#finiteautomataexamplewithsolution
Explore tagged Tumblr posts
Text
Complement Of Finite Automata

Complement Of Finite Automata Means The Finite Automata Which Is Obtained By Interchanging Final And Non-Final States Is Known As Complement Of Finite Automata.

In This Concept, I'll Change Final States To Non-Final To Final State And Final To Non-Final State. By Doing This The Language Changes. M-Automata(DFA) L-Language M Supports L Language The String Which Comes In Language L Are Accepted By Machine M L⊆Σ* L Belongs To Sigma Star Σ* Means Universal Set Of Strings(All The Strings) L⊆Σ* Means The Strings Which Are Accepted By Language Comes Under 'L' Not All Strings Comes Under 'L' M→L⊆Σ* Means Machine M Accepts Strings Which Are Belongs To 'L' And L Is The Language(Set Of Strings) Which Are Subset Of Universal Set Of Strings i.e Σ* (Sigma Star)
Then What Is Complement Of Finite Automata?
If I Give Complement For Machine 'M' That Becomes M1 M1→L1= Σ*- L M1 Is The Machine Which Accepts The Language L1 L1= Σ*- L This Machine M1 Accepts The Language L1 And L1 Is Universal Set Of Strings Language. M→L⊆Σ* M1→L1= Σ*- L I Hope You Understood The Difference Between Machine M And Machine M1 Example
Σ={a,b}
L=String Starts With 'a'

This Is (M) Machine Example.
2. Σ={a,b}
L=String Does Not Start With 'a'

This Is M1 (Machine Complement) Example In M1 The Non-Final States Becomes Final State Including Dead State And Final States Becomes Non-Final State. Cross-Check baa
Remember
L(FA)∩l(FA1)=Φ L(FA)∪(FA1)=Σ* M→n states k final states M1→ n states n-k final states Read the full article
#deterministicfiniteautomataexample#finiteautomata#FiniteAutomataapplications#FiniteAutomatadefinition#finiteautomataexample#finiteautomataexampleexample#finiteautomataexampleinc#finiteautomataexamplepdf#finiteautomataexampleppt#finiteautomataexampleproblems#finiteautomataexamplewithsolution#FiniteAutomataexamples#finiteautomataexampleswithsolution#FiniteAutomataintheoryofcomputation#finiteautomataintoc#finiteautomatalanguageexample#finiteautomatatheory#FiniteAutomatatoregularexpression#FiniteAutomatatoregularexpressionexamples#FiniteAutomatatoregularexpressionOutput#finiteautomataunionexample#FiniteAutomatawithoutput#FiniteAutomatawithoutoutput#poweroffiniteautomata
0 notes
Text
Construct The Minimum Finite Automata That Accept All The Strings Of a & b Such That String Contains At least 2 a's & ηb|w|≅0mod3

Construct The Minimum Finite Automata That Accept All The Strings Of a & b Such That
i) String Contains At least 2 a's & ηb|w|≅0mod3
Solution:- (Check Previous Two Problems For Better Understanding) CONDITION GIVEN:- String Should Contain At least 2 a's And ηb|w|≅0mod3(Means No Of b's In String Is Approximately Equal To O Mod 3(If I Divide The No.Of b's With 3, I Should Get Remainder As 0)
FINITE Automata 1:-
Σ={a,b} L={aa,aaa,aaaa,aaaaa....}

FINITE AUTOMATA 2:-
ηb|w|≅0mod3 Means No Of b's In String Is Approximately Equal To O Mod 3(If I Divide The No.Of b's With 3, I Should Get Remainder As 0

Possible Remainders For 3 Are 0,1,2 Mean If I Divide No. Of b's In A String With 3 I Should Get Remainder As 0 Imagine-{b,bbb,babbab,bbabbbbba....} If No Of b's Are '0' In A String And If I Divide 3 With 0 I'll Get Remainder '0' 0 Is Divisible By 3 0 Means ε Means L={ε,1,2,3}={ε,b,bb,bbbb...}

CROSS PRODUCT FINITE AUTOMATA 1 × FINITE AUTOMATA 2 => {(q0,q3),(q0,q4),(q0,q5), (q1,q3),(q1,q4),(q1,q5), (q2,q3),(q2,q4),(q2,q5)}
FINITE AUTOMATA

