#AsokatechnologiesB.Tech Projects M.Tech Project IEEE Projects IEEE Power Electronics Projects IEEE power System Projects B.Tech Projects in
Explore tagged Tumblr posts
Text
Modeling and Simulation of a Distribution STATCOM using Sirnulink’s Power System Blockset
This paper presents a study on the modeling of a STAT-COM (Static Synchronous Compensator) used for reactive power compensation on a distribution network. The power circuits of the D-STATCOM and the distribution network are modeled by specific blocks from the Power System Blockset while the control system is modeled by Simulink blocks. Static and dynamic performance of a E3 Mvar D-STATCOM on a 25-kV network is evaluated. An “average modeling” approach is proposed to simplify the PWM inverter operation and to accelerate the simulation for control parameters adjusting purpose. Simulation performance obtained with both modeling approaches are presented and compared.
0 notes
Text
Control of Cascaded H-Bridge Converter based DSTATCOM for High Power Applications
This paper presents the simulation studies on a Cascaded H-Bridge converter based Distribution Static Synchronous Compensator (DSTATCOM) for improving the power quality of a distribution system. Voltage source converter based DSTATCOM has been established as the most preferred solution for management of reactive power in distribution utilities and for improving voltage regulation, power factor and power quality in industries. For high power applications, cascaded H-Bridge converter is the most ideal choice compared to two-level inverter with series connected power devices. In the present work DSTATCOM controller is designed using DQO modelling for reactive power management and thereby improving the power factor in distribution systems. The dc link voltage and the three phase load currents are used as feedback signals for the controller and it is designed in such a way that DSTATCOM is able to supply the reactive current demanded by the load both during steady state and transient conditions using sinusoidal pulse width modulation control.
0 notes
Text
Improved Direct Torque Control of Induction Motor
Control of induction motor is most precisely required in many high performance applications. With the development in power electronic field various control methods for control of induction motor have been developed. Among these Direct torque control (DTC) seems to be particularly interesting, being independent of machine rotor parameters and requiring no speed or position sensors. In addition to the simple structure it also allows a good torque control in transient and steady state conditions. The disadvantage of using DTC is that it results in high torque and flux ripple and variable switching frequency of voltage source inverter, owing to the use of hysteresis controllers for torque and flux loop. In order to overcome these problems, various methods have been proposed by several researchers like variable hysteresis band comparators, space vector modulation, predictive control schemes and intelligent control techniques. However these methods have diminished the main feature of DTC that is simple control structure. This report presents constant switching frequency based torque and flux controllers to replace conventional hysteresis based controllers where almost fixed switching frequency with reduced torque and flux ripple is obtained by comparing the triangular waveforms with the compensated error signals
0 notes
Text
Direct Torque Control of Induction Motor Drive With Flux Optimization
MATLAB / SIMULINK implementation of the Direct Torque Control Scheme for induction motors is presented in this paper. Direct Torque Control (DTC) is an advanced control technique with fast and dynamic torque response. The scheme is intuitive and easy to understand as a modular approach is followed. A comparison between the computed and the reference values of the stator flux and electromagnetic torque is performed. The digital outputs of the comparators are fed to hysteresis type controllers. To limit the flux and torque within a predefined band, the hysteresis controllers generate the necessary control signals. The knowledge about the two hysteresis controller outputs along with the location of the stator flux space vector in a two dimensional complex plane determines the state of the Voltage Source Inverter (VSI). The output of the VSI is fed to the induction motor model. A flux optimization algorithm is added to the scheme to achieve maximum efficiency. The output torque and flux of the machine in the two schemes are presented and compared
� �`�J�
0 notes
Text
Control Strategies for Wind-Farm-Based Smart Grid System
To incorporate the abundance of renewable energy into the power system, it is required to reconfigure the energy system. An intelligent power grid such as the smart grid is the solution for future energy demand. Among several renewable sources, the wind energy conversion system (WECS) is the rapidly growing source of energy, which is considered as the backbone of renewable energy and the smart grid. This paper deals with control strategies of distributed wind farms that are connected to smart houses for a smart grid application. A grid-side energy storage system is considered to deliver smooth power to the system. Stable control strategies under the line fault condition are also discussed in this paper. The surplus power of the smart houses is sent back to the power grid, and a house owner can benefit by selling the extra power to the power company. The detailed modeling and control strategies of an intelligent power system are demonstrated in this paper. The effectiveness of the proposedsystem is verified by the extensive numerical simulation results.
