#MAT115
Explore tagged Tumblr posts
vnmachi · 6 years ago
Video
youtube
Máy tu gỗ MAT115 hoạt động | Machi - Máy ngành gỗ - https://youtu.be/sxEeoGFQkV0
0 notes
unilorinloaded-blog · 8 years ago
Text
100L 1st Semester Courses {FOA} 
S/No: Course code Course Title Unit Status
1: CHM101 General Physical Chemistry 3 E
2: CHM115 General Practical Chemistry I 2 E
3: CSC111 Introduction to Computer Science I 2 E
4: GNS111 Use of English I 2 R
5: MAT115 Mathematics for Agriculture and Biosciences I 2 R
6: PHY115 Mechanics and Properties of Matter I 2 E
7: PLB101 Cell Biology 3 E
8: ZLY101 Introductory Ecology 2 E
9: ZLY103…
View On WordPress
0 notes
queith · 10 years ago
Text
Relación entre un valor absoluto y una raíz cuadrada
Relación entre un valor absoluto y una raíz cuadrada
|x| = (x²)½ El valor absoluto de x es siempre positivo. La raíz cuadrada de x² no es siempre positiva. |x| = (x²)½ = { x si x≥0 -x si x<0 (x²)½ = { x si x≥0 -x si x<0 |x| siempre va a ser igual a (x²)½ Las dos van a depender de x si x≥0 o de -x si x<0 Posted from WordPress for Windows Phone
View On WordPress
6 notes · View notes
mathbloglagcc-blog · 13 years ago
Text
Thanks for participating!
It has been an incredible academic year! Thank you all MAT096 and MAT115 participants!
We have learned a great deal from all that you shared and practiced on the blog.
Good luck with finals!
Best- Prof. Meangru and Prof. De León
0 notes
queith · 10 years ago
Text
Identidades trigonométricas
Algunas identidades trigonométricas. Identidades recíprocas. sinθ = 1/cscθ cosθ = 1/secθ tanθ = 1/cotθ cotθ = 1/tanθ secθ = 1/cosθ cscθ = 1/sinθ Identidades tangente y cotangente. tanθ = sinθ/cosθ cotθ = cosθ/tanθ Identidades pitagóricas. sin²θ + cos²θ = 1 1 + tan²θ = sec²θ 1 + cot²θ = csc²θ Fórmulas para negativos. sin(-t) = -sint cos(-t) = cost tan(-t) = -tant cot(-t) = -cott sec(-t) = sect…
View On WordPress
2 notes · View notes
queith · 10 years ago
Text
Ley de L'Hôpital.
Ley de L’Hôpital.
La ley de L’Hôpital se aplica cuando, al evaluar un límite se llega a una forma indeterminada. La ley de L’Hôpital consiste en derivar el numerador y denominador como si fuesen funciones singulares. Formas indeterminadas. 0/0 ∞/∞ 0·∞ ∞-∞ 1^∞ ∞^0 0^0 Si se encuentra una forma indeterminada, se aplica la Ley de L’Hôpital siempre que esté en forma de cociente (las primeras dos). Llevar todas las…
View On WordPress
0 notes
queith · 10 years ago
Text
Transformaciones de funciones
Desplazamientos verticales de gráficas. Suponga que c>0. Para gráficas: y=f(x)+c, desplace c unidades hacia arriba la gráfica de y=f(x) y=f(x)-c, desplace c unidades hacia abajo la gráfica de y=f(x) Desplazamientos horizontales de gráficas. Suponga que c>0. Para graficar: y=f(x-c), desplace la gráfica y=f(x) a la derecha c unidades. y=f(x+c), desplace la gráfica y=f(x) a la izquierda c unidades.…
View On WordPress
0 notes
mathbloglagcc-blog · 13 years ago
Text
Practice Text
1.         Multiply and Simplify:           (a)  (4x -5)2                           
                                                              (b) (2x-5)(4x2 + 10x +25)
  2.         Divide                          (2x3 – 13x2 + 16x+ 9)   (x +5)
  3.         Find the equation of the line through (-4,0) and
            perpendicular to 2y = 4x – 6.
  4.         Given f(x) = x2  and g(x) = 3x + 10, compute the following
              (a)  f(-2)                                              (b) g(-2)
            (c)  f(-2) + g(-2)                                  (d) f(-2) g(-2)
  5.         Compute the composition f(g(5)) if f    f(x)= x2 -2x   
                and g(x) = 3x-5
  6.         Find the average rate of change of
            the function f over the indicated interval.
                                                            f(x) = 4x2 – 5x  ;  [1,2]
  7.         The price of a new item was $1000.
            After 5 years, the price dropped to $850. Assume the price decreased
            linearly. Let C represents the cost function after x years.
                          (a) Find a linear function (C = ax+b) for the price after x years.
            (b) Interpret the meaning of the values of a and b.
            (c) Use the linear function to find the cost after 7years.
  8.         Find the values of a and b in f(x) = ax + b, if f(-1) = 9 and f(2) = 3
  9.         In 2008 the cost of a new electronic game was $699.
            After 2 years, the cost increased to $899.
            Assume the cost increased linearly.
            Let C represents the cost function at any time x years.
                          (a) Find a linear function (C = ax+b) for the cost after x years.
            (b) Interpret the meaning of the values of a and b
            (c) Use the linear function to find the cost after 5years.
0 notes