Don't wanna be here? Send us removal request.
Text
Social media has become an integral part of our daily life. Until 5 year ago, social media platforms were used for known social purposes like chatting, posting daily events, sharing personal photos..... etc. Later, social media ads appeared and they popped up here and there. However, they were not traditional ads. Have you ever wondered why after searching for your favorite product, you find it suggested on facebook out of the blue? Usually, you come across tens of ads unconsciously on different platforms in a single session. Futhermore, you may interact instantly without even realising they are ads! Making ads sound realistic, simple, touching or nostalgic is a very important skill any digital marketer should have. Target persona is a model for the perfect customer that a digital marketer should look forward to making him/her satisfied. Since social media channels are where most customers are found, business owners, and accordingly marketers, should pay due attention to market for their products there. That's why digital marketing was found! Actually, I didn't considered how much social media marketing is effective before couple of weeks ago when I came across FWD (future work is digital). FWD is an initiative which offers four courses each in a different track. Digital marketing is one of them. Their social media marketing campaign was one of the reasons why I enrolled in their course. It costs none. To register, I had to answer the online application questions which needed prior knowledge to digital marketing which was the hardest part. Also, I had to submit a soft copy of my governmental ID. Finally, an email arrived, which informed me that I was accepted! In my opinion, learning digital marketing is inevitable if you are looking forward to having your own new business.
For applying to Digital Marketing Nanodegree : https://egfwd.com/digital-marketing-t2-3/
0 notes
Text
Does Realationship With Parents Affect Mental Health?
Data from ‘AddHealth In Home Questionnaire’ Code Book along with ‘Addhealth wave 1’ dataset (Questions from Sections: “Feeling scale” and “Relations with parents”) were chosen. The subset chosen concerns unmarried young adults (age 16-21). There were three variables defined:
1. ”DEPSMPT“
2. "RELWPAR"
3. "DEP_WER"
The bivariate graph is C-C graph
As we can see, the adults with “None or Low” depression or anxiety symptoms has the highest proportion around 85% good relationship with parents. Those with the highest depression or anxiety symptoms has the lowest percentage (around 69%).
Code:
https://github.com/Shereen97/Data/blob/main/Code%23!/usr/bin/Code
0 notes
Text
The Relationship Between Feeling Scale And Relations With Parents
Below is my python code showing the frequency distribution concerning single young adults (age 16-21). Variables where chosen depending on questions that could(not) indicate depression in addition to questions indicating relations with parents.
The results shows that there is roughly no relationship between depression and relations with parents.
Note:
1. There are two files imported: the first is imported for sub1; the second is imported for sub3.
2. Values the variables can take and information about missing data are showed in the comments before each related section among the code.
Code:
import pandas as pd import numpy as np # any additional libraries would be imported here #Call in data csv file data = pd.read_csv('SUB2.csv', low_memory=False) print (len(data)) #number of observations (rows) print (len(data.columns)) # number of variables (columns) #setting variables you will be working with to numeric data['H1GI1Y'] = pd.to_numeric(data['H1GI1Y']) data['H1GI15'] = pd.to_numeric(data['H1GI15']) #subset data to young single adults age 16 to 21 sub1 = data[(data['H1GI1Y']>=74) & (data['H1GI1Y']<=79)& (data['H1GI15']==0)] #make a copy of my new subsetted data sub2 = sub1.copy() # frequency distritions on new sub2 data frame print ('counts for H1GI1Y') c1 = sub2['H1GI1Y'].value_counts(sort=False, dropna=True) print(c1) print ('percentages for H1GI1Y') p1 = sub2['H1GI1Y'].value_counts(sort=False, normalize=True, dropna=True) print (p1*100) print ('counts for H1GI15') c2 = sub2['H1GI15'].value_counts(sort=False, dropna=True) print(c2) print ('percentages for H1GI15') p2 = sub2['H1GI15'].value_counts(sort=False, normalize=True, dropna=True) print (p2*100) #Frequency distribution of feeling scale section questions #0 never or rarely #1 sometimes #2 a lot of the time #3 most of the time or all of the time #6 refused #8 don’t know #Call in data csv file sub3 = pd.read_csv('SUB4.csv', low_memory=False) #Replacing 6(refused) & 8(don't know) with NaN sub3= sub3.replace([6,8], np.NaN) #Q1 You were bothered by things that usually don’t bother you (indicates depression) print ('counts for H1FS1') c3 = sub3['H1FS1'].value_counts(sort=False, dropna=True) print(c3) print ('percentages H1FS1') p3 = sub3['H1FS1'].value_counts(sort=False, normalize=True, dropna=True) print (p3*100) #Q2 You didn’t feel like eating, your appetite was poor (indicates depression) print ('counts for H1FS2') c4 = sub3['H1FS2'].value_counts(sort=False, dropna=True) print(c4) print ('percentages H1FS2') p4 = sub3['H1FS2'].value_counts(sort=False, normalize=True, dropna=True) print (p4*100) #Q3 You felt that you could not shake off the blues, even with help from your family and your friends (indicates depression) print ('counts for H1FS3') c5 = sub3['H1FS3'].value_counts(sort=False, dropna=True) print(c5) print ('percentages H1FS3') p5 = sub3['H1FS3'].value_counts(sort=False, normalize=True, dropna=True) print (p5*100) #Q4 You felt that you were just as good as other people.(indicates depression) print ('counts for H1FS4') c6 = sub3['H1FS4'].value_counts(sort=False, dropna=True) print(c6) print ('percentages H1FS4') p6 = sub3['H1FS4'].value_counts(sort=False, normalize=True, dropna=True) print (p6*100) #Q5 You had trouble keeping your mind on what you were doing(indicates depression) print ('counts for H1FS5') c7 = sub3['H1FS5'].value_counts(sort=False, dropna=True) print(c7) print ('percentages H1FS5') p7 = sub3['H1FS5'].value_counts(sort=False, normalize=True, dropna=True) print (p7*100) #Q6 You felt depressed( indicates depression) print ('counts for H1FS6') c8 = sub3['H1FS6'].value_counts(sort=False, dropna=True) print(c8) print ('percentages H1FS6') p8 = sub3['H1FS6'].value_counts(sort=False, normalize=True, dropna=True) print (p8*100) #Q7 You felt that you were too tired to do things (indicates depression) print ('counts for H1FS7') c9 = sub3['H1FS7'].value_counts(sort=False, dropna=True) print(c9) print ('percentages H1FS7') p9 = sub3['H1FS7'].value_counts(sort=False, normalize=True, dropna=True) print (p9*100) #Q8 You felt hopeful about the future (negation indicates a depression symptom) print ('counts for H1FS8') c10 = sub3['H1FS8'].value_counts(sort=False, dropna=True) print(c10) print ('percentages H1FS8') p10 = sub3['H1FS8'].value_counts(sort=False, normalize=True, dropna=True) print (p10*100) #Q9 You thought your life had been a failure (indicates depression) print ('counts for H1FS9') c11 = sub3['H1FS9'].value_counts(sort=False, dropna=True) print(c11) print ('percentages H1FS9') p11 = sub3['H1FS9'].value_counts(sort=False, normalize=True, dropna=True) print (p11*100) #Q10 You felt fearful (may be an anxiety symptom) print ('counts for H1FS10') c12 = sub3['H1FS10'].value_counts(sort=False, dropna=True) print(c12) print ('percentages H1FS10') p12 = sub3['H1FS10'].value_counts(sort=False, normalize=True, dropna=True) print (p12*100) #Q11 You were happy (negation indicates a depression symptom) print ('counts for H1FS11') c13 = sub3['H1FS11'].value_counts(sort=False, dropna=True) print(c13) print ('percentages H1FS11') p13 = sub3['H1FS11'].value_counts(sort=False, normalize=True, dropna=True) print (p13*100) #Q12 You talked less than usual. print ('counts for H1FS12') c14 = sub3['H1FS12'].value_counts(sort=False, dropna=True) print(c14) print ('percentages H1FS12') p14 = sub3['H1FS12'].value_counts(sort=False, normalize=True, dropna=True) print (p14*100) #Q13 You felt lonely ( indicates depression) print ('counts for H1FS13') c15 = sub3['H1FS13'].value_counts(sort=False, dropna=True) print(c15) print ('percentages H1FS13') p15 = sub3['H1FS13'].value_counts(sort=False, normalize=True, dropna=True) print (p15*100) #Q14 People were unfriendly to you print ('counts for H1FS14') c16 = sub3['H1FS14'].value_counts(sort=False, dropna=True) print(c16) print ('percentages H1FS14') p16 = sub3['H1FS14'].value_counts(sort=False, normalize=True, dropna=True) print (p16*100) #Q15 You enjoyed life (negation indicates a depression symptom) print ('counts for H1FS15') c17 = sub3['H1FS15'].value_counts(sort=False, dropna=True) print(c17) print ('percentages H1FS15') p17 = sub3['H1FS15'].value_counts(sort=False, normalize=True, dropna=True) print (p17*100) #Q16 You felt sad ( indicates depression) print ('counts for H1FS16') c18 = sub3['H1FS16'].value_counts(sort=False, dropna=True) print(c18) print ('percentages H1FS16') p18 = sub3['H1FS16'].value_counts(sort=False, normalize=True, dropna=True) print (p18*100) #Q17 You felt that people disliked you (depression symptom--Lack of self confidence) print ('counts for H1FS17') c19 = sub3['H1FS17'].value_counts(sort=False, dropna=True) print(c19) print ('percentages H1FS17') p19 = sub3['H1FS17'].value_counts(sort=False, normalize=True, dropna=True) print (p19*100) #Q18 It was hard to get started doing things (depression symptom) print ('counts for H1FS18') c20 = sub3['H1FS18'].value_counts(sort=False, dropna=True) print(c20) print ('percentages H1FS18') p20 = sub3['H1FS18'].value_counts(sort=False, normalize=True, dropna=True) print (p20*100) #Q19 You felt life was not worth living (depression symptom) print ('counts for H1FS19') c21 = sub3['H1FS19'].value_counts(sort=False, dropna=True) print(c21) print ('percentages H1FS19') p21 = sub3['H1FS19'].value_counts(sort=False, normalize=True, dropna=True) print (p21*100) #Frequency distribution for those with one or more depression symptom sub4=sub3[(sub3['H1FS1'] ==3) | (sub3['H1FS2'] ==3) | (sub3['H1FS3'] ==3) | (sub3['H1FS4'] ==3) | (sub3['H1FS5'] ==3) | (sub3['H1FS6'] ==3) | (sub3['H1FS7'] ==3) | (sub3['H1FS8'] == 0) | (sub3['H1FS9'] ==3) | (sub3['H1FS10'] ==3) | (sub3['H1FS11'] == 0) | (sub3['H1FS12'] ==3) | (sub3['H1FS13'] ==3) | (sub3['H1FS14'] ==3) | (sub3['H1FS15'] == 