓忠-熱傳學;Intermediate Heat and Mass Transfer
流體力學與流體機械
王訓忠-流體力學
Fluid Mechanics (ME 3111 & ME 3121)
NOC:Advanced Fluid Mechanics (Video)
機動學與機械設計
MEEG 4104 - Machine Element Design
Design of Machine Elements I
Robotics (Video)
工程材料與機械製造
陳智-材料科學與工程導論 (一)
楊宏智-機械製造
Manufacturing Processes I (Video);Manufacturing Processes II (Video)
電工學(包括電機機械)
潘晴財-電路學
葉廷仁-電動機械(一)
電子學-陳振芳
自動控制
非線性控制系統-程登湖
ME233 Advanced Control Systems II, UC Berkeley, Spring 2016
參考來源
sleeper的學習筆記
雲端理工學院
InfoCoBuild
0 notes
Link
重要的是,要知道這裡探討的問題和聰明與否無關。科學家、醫生和大眾健康官員往往認為那些不同意科學結論的人一定都��笨,導致以這種偏見設計出的教育措施都流於過度簡化,或甚至帶些優越感。但是,那些最聰明的人其實也會避免複雜性和不想深究科學細節。
0 notes
Link
People often ask, what exactly do you mean by “breakthrough”? It’s a reasonable question—some of our picks haven’t yet reached widespread use, while others may be on the cusp of becoming commercially available. What we’re really looking for is a technology, or perhaps even a collection of technologies, that will have a profound effect on our lives.
0 notes
Link
當九月一日,納粹德國入侵波蘭,英法對德宣戰,大戰又爆發的消息傳開時,他嚇壞了。Chadwick可不想再一次在拘留營中渡過戰爭的歲月,所以他以最快的速度前往Stockholm,但當他與家人到達時,所有連接Stockholm與倫敦的空中交通已被中止。他們一家最終總算有驚無險坐著貨船回到英國。
0 notes
Video
youtube
(經由 https://www.youtube.com/watch?v=7oaGUg7ik_c)
0 notes
Text
[熱力學]第二週筆記:First Law of Thermodynamics
Ch 2 First Law of Thermodynamics
Conservation of energy: energy can be neither created nor destroyed during a process
$$\Delta E_{system}=E_{in}-E_{out} $$
2.1 Forms of energy
E: total energy of a system (Unit: J, kJ)
$e=\frac{E}{m}$(Unit: J/g, kJ/kg)
Macroscopic form
a system as a whole with respect to some outside reference frame
kinetic energy (work done by inertial force): $$KE=\frac{1}{2}mv^2,ke=\frac{1}{2}v^2$$
potential energy (work done by conservational force, e.g. gravitational force):$$PE=mgz,pe=gz$$
Microscopic form
molecular structure of a system, independent of outside reference frame
internal energy $U~,(~per~unit~mass~)~u= \frac{U}{m}$
effected by internal molecular activity such as molecular translation, rotation & vibration
Detail analysis awaits statistical mechanics
請去物理系讀?其實高等熱力學也有啦XD
$Total~energy :E=U+KE+PE=U+\frac{1}{2}mv^2+mgz$ $Total~energy~per~mass :e=u+ke+pe=u+\frac{1}{2}v^2+gz$
Energy - state property: definite value for each equilibrium state completely specified by two independent, intensive properties.
$$\Rightarrow~\Delta E=E_{final}-E_{initial}=\int_{initial}^{final}dE$$
dE : exact differential of energy
The above integral is Path independent
Stationery system
closed system whose velocity and elevation of the center of gravity remain constant during a process
$$\Rightarrow~\Delta KE=\Delta PE=0~\Rightarrow \Delta E=\Delta U~for~a~stationery~system $$
Rate of change of energy
$$\lim_{\Delta t\to0}\frac{\Delta E}{\Delta t}=\frac{dE}{dt}$$
2.2 Mechanisms of energy transfer, $E_{in}$ & $E_{out}$
Heat, Q: energy transfer by virtue of a temperature
Work, W: energy transfer associated with a (non-conservative) force acting through a distance
mass flow (open system)
1. Heat, Q, (heat transfer per unit mass ) $q=\frac{Q}{m}$
Formal sign convention
Heat transfer to the system: $Q=|Q|\overset{def}{=}Q_{in}\geq0$
Heat transfer from the system: $Q=-|Q|\overset{def}{=}-Q_{out}\leq0$
$$Q_{in}~and~Q_{out}:amount~of~heat~transfer~entering~and~leaving~the~system~respectively$$
Rate of heat transfer, or heat transfer per unit time, $\dot Q$
unit: J/s=W, kJ/s=kW $$Q=\int_{t_{initial}}^{t_{final}}\dot Qdt~or~Q=\dot Q\Delta t~as~\Delta t\rightarrow 0$$
The amount of heat transfer: path dependent
heat transfer: path function$$Q=\int_{t_{initial}}^{t_{final}}\delta Q$$
$$\delta Q: inexact~differential ~of~heat~transfer$$
Mechanism of heat transfer
Conduction: transfer of energy from the more energetic particles of a substance ==adjacent== less energetic ones.