FINAL STATE Is q2,q3 Because Two Conditions Should Satisfy. CROSS CHECK babab // aa,bbb Read the full article
#deterministicfiniteautomataexample#finiteautomata#FiniteAutomataapplications#FiniteAutomatadefinition#finiteautomataexample#finiteautomataexampleexample#finiteautomataexampleinc#finiteautomataexamplepdf#finiteautomataexampleppt#finiteautomataexampleproblems#finiteautomataexamplewithsolution#FiniteAutomataexamples#finiteautomataexampleswithsolution#finiteautomataintoc#finiteautomatalanguageexample#finiteautomatatheory#FiniteAutomatatoregularexpression#FiniteAutomatatoregularexpressionexamples#FiniteAutomatatoregularexpressionOutput#finiteautomataunionexample#FiniteAutomatawithoutput#FiniteAutomatawithoutoutput#poweroffiniteautomata
0 notes
Text
Construct The Minimal Finite Automata That Accept All The String Of a & b Such That There Is Even No. Of a And Even Number Of b

Construct The Minimal Finite Automata That Accept All The String Of a & b Such That i) There Is Even No. Of a And Even Number Of b Solution:- Question Is Final Automata Should Contain Even Number Of 'a's And Even Number Of 'b's Even Numbers Are 0,2,4,6,8,.....
CREATE TWO SEPARATE AUTOMATAS WITH GIVEN TWO CONDITIONS
Finite Automata 1:- Even Number Of 'a's Σ={a,b}

q0 Is My Initial And Final State Because Of ε q0 Goes To q1 And q1 Goes To q0(aa) I Dont Bother About Number Of b's On q0q1 Finite Automata 2:- Even Number Of b's(ε,bb,bbbb,bbbbbb....)

I Have Drawn Finite Automata 2 Using The Same Procedure Used In Finite Automata 1. Now Cross Product (Or) Cross Multiplication Finite Automata 1 × Finite Automata 2


=> {(q0,q2),(q0,q3) (q1,q2),(q1,q3)} NOS - 4 Now DRAW FINAL DFA Using These States By Observing Finite Automata 1 And Finite Automata 2

Final State Will Be The Combination Of Finite Automata 1 And Finite Automata 2 Only. Because The Condition Given Is Two Conditions Should Be Satisfied. No Of Even 'a's And No. Of Even b's In A String. Cross Check abaaba

Check Previous Problem For Better Understanding Read the full article
#deterministicfiniteautomataexample#finiteautomata#FiniteAutomataapplications#FiniteAutomatadefinition#finiteautomataexample#finiteautomataexampleexample#finiteautomataexampleinc#finiteautomataexamplepdf#finiteautomataexampleppt#finiteautomataexampleproblems#finiteautomataexamplewithsolution#FiniteAutomataexamples#FiniteAutomataintheoryofcomputation#finiteautomataintoc#finiteautomatalanguageexample#FiniteAutomatapdf#FiniteAutomatappt#finiteautomatatheory#FiniteAutomatatoregularexpression#FiniteAutomatatoregularexpressionOutput#finiteautomataunionexample#FiniteAutomatawithoutoutput#poweroffiniteautomata
0 notes
Text
Construct Minimal Deterministic Finite Automata (DFA) Start And End With Different Symbol

Construct Minimal Deterministic Finite Automata (DFA) Start And End With Different Symbol Where Σ={a,b} Condition Given Is If Your String Is Starting With 'a' It Should End With 'b' If Your String Is Starting With 'b' Then It Should End With 'a' L={ab,ba,abbb,abab,baba,bbaa.........} // Infinite Language


Read the full article
#deterministicfiniteautomataexample#finiteautomata#FiniteAutomataapplications#FiniteAutomatadefinition#finiteautomataexample#finiteautomataexampleexample#finiteautomataexampleinc#finiteautomataexamplepdf#finiteautomataexampleppt#finiteautomataexampleproblems#finiteautomataexamplewithsolution#FiniteAutomataexamples#finiteautomataexampleswithsolution#FiniteAutomataintheoryofcomputation#finiteautomataintoc#finiteautomatalanguageexample#FiniteAutomatapdf#FiniteAutomatappt#finiteautomatatheory#FiniteAutomatatoregularexpression
0 notes
Text
Finite Automata Example's

Construct Minimal Deterministic Finite Automata (DFA) String Contain 'abb' Σ={a,b} L={abb,abbab,aabba,bbabb....}

ababba n+1 are possible states for the string 3,4,5....... String Lengths For Any Substring Problems. Construct Minimal DFA Σ={a,b} a) String End's With abb L={abb,aabb,aaabb,ababb.....} // Instring Language

We Will Convert DFA From NFA

If Question Is ' ends with ' Dont Use ' Dead State(qd) Read the full article
#deterministicfiniteautomataexample#finiteautomataexample#finiteautomataexampleexample#finiteautomataexampleinc#finiteautomataexamplepdf#finiteautomataexampleppt#finiteautomataexampleproblems#finiteautomataexamplewithsolution#FiniteAutomataexamples#finiteautomataexampleswithsolution
0 notes