mechanicalengineerstudyphysics
mechanicalengineerstudyphysics
追趕物理的工程師
21 posts
機械。
Don't wanna be here? Send us removal request.
Text
機械系課程複習流程
五大力學
靜力學
動力學
熱力學
流體力學
材料力學
基本學科
工廠實習
工程圖學
工程數學
機動學
工程材料
機械製造
機械設計原理
熱傳學
自動控制
進階學科
電工學
應用電子學
振動學
能源工程
高等材料力學
0 notes
Text
機械相關開放課程
一些相關連結的紀錄。
基礎科目:
微積分:數學工具
中央大學:微積分(i)-單維彰;微積分(ii)-單維彰
台灣大學:微積分(數學系)朱樺
普通物理學:基礎物理原理
台灣大學:普通物理學(張寶棣);普通物理學(易富國)
工程數學:進階的數學工具
交通大學:工程數學(一);工程數學(二)
台灣大學:工程數學 - 微分方程;工程數學 - 複變;工程數學二
工程圖學:
工程圖學 (Fall 2016)--劉俊賢 / 清大
進階科目:
工程力學(包括靜力學、動力學與材料力學等)
葉銘泉-應用力學(一)(靜力學)
葉銘泉-應用力學(二)(動力學);Intermediate Dynamics (ME 4160)
葉銘泉-材料力學;Strength and Mechanics of Materials (ME 2141 & ME 2191)
Introductory Continuum Mechanics by Romesh C Batra, VA Tech
Engineering Fracture Mechanics (Video) 
熱力學與熱傳學(包括熱機)
Thermodynamics I
王訓忠-熱傳學;Intermediate Heat and Mass Transfer
流體力學與流體機械
王訓忠-流體力學
Fluid Mechanics (ME 3111 & ME 3121)
NOC:Advanced Fluid Mechanics  (Video)
機動學與機械設計
MEEG 4104 - Machine Element Design
Design of Machine Elements I
Robotics (Video)
工程材料與機械製造
陳智-材料科學與工程導論 (一)
楊宏智-機械製造
Manufacturing Processes I (Video);Manufacturing Processes II (Video)
電工學(包括電機機械) 
潘晴財-電路學
葉廷仁-電動機械(一) 
電子學-陳振芳
自動控制
非線性控制系統-程登湖
ME233 Advanced Control Systems II, UC Berkeley, Spring 2016
參考來源
sleeper的學習筆記
雲端理工學院
InfoCoBuild
0 notes
Link
0 notes
Link
重要的是,要知道這裡探討的問題和聰明與否無關。科學家、醫生和大眾健康官員往往認為那些不同意科學結論的人一定都��笨,導致以這種偏見設計出的教育措施都流於過度簡化,或甚至帶些優越感。但是,那些最聰明的人其實也會避免複雜性和不想深究科學細節。
0 notes
Link
People often ask, what exactly do you mean by “breakthrough”? It’s a reasonable question—some of our picks haven’t yet reached widespread use, while others may be on the cusp of becoming commercially available. What we’re really looking for is a technology, or perhaps even a collection of technologies, that will have a profound effect on our lives.