$$\dot Q_{conv}=hA(T_s-T_f)$$$$h: convection~coefficient$$$$T_s ,T_f=temperature~of~solid~and~fluid,respectivily$$
Convection: transfer of energy between a solid surface and the adjacent fluid that is in motion
Fourier's law:$$\dot Q_{cond}=-kA\frac{dT}{dx}$$$$k: thermal~conductivity;~A: contact~surface~area$$
大三必修:熱傳
Radiation: transfer of energy of a electromagnatic waves
Stefan-Boltzmann law:$$\dot Q_{emit}=\sigma \epsilon A T^4 \Rightarrow \dot Q_{rad}=\sigma \epsilon A (T^4-T_{sur}^4)$$$$\sigma :Stefna-Boltzmann~constant=5.67\times10^{-8} W/m^2K^4 $$$$\epsilon : emissivity~(0\leq\epsilon\leq1)$$$$T_{sur}=temperature~of~surrounding$$
2. Work, W ,$w=\frac{W}{m}$
$$W=\int_{s_{initial}}^{s_{final}}\vec{F~}\dot~ d\vec{s~}$$
Formal sign convention
Work done on the system: $W=-|W|\overset{def}{=}-W_{in}\leq0$
Work done by the system: $W=|W|\overset{def}{=}W_{out}\geq0$
$$W_{in}~and~W_{out}:amount~of~work~done~on~and~by~the~system~respectively$$
Work done per unit time; Power(Unit J/s=W)
$$W=\int_{t_{initial}}^{t_{final}}\dot Wdt~or~W=\dot W\Delta t~as~\Delta t\rightarrow 0$$
The amount of work: path dependent
work: path function$$W=\int_{t_{initial}}^{t_{final}}\delta W$$
$$\delta W: inexact~differential ~of~the~work$$
Mechanisms of work
Mechanical work
Shaft work,$~\delta W=Td\theta$
''Force'': T (torque) 扭力[N*m]
''Displacement'':$~d\theta$
Both are intensive properties
不太算generalized work
Electrical work $$\dot{W_e}=VI$$ V: electrical potential difference
3. Mass flow
mass flow rate, $\dot m~$: 單位時間內有多少質量流經指定的截面積,常用來分析流體。 如果流體密度$~\rho$固定(不可壓縮),則$$\dot m=\rho \dot V=\rho A_c \dot x~(kg/s)$$$$\dot V:~volume~flow~rate;~A_c:~cross-sectional~area;~\dot x:~average~fluid~velocity~normal~to~A_c$$$$Energy~flow~rate:~\dot E=e\dot m~(kJ/s~or~kW)$$
Energy transfer across the boundaries of a system
directional quantities
both magnitude and direction have to be specified
boundary phenomena
recognized only at the boundaries of a system as they across the boundaries
accosiated with process, not a state
unlike properties, no meaning at state
path function
their magnitudes depend on the path followed during a process
Mechanical Energy
$\overset{def}=$the form of the energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine.