JCbU� ��J�
0 notes
Text
Control Scheme for a Stand-Alone Wind Energy Conversion System
Present energy need heavily relies on the conventional sources. But the limited availability and steady increase in the price of conventional sources has shifted the focus toward renewable sources of energy. Of the available alternative sources of energy, wind energy is considered to be one of the proven technologies. With a competitive cost for electricity generation, wind energy
conversion system (WECS) is nowadays deployed formeeting both grid-connected and stand-alone load demands .However, wind flow by nature is intermittent. In order to ensure continuous supply of power suitable storage technology is used as backup. In this paper, the sustainability of a 4-kW hybrid of wind and battery system is investigated for meeting the requirements of a 3-kW stand-alone dc load representing a base telecom station. A charge controller for battery bank based on turbine maximum power point tracking and battery state of charge is developed to ensure controlled charging and discharging of battery. The mechanical safety of the WECS is assured by means of pitch control technique. Both the control schemes are integrated and the efficacy is validated by testing it with various load and wind profiles in MATLAB/SIMULNIK.
0 notes
Text
Asymmetrical Multilevel Inverter for Higher Output Voltage Levels
Now a days the growth of interest in multilevel inverters has been increasing because there are enormous applications of there in FACTS and industrial drives etc., Although there are many topologies of multilevel inverters in literature, popular among them are cascaded H-bridge. In general the control methods of these cascaded inverters are designed an assumption of having all dc source voltages same for all H-bridges. This paper discusses the abilities of cascade multilevel inverter to produce more output voltage levels with same number of H-bridges, but with different input voltage ratios. The ideal nature of input dc voltage sources is shown as an advantage in this paper. The proposed inverter is then used to feed an induction motor driveand the simulation results are shown
0 notes
Text
Analysis of Performance of the Induction Motor under Hysteresis Current Controlled DTC
The direct torque control method is a powerful control technique for specially induction motor drive due its fast dynamic torque response. It originates in the fact that torque and flux is directly controlled by instantaneous space voltage vector unlike. Field Oriented Control (FOC) and smooth control of drives are being utilized to perform real time simulation on the ac motor variables, such as electromagnetic torque, fluxes, mechanical speed, etc. For the reason, direct torque control gradually has been used in the field requiring fast response since its introduction in the mid-1980. Even though the direct torque control has several problems. These problems are: (I) low switching frequency and variation in speed; (2) the increase of the torque ripple in the low speed region; (3) the short control period (25 /ls) for the good performance. To solve the problems of Direct Torque Control, several studies were carried out. This paper improves one of the drawbacks of Direct Torque Control with the Hysteresis direct torque control. In some papers to avoid these problems 2 level inverter with induction motor has been used but it is very complicated and didn't show large improvement. In this paper, Hysteresis direct torque control method with 3 level inverter has been implemented and its effectiveness is compared with conventional direct torque control with 2 level inverter by using Matlab/Simulink.
0 notes
Text
An Advanced Multilevel Converter Topology with Reduced Switching Elements
Smart grid applications, renewable energy utilization and electric vehicles (EVs) are attracting researchers due to their importance nowadays as well as in the future. An efficient power electronic converter is a main and common topic for research in this area. In this paper, a prototype of the electrical part of a power-train for EVs using an advanced multilevel converter topology is introduced, discussed and analysed. A comparison between the advanced converter, two-level and conventional multilevel converter topology is discussed as well. A switch function model is derived and discussed for the proposed converter. A mathematical model for the converter supplied by a fuel-cell (FC) and boost-converter (BC) is implemented with Matlab/Simulink. The simulation results are analysed to evaluate the converter. The evaluation is based on the harmonic analysis and power loss calculations. The converters are tested at different switching frequencies to show the effect of this variable on the converter loss. The results indicate that the proposed converter is 1.32% more efficient compared to conventional five-level DCC. Moreover, the lowest harmonic content, for all of the studied converters, is the proposed one
0 notes
Text
A New Hybrid Multi Level Inverter to Improve the Performance of Induction Motor
The Multi-level Inverter (MLI) drew due importance in medium and high voltage applications. Various conventional topologies have been proposed for the realization of MLIs. However, they suffer from disadvantages such as requirement of more number of components which further increases the complexity to generate control signals and hence the overall cost. To overcome the above disadvantages, a hybrid topology has been proposed in this paper. The performance of the proposed method is compared with the neutral point clamped topology in MATLAB-SIMULINK environment. The result illustrates the reduction in components required, reduction of complexity of control signals design and improvement in the speed of induction motor
0 notes
Text
A New Hybrid Active Neutral Point Clamped Flying Capacitor Multilevel Inverter
This paper proposes a new five-level hybrid topology combining features of neutral point clamped and flying capacitor inverters. The proposed topology provides a tradeoff between different component counts to achieve a good loss distribution, avoid direct series connection of semiconductor devices, keep the balanced operation of dc-link capacitors while keeping the number of costly components such as capacitors and switches low. The required modulation strategy is developed and the operation of the proposed topology is studied. The features of the proposed topology are investigated and compared to other available topologies. Simulation results are provided to verify the performance of the converter for medium voltage applications
0 notes
Text
A Grid-Connected Dual Voltage Source Inverter With Power Quality Improvement Features
This paper presents a dual voltage source inverter (DVSI) scheme to enhance the power quality and reliability of the micro grid system. The proposed scheme is comprised of two inverters, which enables the micro grid to exchange power generated by the distributed energy resources (DERs) and also to compensate the local unbalanced and nonlinear load. The control algorithms are developed based on instantaneous symmetrical component theory (ISCT) to operate DVSI in grid sharing and grid injecting modes. The proposed scheme has increased reliability, lower bandwidth requirement of the main inverter, lower cost due to reduction in filter size, and better utilization of micro grid power while using reduced dc-link voltage rating for the main inverter. These features make the DVSI scheme a promising option for micro grid supplying sensitive loads. The topology and control algorithm are validated through extensive simulation and experimental results.