0) | (sub3['H1FS16'] ==3) | (sub3['H1FS17'] ==3) | (sub3['H1FS18'] ==3) | (sub3['H1FS19'] ==3) ] #Frequency distribution showing the effect of Family relationship on feeling scale print('Frequency distribution showing the effect of Family relationship on feeling scale') # 1 may indicate good relationship while 0 indicates the opposite #Replacing 6 (refused), 7 (legitimate skip), 8 (don’t know) and 9 (not applicable) with NaN sub4= sub4.replace([6,7,8,9], np.nan) sub5=sub4.copy() #On how many of the past 7 days was at least one of your parents in the room with you while you ate your evening meal? #Assume from 4 to 7 means yes (=1) #Assume from 0 to 3 means no (=0) sub5['H1WP8']= sub5['H1WP8'].replace([4,5,6,7], 1) sub5['H1WP8']= sub5['H1WP8'].replace([0,1,2,3], 0) #Replacing 96 (refused), 97 (legitimate skip) and 98 (don’t know) with NaN sub5['H1WP8']= sub5['H1WP8'].replace([96,97,98], np.nan) print ('counts for H1WP8') c22 = sub5['H1WP8'].value_counts(sort=False, dropna=True) print(c22) print ('percentages H1WP8') p22 = sub5['H1WP8'].value_counts(sort=False, normalize=True, dropna=True) print (p22*100) # Did you have a talk with your mother about a personal problem you were having print ('counts for H1WP17F') c23 = sub5['H1WP17F'].value_counts(sort=False, dropna=True) print(c23) print ('percentages H1WP17F') p23 = sub5['H1WP17F'].value_counts(sort=False, normalize=True, dropna=True) print (p23*100) # Did you have a talk with your father about a personal problem you were having print ('counts for H1WP18F') c24 = sub5['H1WP18F'].value_counts(sort=False, dropna=True) print(c24) print ('percentages H1WP18F') p24 = sub5['H1WP18F'].value_counts(sort=False, normalize=True, dropna=True) print (p24*100) #Did you talk with your mother about other things you’re doing in school print ('counts for H1WP17J') c25 = sub5['H1WP17J'].value_counts(sort=False, dropna=True) print(c25) print ('percentages H1WP17J') p25 = sub5['H1WP17J'].value_counts(sort=False, normalize=True, dropna=True) print (p25*100) #Did you talk with your father about other things you’re doing in school print ('counts for H1WP18J') c26 = sub5['H1WP18J'].value_counts(sort=False, dropna=True) print(c26) print ('percentages H1WP18J') p26 = sub5['H1WP18J'].value_counts(sort=False, normalize=True, dropna=True) print (p26*100) #gone shopping with mother? print ('counts for H1WP17A') c27 = sub5['H1WP17A'].value_counts(sort=False, dropna=True) print(c27) print ('percentages H1WP17A') p27 = sub5['H1WP17A'].value_counts(sort=False, normalize=True, dropna=True) print (p27*100) #played a sport with mother? print ('counts for H1WP17B') c28 = sub5['H1WP17B'].value_counts(sort=False, dropna=True) print(c28) print ('percentages H1WP17B') p28 = sub5['H1WP17B'].value_counts(sort=False, normalize=True, dropna=True) print (p28*100) #worked on a project for school with mother? print ('counts for H1WP17I') c29 = sub5['H1WP17I'].value_counts(sort=False, dropna=True) print(c29) print ('percentages H1WP17I') p29 = sub5['H1WP17I'].value_counts(sort=False, normalize=True, dropna=True) print (p29*100) #gone shopping with father? print ('counts for H1WP18A') c30 = sub5['H1WP18A'].value_counts(sort=False, dropna=True) print(c30) print ('percentages H1WP18A') p30 = sub5['H1WP18A'].value_counts(sort=False, normalize=True, dropna=True) print (p30*100) #played a sport with father? print ('counts for H1WP18B') c31 = sub5['H1WP18B'].value_counts(sort=False, dropna=True) print(c31) print ('percentages H1WP18B') p31 = sub5['H1WP18B'].value_counts(sort=False, normalize=True, dropna=True) print (p31*100) #worked on a project for school with father? print ('counts for H1WP18I') c32 = sub5['H1WP18I'].value_counts(sort=False, dropna=True) print(c32) print ('percentages H1WP18I') p32 = sub5['H1WP18I'].value_counts(sort=False, normalize=True, dropna=True) print (p32*100) # Frequency distribution of those with no potential depression symptoms sub6=sub3[(sub3['H1FS1'] ==0) | (sub3['H1FS2'] ==0) | (sub3['H1FS3'] ==0) | (sub3['H1FS4'] ==0) | (sub3['H1FS5'] ==0) | (sub3['H1FS6'] ==0) | (sub3['H1FS7'] ==0) | (sub3['H1FS8'] == 3) | (sub3['H1FS9'] ==0) | (sub3['H1FS10'] ==0) | (sub3['H1FS11'] == 3) | (sub3['H1FS12'] ==0) | (sub3['H1FS13'] ==0) | (sub3['H1FS14'] ==0) | (sub3['H1FS15'] == 3) | (sub3['H1FS16'] ==0) | (sub3['H1FS17'] ==0) | (sub3['H1FS18'] ==0) | (sub3['H1FS19'] ==0) ] #Replacing 6 (refused), 7 (legitimate skip), 8 (don’t know) and 9 (not applicable) with NaN sub6= sub6.replace([6,7,8,9], np.nan) sub7=sub6.copy() print('Frequency distribution of those with no potential depression symptoms') #On how many of the past 7 days was at least one of your parents in the room with you while you ate your evening meal? #Assume from 4 to 7 means yes (=1) #Assume from 0 to 3 means no (=0) sub7['H1WP8']= sub7['H1WP8'].replace([4,5,6,7], 1) sub7['H1WP8']= sub7['H1WP8'].replace([0,1,2,3], 0) #Replacing 96 (refused), 97 (legitimate skip) and 98 (don’t know) with NaN sub7['H1WP8']= sub7['H1WP8'].replace([96,97,98], np.nan) print ('counts for H1WP8') c33 = sub7['H1WP8'].value_counts(sort=False, dropna=True) print(c33) print ('percentages H1WP8') p33 = sub7['H1WP8'].value_counts(sort=False, normalize=True, dropna=True) print (p33*100) # Did you have a talk with your mother about a personal problem you were having print ('counts for H1WP17F') c34 = sub7['H1WP17F'].value_counts(sort=False, dropna=True) print(c34) print ('percentages H1WP17F') p34 = sub7['H1WP17F'].value_counts(sort=False, normalize=True, dropna=True) print (p34*100) # Did you have a talk with your father about a personal problem you were having print ('counts for H1WP18F') c35 = sub7['H1WP18F'].value_counts(sort=False, dropna=True) print(c35) print ('percentages H1WP18F') p35 = sub7['H1WP18F'].value_counts(sort=False, normalize=True, dropna=True) print (p35*100) #Did you talk with your mother about other things you’re doing in school print ('counts for H1WP17J') c36 = sub7['H1WP17J'].value_counts(sort=False, dropna=True) print(c36) print ('percentages H1WP17J') p36 = sub7['H1WP17J'].value_counts(sort=False, normalize=True, dropna=True) print (p36*100) #Did you talk with your father about other things you’re doing in school print ('counts for H1WP18J') c37 = sub7['H1WP18J'].value_counts(sort=False, dropna=True) print(c37) print ('percentages H1WP18J') p37 = sub7['H1WP18J'].value_counts(sort=False, normalize=True, dropna=True) print (p37*100) #gone shopping with mother? print ('counts for H1WP17A') c38 = sub7['H1WP17A'].value_counts(sort=False, dropna=True) print(c38) print ('percentages H1WP17A') p38 = sub7['H1WP17A'].value_counts(sort=False, normalize=True, dropna=True) print (p38*100) #played a sport with mother? print ('counts for H1WP17B') c39 = sub7['H1WP17B'].value_counts(sort=False, dropna=True) print(c39) print ('percentages H1WP17B') p39 = sub7['H1WP17B'].value_counts(sort=False, normalize=True, dropna=True) print (p39*100) #worked on a project for school with mother? print ('counts for H1WP17I') c40 = sub7['H1WP17I'].value_counts(sort=False, dropna=True) print(c40) print ('percentages H1WP17I') p40 = sub7['H1WP17I'].value_counts(sort=False, normalize=True, dropna=True) print (p40*100) #gone shopping with father? print ('counts for H1WP18A') c41 = sub7['H1WP18A'].value_counts(sort=False, dropna=True) print(c41) print ('percentages H1WP18A') p41 = sub7['H1WP18A'].value_counts(sort=False, normalize=True, dropna=True) print (p41*100) #played a sport with father? print ('counts for H1WP18B') c42 = sub7['H1WP18B'].value_counts(sort=False, dropna=True) print(c42) print ('percentages H1WP18B') p42 = sub7['H1WP18B'].value_counts(sort=False, normalize=True, dropna=True) print (p42*100) #worked on a project for school with father? print ('counts for H1WP18I') c43 = sub7['H1WP18I'].value_counts(sort=False, dropna=True) print(c43) print ('percentages H1WP18I') p43 = sub7['H1WP18I'].value_counts(sort=False, normalize=True, dropna=True) print (p43*100) #upper-case all DataFrame column names - place afer code for loading data above data.columns = map(str.upper, data.columns) # bug fix for display formats to avoid run time errors - put after code for loading data above pd.set_option('display.float_format', lambda x:'%f'%x)
Output:
6504 2 counts for H1GI1Y 74 17 76 376 78 1165 75 43 77 1133 79 1159 Name: H1GI1Y, dtype: int64 percentages for H1GI1Y 74 0.436681 76 9.658361 78 29.925507 75 1.104547 77 29.103519 79 29.771385 Name: H1GI1Y, dtype: float64 counts for H1GI15 0 3893 Name: H1GI15, dtype: int64 percentages for H1GI15 0 100.000000 Name: H1GI15, dtype: float64 counts for H1FS1 1.000000 2068 0.000000 3913 2.000000 385 3.000000 116 Name: H1FS1, dtype: int64 percentages H1FS1 1.000000 31.903733 0.000000 60.367171 2.000000 5.939525 3.000000 1.789571 Name: H1FS1, dtype: float64 counts for H1FS2 0.000000 4192 1.000000 1744 2.000000 410 3.000000 141 Name: H1FS2, dtype: int64 percentages H1FS2 0.000000 64.621551 1.000000 26.884538 2.000000 6.320333 3.000000 2.173578 Name: H1FS2, dtype: float64 counts for H1FS3 1.000000 1296 0.000000 4668 2.000000 372 3.000000 144 Name: H1FS3, dtype: int64 percentages H1FS3 1.000000 20.000000 0.000000 72.037037 2.000000 5.740741 3.000000 2.222222 Name: H1FS3, dtype: float64 counts for H1FS4 3.000000 2345 2.000000 2070 0.000000 715 1.000000 1353 Name: H1FS4, dtype: int64 percentages H1FS4 3.000000 36.171526 2.000000 31.929662 0.000000 11.028845 1.000000 20.869968 Name: H1FS4, dtype: float64 counts for H1FS5 1.000000 2768 3.000000 277 0.000000 2624 2.000000 816 Name: H1FS5, dtype: int64 percentages H1FS5 1.000000 42.683115 3.000000 4.271396 0.000000 40.462606 2.000000 12.582884 Name: H1FS5, dtype: float64 counts for H1FS6 1.000000 1853 0.000000 3994 2.000000 444 3.000000 193 Name: H1FS6, dtype: int64 percentages H1FS6 1.000000 28.578038 0.000000 61.597779 2.000000 6.847625 3.000000 2.976558 Name: H1FS6, dtype: float64 counts for H1FS7 1.000000 2934 0.000000 2755 2.000000 630 3.000000 168 Name: H1FS7, dtype: int64 percentages H1FS7 1.000000 45.228919 0.000000 42.469554 2.000000 9.711731 3.000000 2.589795 Name: H1FS7, dtype: float64 counts for H1FS8 3.000000 2003 2.000000 2185 1.000000 1567 0.000000 720 Name: H1FS8, dtype: int64 percentages H1FS8 3.000000 30.934363 2.000000 33.745174 1.000000 24.200772 0.000000 11.119691 Name: H1FS8, dtype: float64 counts for H1FS9 1.000000 782 0.000000 5451 3.000000 80 2.000000 164 Name: H1FS9, dtype: int64 percentages H1FS9 1.000000 12.073491 0.000000 84.159333 3.000000 1.235140 2.000000 2.532036 Name: H1FS9, dtype: float64 counts for H1FS10 