Kinetic energy: $\frac{v^2}2$
Potential energy: $gz$
Flow work: 活塞壓縮液體$\Rightarrow Pv(specific~volume)=\frac{P}{\rho}$
Mechanical energy of a flowing fluid:$$e_{mech}=\frac{P}{\rho}+\frac{v^2}2+gz$$$$\Delta e_{mech}=\frac{P_2-P_1}{\rho}+\frac{v_2^2-v_1^2}2+g(z_2-z_1),~for~incompressible~fluid~(\rho=constant)$$
2.3 First law of thermodynamics- conservation of energy
$$\Delta E_{system}=E_{in}-E_{in}=Q_{in}-Q_{out}+W_{in}-W_{out}+E_{mass~in}-E_{mass~out}$$
In closed system $$\Delta E_{system}=Q_{in}-Q_{out}+W_{in}-W_{out}$$$$=(Q_{in}-Q_{out})-(W_{out}-W_{in})$$$$=Q_{net}-W_{net}$$
For a closed system undergoing a cycle $$E_{initial}=E_{final}$$$$\Rightarrow \Delta E_{system}=0$$$$\Rightarrow Q_{net}=W_{net}$$ Also$$\Delta E_{system}=\dot Q_{net}\Delta t-\dot W_{net}\Delta t$$$$\lim_{\Delta t\rightarrow 0}\frac{\Delta E_{system}}{\Delta t}=\dot Q_{net}-\dot W_{net}=\frac{dE_{system}}{dt}$$
$\frac{dE_{system}}{dt}=0$ steady state 穩態
a closed system undergoing a cycle:$$\dot Q_{net}=\dot W_{net}$$
2.4 Measurement of the internal energy
Q: How do we measure internal energy cycle which is associated with molecular activity
A: choose a stationery system $$\Rightarrow \Delta E=\Delta U$$ by First Law:$$\Delta U=Q(不可量)-W(可量)$$ To define $\Delta U\Rightarrow undergo~a~adiabatic~process$
$$\Rightarrow\Delta U= -W|_{adiabatic}$$
Once have $\Delta U$ ,to evaluate the heat transfer undergoing on an arbitrary process $$Q=\Delta U+W|_{arbitrary}$$
泳池的類比
系統:泳池
下雨:流進熱量
蒸發:流出熱量
人工加水:對系統作功
人工排水:系統對外作功
泳池的體積變化:內能變化
泳池水位:系統溫度以及壓力等intensive properties
2.5 Efficiency
$\eta =\frac{Required~output}{Required~input}$
各種效率:
$\eta_{mech}=\frac{E_{mech,~out}}{E_{mech,~in}}$
總效率combined( or overall) efficiency:
$\eta_{all}=\eta_{turbance}\times\eta_{pump}\times\eta _{thermal}...$
0 notes
Link
到底需要多大的能量才能打爆月球?月球的重力結合能(gravitational binding energy)約為
U = 3/5 x G x 月球質量2/月球半徑 = 12 萬 4 千億億億焦耳。
這能量究竟有多巨大呢?太陽每秒鐘釋放的輻射能量約為 382 億億億焦耳。算一算,即是如果把所有太陽光聚焦到月球上 324 秒(即約 5 分半鐘),就能夠毀滅它了。
0 notes
Link
0 notes
Video
youtube
Nissan created self-parking slippers to demonstrate an important point.
84 notes
·
View notes
Video
youtube
Tiny robots may one day help keep our bodies in good working order.
122 notes
·
View notes
Video
震動能經由某種形式(猜測是先變轉動能再)轉為電能。
youtube
These wind turbines have no blades and produce energy by vibrating.
62 notes
·
View notes
Photo

Using long exposure on his camera, PhD candidate David Nadlinger took a photo of an atom illuminated by a laser, while it was suspended in the air by two electrodes. (For a sense of scale, the two electrodes on either side of the atom are 2mm apart). The reason why you’re able to see the atom is because it absorbed and re-emitting the light particles that the laser projected. (David Nadlinger/University of Oxford/EPSRC)
4K notes
·
View notes
Text
[工材]第二週筆記
Phase Diagram 相平衡圖
物質的狀態(state);相(phase)
$$state~diagram\overset{冷卻和加熱速度慢}{\Rightarrow} equilibrium~diagram\Rightarrow phase~diagram$$
Polymorphism(同質異晶現象):由化學組成相同的物質,在不同的物理化學條件下形成的不同結構的晶體。
Allotropy(同素異形體)
純金屬的溶解、凝固(solidification)現象
過冷度
低於凝固點還是保持液態的現象
均相成核(homogeneous nucleation)常見的過冷度(差)
樹枝狀結晶方向通常是[111]
晶界
形成是因成核的方向不同
雜質多在此
熔融由此開始
相律
預測的是點、線或面,數量不定。
師曰:「以前這些(八學分)熱力學都教過了云云」
合金種類
純金屬:較少見,如Pb
固溶體$\rightarrow產生畸變$:組成法則$\rightarrow$Hume-Rothery Rule
插入式(inserstitial):直徑較小的非金屬原子,不規則分佈
置換式(substitutional)
金屬間化合物:如$CuAl_2,~Fe_3C$特性近於非金屬(硬脆、強度大、導電度小)
上述之混合物(mixure)
二元相平衡圖 種類
1. 全率固溶���
Ni-Cu, Au-Ag, Bi-Sb, Ni-Co
Tie line: 與液相線以及固相線相接的等溫線(下圖中的LS線段)
Level rule
偏析(segregation):
非緩慢冷卻下,一層一層冷卻,此結構稱作cored structure(下圖左邊)
phase diagrams by Nurul Adni via SlideShare
一般會均質化處理以提升性能
2. 共晶型(第一類)Eutectic type 1
較type 2少見:Al-Sn, Bi-Cd, Sn-Zn
相當於兩個全率固溶型的圖合併
當$L'_1$冷卻到e點時有下列共晶反應(eutectic reaction):$$L'_1\rightleftharpoons A(solid)+B(solid)$$
三相共存(液態+A(solid)+B(solid))
e點:eutectic point
此溫度:共晶溫度
0 notes