0 notes
Text
PFC Cuk Converter Fed BLDC Motor Drive
This paper deals with a power factor correction (PFC) based Cuk converter fed brushless DC motor (BLDC) drive as a cost effective solution for low power applications. The speed of the BLDC motor is controlled by varying the DC bus voltage of voltage source inverter (VSI) which uses a low frequency switching of VSI (electronic commutation of BLDC motor) for low switching losses. A diode bridge rectifier (DBR) followed by a Cuk converter working in discontinuous conduction mode (DCM) is used for control of DC link voltage with unity power factor at AC mains. Performance of the PFC Cuk converter is evaluated in four different operating conditions of discontinuous and continuous conduction mode (CCM) and a comparison is made to select a best suited mode of operation. The performance of the proposed system is simulated in MATLAB/Simulink environment and a hardware prototype of proposed drive is developed to validate its performance over a wide range of speed with unity power factor at AC mains.
0 notes
Text
Performance Enhancement of Actively Controlled Hybrid DC Microgrid Incorporating Pulsed Load
In this paper, a new energy control scheme is proposed for actively controlled hybrid dc microgrid to reduce the adverse impact of pulsed power loads. The proposed energy control is an adaptive current-voltage control (ACVC) scheme based on the moving average measurement technique and an adaptive proportional compensator. Unlike conventional energy control methods, the proposed ACVC approach has the advantage of controlling both voltage and current of the system while keeping the output current of the power converter at a relatively constant value. For this study, a laboratory scale hybrid dc microgrid is developed to evaluate the performance of the ACVC strategy and to compare its performance with the other conventional energy control methods. Using experimental test results, it is shown that the proposed strategy highly improves the dynamic performance of the hybrid dc microgrid. Although the ACVC technique causes slightly more bus voltage variation, it effectively eliminates the high current and power pulsation of the power converters. The experimental test results for different pulse duty ratios demonstrated a significant improvement achieved by the developed ACVC scheme in enhancing the system efficiency, reducing the ac grid voltage drop and the frequency fluctuations.
0 notes
Text
Modeling and Simulation of a Stand-alone Photovoltaic System
In the future solar energy will be very important energy source. More than 45% of necessary energy in the world will be generated by photovoltaic module. Therefore it is necessary to concentrate our forces in order to reduce the application costs and to increment their performances. In order to reach this last aspect, it is important to note that the output characteristic of a photovoltaic module is nonlinear and changes with solar radiation and temperature. Therefore a maximum power point tracking (MPPT) technique is needed to track the peak power in order to make full utilization of PV array output power under varying conditions. This paper presents two widely-adopted MPPT algorithms, perturbation & observation (P&O) and incremental conductance (IC). These algorithms are widely used in PV systems as a result of their easy implementation as well as their low cost. These techniques were analyzed and their performance was evaluated by using the Matlab tool Simulink.
0 notes
Text
Hybrid Active Filter with Variable Conductance for Harmonic Resonance Suppression in Industrial Power Systems
Unintentional series and/or parallel resonances, due to the tuned passive filter and the line inductance, may result in severe harmonic distortion in the industrial power system. This paper presents a hybrid active filter to suppress harmonic resonance and to reduce harmonic distortion. The proposed hybrid filter is operated as variable harmonic conductance according to the voltage total harmonic distortion; therefore, harmonic distortion can be reduced to an acceptable level in response to load change or parameter variation of the power system. Since the hybrid filter is composed of a seventh-tuned passive filter and an active filter in series connection, both dc voltage and kVA rating of the active filter are dramatically decreased compared with the pure shunt active filter. In real application, this feature is very attractive since the active power filter with fully power electronics is very expensive. A reasonable tradeoff between filtering performances and cost is to use the hybrid active filter. Design consideration are presented, and experimental results are provided to validate effectiveness of the proposed method. Furthermore, this paper discusses filtering performances on line impedance, line resistance, voltage unbalance, and capacitive filters.
0 notes