0.000000 4714 1.000000 1545 2.000000 163 3.000000 65 Name: H1FS10, dtype: int64 percentages H1FS10 0.000000 72.668414 1.000000 23.816864 2.000000 2.512718 3.000000 1.002004 Name: H1FS10, dtype: float64 counts for H1FS11 3.000000 2397 2.000000 2690 0.000000 172 1.000000 1230 Name: H1FS11, dtype: int64 percentages H1FS11 3.000000 36.939436 2.000000 41.454770 0.000000 2.650640 1.000000 18.955155 Name: H1FS11, dtype: float64 counts for H1FS12 1.000000 2206 0.000000 3642 2.000000 476 3.000000 161 Name: H1FS12, dtype: int64 percentages H1FS12 1.000000 34.016962 0.000000 56.160370 2.000000 7.340015 3.000000 2.482652 Name: H1FS12, dtype: float64 counts for H1FS13 1.000000 1787 0.000000 4157 2.000000 401 3.000000 140 Name: H1FS13, dtype: int64 percentages H1FS13 1.000000 27.555898 0.000000 64.101773 2.000000 6.183500 3.000000 2.158828 Name: H1FS13, dtype: float64 counts for H1FS14 0.000000 4307 1.000000 1839 2.000000 256 3.000000 87 Name: H1FS14, dtype: int64 percentages H1FS14 0.000000 66.373863 1.000000 28.340268 2.000000 3.945138 3.000000 1.340730 Name: H1FS14, dtype: float64 counts for H1FS15 3.000000 3141 1.000000 1043 2.000000 2047 0.000000 255 Name: H1FS15, dtype: int64 percentages H1FS15 3.000000 48.427382 1.000000 16.080789 2.000000 31.560284 0.000000 3.931545 Name: H1FS15, dtype: float64 counts for H1FS16 1.000000 2629 0.000000 3405 2.000000 336 3.000000 120 Name: H1FS16, dtype: int64 percentages H1FS16 1.000000 40.508475 0.000000 52.465331 2.000000 5.177196 3.000000 1.848998 Name: H1FS16, dtype: float64 counts for H1FS17 0.000000 4246 1.000000 1859 3.000000 105 2.000000 276 Name: H1FS17, dtype: int64 percentages H1FS17 0.000000 65.464076 1.000000 28.661733 3.000000 1.618871 2.000000 4.255319 Name: H1FS17, dtype: float64 counts for H1FS18 0.000000 3124 1.000000 2814 2.000000 462 3.000000 84 Name: H1FS18, dtype: int64 percentages H1FS18 0.000000 48.180136 1.000000 43.399136 2.000000 7.125231 3.000000 1.295497 Name: H1FS18, dtype: float64 counts for H1FS19 1.000000 545 0.000000 5728 2.000000 149 3.000000 63 Name: H1FS19, dtype: int64 percentages H1FS19 1.000000 8.404009 0.000000 88.326908 2.000000 2.297610 3.000000 0.971473 Name: H1FS19, dtype: float64 Frequency distribution showing the effect of Family relationship on feeling scale counts for H1WP8 0.000000 1884 Name: H1WP8, dtype: int64 percentages H1WP8 0.000000 100.000000 Name: H1WP8, dtype: float64 counts for H1WP17F 1.000000 1354 0.000000 2037 Name: H1WP17F, dtype: int64 percentages H1WP17F 1.000000 39.929224 0.000000 60.070776 Name: H1WP17F, dtype: float64 counts for H1WP18F 0.000000 1934 1.000000 470 Name: H1WP18F, dtype: int64 percentages H1WP18F 0.000000 80.449251 1.000000 19.550749 Name: H1WP18F, dtype: float64 counts for H1WP17J 1.000000 1750 0.000000 1641 Name: H1WP17J, dtype: int64 percentages H1WP17J 1.000000 51.607196 0.000000 48.392804 Name: H1WP17J, dtype: float64 counts for H1WP18J 0.000000 1350 1.000000 1054 Name: H1WP18J, dtype: int64 percentages H1WP18J 0.000000 56.156406 1.000000 43.843594 Name: H1WP18J, dtype: float64 counts for H1WP17A 1.000000 2418 0.000000 973 Name: H1WP17A, dtype: int64 percentages H1WP17A 1.000000 71.306399 0.000000 28.693601 Name: H1WP17A, dtype: float64 counts for H1WP17B 0.000000 3080 1.000000 311 Name: H1WP17B, dtype: int64 percentages H1WP17B 0.000000 90.828664 1.000000 9.171336 Name: H1WP17B, dtype: float64 counts for H1WP17I 0.000000 2917 1.000000 474 Name: H1WP17I, dtype: int64 percentages H1WP17I 0.000000 86.021822 1.000000 13.978178 Name: H1WP17I, dtype: float64 counts for H1WP18A 0.000000 1758 1.000000 646 Name: H1WP18A, dtype: int64 percentages H1WP18A 0.000000 73.128120 1.000000 26.871880 Name: H1WP18A, dtype: float64 counts for H1WP18B 0.000000 1682 1.000000 722 Name: H1WP18B, dtype: int64 percentages H1WP18B 0.000000 69.966722 1.000000 30.033278 Name: H1WP18B, dtype: float64 counts for H1WP18I 0.000000 2140 1.000000 264 Name: H1WP18I, dtype: int64 percentages H1WP18I 0.000000 89.018303 1.000000 10.981697 Name: H1WP18I, dtype: float64 Frequency distribution of those with no potential depression symptoms counts for H1WP8 0.000000 3363 Name: H1WP8, dtype: int64 percentages H1WP8 0.000000 100.000000 Name: H1WP8, dtype: float64 counts for H1WP17F 1.000000 2348 0.000000 3729 Name: H1WP17F, dtype: int64 percentages H1WP17F 1.000000 38.637486 0.000000 61.362514 Name: H1WP17F, dtype: float64 counts for H1WP18F 0.000000 3645 1.000000 866 Name: H1WP18F, dtype: int64 percentages H1WP18F 0.000000 80.802483 1.000000 19.197517 Name: H1WP18F, dtype: float64 counts for H1WP17J 1.000000 3160 0.000000 2917 Name: H1WP17J, dtype: int64 percentages H1WP17J 1.000000 51.999342 0.000000 48.000658 Name: H1WP17J, dtype: float64 counts for H1WP18J 0.000000 2534 1.000000 1977 Name: H1WP18J, dtype: int64 percentages H1WP18J 0.000000 56.173797 1.000000 43.826203 Name: H1WP18J, dtype: float64 counts for H1WP17A 1.000000 4429 0.000000 1648 Name: H1WP17A, dtype: int64 percentages H1WP17A 1.000000 72.881356 0.000000 27.118644 Name: H1WP17A, dtype: float64 counts for H1WP17B 0.000000 5537 1.000000 540 Name: H1WP17B, dtype: int64 percentages H1WP17B 0.000000 91.114037 1.000000 8.885963 Name: H1WP17B, dtype: float64 counts for H1WP17I 0.000000 5272 1.000000 805 Name: H1WP17I, dtype: int64 percentages H1WP17I 0.000000 86.753332 1.000000 13.246668 Name: H1WP17I, dtype: float64 counts for H1WP18A 0.000000 3316 1.000000 1195 Name: H1WP18A, dtype: int64 percentages H1WP18A 0.000000 73.509200 1.000000 26.490800 Name: H1WP18A, dtype: float64 counts for H1WP18B 0.000000 3142 1.000000 1369 Name: H1WP18B, dtype: int64 percentages H1WP18B 0.000000 69.651962 1.000000 30.348038 Name: H1WP18B, dtype: float64 counts for H1WP18I 0.000000 4004 1.000000 507 Name: H1WP18I, dtype: int64 percentages H1WP18I 0.000000 88.760807 1.000000 11.239193 Name: H1WP18I, dtype: float64
0 notes
Text
The Relationship Between Adolescents' Feeling Scale And Their Relations With Parents: A Literature Review
Depressive feelings and suicidal ideation in a non-clinical sample of adolescents in Estonia were analysed in the context of family structure, mutual relationships amongst family members and schoolchildren’s preferences regarding intimate personal contacts with particular family members (Samm, A., Tooding, L., Sisask, M. et al, 2010). Data from ‘AddHealth In Home Questionnaire’ Code Book along with ‘Addhealth wave 1’ dataset (Sections: “Feeling scale” and “Relations with parents”) were chosen.
Related Published Academic Works
1. Samm, A., Tooding, L., Sisask, M. et al. Suicidal thoughts and depressive feelings amongst Estonian schoolchildren: effect of family relationship and family structure. Eur Child Adolesc Psychiatry 19, 457–468 (2010). https://doi.org/10.1007/s00787-009-0079-7
2. Fumiko Kakihara, Lauree Tilton-Weaver, Margaret Kerr, Håkan Stattin. The Relationship of Parental Control to Youth Adjustment: Do Youths’ Feelings About Their Parents Play a Role?. J Youth Adolescence (2010) 39:1442–1456 DOI 10.1007/s10964-009-9479-8
1 note
·
View note