0 notes
Link
0 notes
Link
當九月一日,納粹德國入侵波蘭,英法對德宣戰,大戰又爆發的消息傳開時,他嚇壞了。Chadwick可不想再一次在拘留營中渡過戰爭的歲月,所以他以最快的速度前往Stockholm,但當他與家人到達時,所有連接Stockholm與倫敦的空中交通已被中止。他們一家最終總算有驚無險坐著貨船回到英國。
0 notes
Video
youtube
(經由 https://www.youtube.com/watch?v=7oaGUg7ik_c)
0 notes
Text
[熱力學]第二週筆記:First Law of Thermodynamics
Ch 2 First Law of Thermodynamics
Conservation of energy: energy can be neither created nor destroyed during a process
$$\Delta E_{system}=E_{in}-E_{out} $$
2.1 Forms of energy
E: total energy of a system (Unit: J, kJ)
$e=\frac{E}{m}$(Unit: J/g, kJ/kg)
Macroscopic form
a system as a whole with respect to some outside reference frame
kinetic energy (work done by inertial force): $$KE=\frac{1}{2}mv^2,ke=\frac{1}{2}v^2$$
potential energy (work done by conservational force, e.g. gravitational force):$$PE=mgz,pe=gz$$
Microscopic form
molecular structure of a system, independent of outside reference frame
internal energy $U~,(~per~unit~mass~)~u= \frac{U}{m}$
effected by internal molecular activity such as molecular translation, rotation & vibration
Detail analysis awaits statistical mechanics
請去物理系讀?其實高等熱力學也有啦XD
$Total~energy :E=U+KE+PE=U+\frac{1}{2}mv^2+mgz$ $Total~energy~per~mass :e=u+ke+pe=u+\frac{1}{2}v^2+gz$
Energy - state property: definite value for each equilibrium state completely specified by two independent, intensive properties.
$$\Rightarrow~\Delta E=E_{final}-E_{initial}=\int_{initial}^{final}dE$$
dE : exact differential of energy
The above integral is Path independent
Stationery system
closed system whose velocity and elevation of the center of gravity remain constant during a process
$$\Rightarrow~\Delta KE=\Delta PE=0~\Rightarrow \Delta E=\Delta U~for~a~stationery~system $$
Rate of change of energy
$$\lim_{\Delta t\to0}\frac{\Delta E}{\Delta t}=\frac{dE}{dt}$$
2.2 Mechanisms of energy transfer, $E_{in}$ & $E_{out}$
Heat, Q: energy transfer by virtue of a temperature
Work, W: energy transfer associated with a (non-conservative) force acting through a distance
mass flow (open system)
1. Heat, Q, (heat transfer per unit mass ) $q=\frac{Q}{m}$
Formal sign convention
Heat transfer to the system: $Q=|Q|\overset{def}{=}Q_{in}\geq0$
Heat transfer from the system: $Q=-|Q|\overset{def}{=}-Q_{out}\leq0$
$$Q_{in}~and~Q_{out}:amount~of~heat~transfer~entering~and~leaving~the~system~respectively$$
Rate of heat transfer, or heat transfer per unit time, $\dot Q$
unit: J/s=W, kJ/s=kW $$Q=\int_{t_{initial}}^{t_{final}}\dot Qdt~or~Q=\dot Q\Delta t~as~\Delta t\rightarrow 0$$
The amount of heat transfer: path dependent
heat transfer: path function$$Q=\int_{t_{initial}}^{t_{final}}\delta Q$$
$$\delta Q: inexact~differential ~of~heat~transfer$$
Mechanism of heat transfer
Conduction: transfer of energy from the more energetic particles of a substance ==adjacent== less energetic ones.
$$\dot Q_{conv}=hA(T_s-T_f)$$$$h: convection~coefficient$$$$T_s ,T_f=temperature~of~solid~and~fluid,respectivily$$
Convection: transfer of energy between a solid surface and the adjacent fluid that is in motion
Fourier's law:$$\dot Q_{cond}=-kA\frac{dT}{dx}$$$$k: thermal~conductivity;~A: contact~surface~area$$
大三必修:熱傳
Radiation: transfer of energy of a electromagnatic waves
Stefan-Boltzmann law:$$\dot Q_{emit}=\sigma \epsilon A T^4 \Rightarrow \dot Q_{rad}=\sigma \epsilon A (T^4-T_{sur}^4)$$$$\sigma :Stefna-Boltzmann~constant=5.67\times10^{-8} W/m^2K^4 $$$$\epsilon : emissivity~(0\leq\epsilon\leq1)$$$$T_{sur}=temperature~of~surrounding$$
2. Work, W ,$w=\frac{W}{m}$
$$W=\int_{s_{initial}}^{s_{final}}\vec{F~}\dot~ d\vec{s~}$$
Formal sign convention
Work done on the system: $W=-|W|\overset{def}{=}-W_{in}\leq0$
Work done by the system: $W=|W|\overset{def}{=}W_{out}\geq0$
$$W_{in}~and~W_{out}:amount~of~work~done~on~and~by~the~system~respectively$$
Work done per unit time; Power(Unit J/s=W)
$$W=\int_{t_{initial}}^{t_{final}}\dot Wdt~or~W=\dot W\Delta t~as~\Delta t\rightarrow 0$$
The amount of work: path dependent
work: path function$$W=\int_{t_{initial}}^{t_{final}}\delta W$$
$$\delta W: inexact~differential ~of~the~work$$
Mechanisms of work
Mechanical work
Shaft work,$~\delta W=Td\theta$
''Force'': T (torque) 扭力[N*m]
''Displacement'':$~d\theta$
Both are intensive properties
不太算generalized work
Electrical work $$\dot{W_e}=VI$$ V: electrical potential difference
3. Mass flow
mass flow rate, $\dot m~$: 單位時間內有多少質量流經指定的截面積,常用來分析流體。 如果流體密度$~\rho$固定(不可壓縮),則$$\dot m=\rho \dot V=\rho A_c \dot x~(kg/s)$$$$\dot V:~volume~flow~rate;~A_c:~cross-sectional~area;~\dot x:~average~fluid~velocity~normal~to~A_c$$$$Energy~flow~rate:~\dot E=e\dot m~(kJ/s~or~kW)$$
Energy transfer across the boundaries of a system
directional quantities
both magnitude and direction have to be specified
boundary phenomena
recognized only at the boundaries of a system as they across the boundaries
accosiated with process, not a state
unlike properties, no meaning at state
path function
their magnitudes depend on the path followed during a process
Mechanical Energy
$\overset{def}=$the form of the energy that can be converted to mechanical work completely and directly by an ideal mechanical device such as an ideal turbine.
Kinetic energy: $\frac{v^2}2$
Potential energy: $gz$
Flow work: 活塞壓縮液體$\Rightarrow Pv(specific~volume)=\frac{P}{\rho}$
Mechanical energy of a flowing fluid:$$e_{mech}=\frac{P}{\rho}+\frac{v^2}2+gz$$$$\Delta e_{mech}=\frac{P_2-P_1}{\rho}+\frac{v_2^2-v_1^2}2+g(z_2-z_1),~for~incompressible~fluid~(\rho=constant)$$
2.3 First law of thermodynamics- conservation of energy
$$\Delta E_{system}=E_{in}-E_{in}=Q_{in}-Q_{out}+W_{in}-W_{out}+E_{mass~in}-E_{mass~out}$$
In closed system $$\Delta E_{system}=Q_{in}-Q_{out}+W_{in}-W_{out}$$$$=(Q_{in}-Q_{out})-(W_{out}-W_{in})$$$$=Q_{net}-W_{net}$$
For a closed system undergoing a cycle $$E_{initial}=E_{final}$$$$\Rightarrow \Delta E_{system}=0$$$$\Rightarrow Q_{net}=W_{net}$$ Also$$\Delta E_{system}=\dot Q_{net}\Delta t-\dot W_{net}\Delta t$$$$\lim_{\Delta t\rightarrow 0}\frac{\Delta E_{system}}{\Delta t}=\dot Q_{net}-\dot W_{net}=\frac{dE_{system}}{dt}$$
$\frac{dE_{system}}{dt}=0$ steady state 穩態
a closed system undergoing a cycle:$$\dot Q_{net}=\dot W_{net}$$
2.4 Measurement of the internal energy
Q: How do we measure internal energy cycle which is associated with molecular activity
A: choose a stationery system $$\Rightarrow \Delta E=\Delta U$$ by First Law:$$\Delta U=Q(不可量)-W(可量)$$ To define $\Delta U\Rightarrow undergo~a~adiabatic~process$
$$\Rightarrow\Delta U= -W|_{adiabatic}$$
Once have $\Delta U$ ,to evaluate the heat transfer undergoing on an arbitrary process $$Q=\Delta U+W|_{arbitrary}$$
泳池的類比
系統:泳池
下雨:流進熱量
蒸發:流出熱量
人工加水:對系統作功
人工排水:系統對外作功
泳池的體積變化:內能變化
泳池水位:系統溫度以及壓力等intensive properties
2.5 Efficiency
$\eta =\frac{Required~output}{Required~input}$
各種效率:
$\eta_{mech}=\frac{E_{mech,~out}}{E_{mech,~in}}$
總效率combined( or overall) efficiency:
$\eta_{all}=\eta_{turbance}\times\eta_{pump}\times\eta _{thermal}...$
0 notes
Link
並不是使用了科學名詞,或者看來像科學的名詞,就是科學。
0 notes
Link
到底需要多大的能量才能打爆月球?月球的重力結合能(gravitational binding energy)約為
U = 3/5 x G x 月球質量2/月球半徑 = 12 萬 4 千億億億焦耳。
這能量究竟有多巨大呢?太陽每秒鐘釋放的輻射能量約為 382 億億億焦耳。算一算,即是如果把所有太陽光聚焦到月球上  324 秒(即約 5 分半鐘),就能夠毀滅它了。
0 notes
Link
0 notes
Video
youtube
Nissan created self-parking slippers to demonstrate an important point.
84 notes · View notes
Video
youtube
Tiny robots may one day help keep our bodies in good working order.
122 notes · View notes
Video
震動能經由某種形式(猜測是先變轉動能再)轉為電能。
youtube
These wind turbines have no blades and produce energy by vibrating.
62 notes · View notes
Photo
Tumblr media
Using long exposure on his camera, PhD candidate David Nadlinger took a photo of an atom illuminated by a laser, while it was suspended in the air by two electrodes. (For a sense of scale, the two electrodes on either side of the atom are 2mm apart). The reason why you’re able to see the atom is because it absorbed and re-emitting the light particles that the laser projected. (David Nadlinger/University of Oxford/EPSRC)
4K notes · View notes
Text
[工材]第二週筆記
Phase Diagram 相平衡圖
物質的狀態(state);相(phase)
$$state~diagram\overset{冷卻和加熱速度慢}{\Rightarrow} equilibrium~diagram\Rightarrow phase~diagram$$
Polymorphism(同質異晶現象):由化學組成相同的物質,在不同的物理化學條件下形成的不同結構的晶體。
Allotropy(同素異形體)
純金屬的溶解、凝固(solidification)現象
過冷度
低於凝固點還是保持液態的現象
均相成核(homogeneous nucleation)常見的過冷度(差)
樹枝狀結晶方向通常是[111]
晶界
形成是因成核的方向不同
雜質多在此
熔融由此開始
相律
預測的是點、線或面,數量不定。
師曰:「以前這些(八學分)熱力學都教過了云云」
合金種類
純金屬:較少見,如Pb
固溶體$\rightarrow產生畸變$:組成法則$\rightarrow$Hume-Rothery Rule
插入式(inserstitial):直徑較小的非金屬原子,不規則分佈
置換式(substitutional)
金屬間化合物:如$CuAl_2,~Fe_3C$特性近於非金屬(硬脆、強度大、導電度小)
上述之混合物(mixure)
二元相平衡圖 種類
1. 全率固溶���
Ni-Cu, Au-Ag, Bi-Sb, Ni-Co
Tie line: 與液相線以及固相線相接的等溫線(下圖中的LS線段)
Level rule
偏析(segregation):
非緩慢冷卻下,一層一層冷卻,此結構稱作cored structure(下圖左邊)
phase diagrams by Nurul Adni via SlideShare
一般會均質化處理以提升性能
2. 共晶型(第一類)Eutectic type 1
較type 2少見:Al-Sn, Bi-Cd, Sn-Zn
相當於兩個全率固溶型的圖合併
當$L'_1$冷卻到e點時有下列共晶反應(eutectic reaction):$$L'_1\rightleftharpoons A(solid)+B(solid)$$
三相共存(液態+A(solid)+B(solid))
e點:eutectic point
此溫度:共晶溫度
0 notes