Tumgik
#galactic_disk
phonemantra-blog · 10 months
Link
The unexpected discovery has given rise to new theories about the mechanism by which phosphorus is formed without the outbursts of massive stars. The origin of life from “organic soup” is a complex process. This requires many different components assembled in one place and under the right conditions. Although the exact conditions are still a matter of debate, scientists have an idea of ​​what elements of the periodic table are needed. One important component is phosphorus, which was recently discovered on the outskirts of the Milky Way. The presence of this element among others is considered necessary for the formation of basic biochemical molecules. Therefore, the presence of phosphorus determines the boundaries of habitable zones in galaxies. Phosphorus is typically produced by the death of massive stars, making its presence at the outskirts of a galaxy a rare occurrence. However, the recent discovery of phosphorus in this area suggests that other mechanisms for its formation may exist. [caption id="attachment_85298" align="aligncenter" width="780"] Milky Way galaxy[/caption] “Phosphorus is an element that requires a special, catastrophic event to form. According to popular belief, phosphorus is formed as a result of supernova explosions of stars with a mass of at least 20 solar masses. They are the source of strong energetic emissions and a series of nucleosynthesis reactions that form not only phosphorus, but also many other heavy elements,” says astronomer and chemist Lucy Ziouris, who works at Arizona State University and Steward Observatory. This is the generally accepted view, and the discovery of phosphorus far from massive stars or supernova remnants suggests that there are other ways this element can be formed. All the elements we see around us are formed in stars. After the formation of the first atoms of the Universe from the primordial plasma, the atoms were mainly composed of hydrogen and helium, and all other elements appeared after the birth of the first stars. Stars play an important role in the fusion and combination of atoms in their cores, resulting in the formation of heavier elements. On the outskirts of the Milky Way galaxy The formation of elements in a star depends on its mass. Stars are the size of our Sun and are smaller able to support reactions that create light elements such as lithium and beryllium when hydrogen and helium combine. More massive stars can produce heavier elements such as oxygen and nitrogen. However, phosphorus is not produced during such reactions inside the star. Supernova explosions, accompanied by the death of massive stars, are one of the known mechanisms for the origin of phosphorus. Flares eject elements into space, scattering astromaterials into the interstellar medium, where they can be absorbed by new generations of stars, as well as comets and planets. Massive stars can only form in regions where there is enough material to feed them. As you move away from the center of the galaxy, the density of matter decreases - the outskirts of galaxies are usually populated by massive stars. So the presence of phosphorus in a cloud called WB89-621, located about 74,000 light-years from the center of the Milky Way, poses a mystery to astrochemists. “The discovery of phosphorus at the edge of the galaxy raises questions and adds an additional piece to our puzzle. The presence of phosphorus in this area suggests that the process of its formation is more complex and is not limited only to supernova explosions,” explains chemist Liliya Koelemey, collaborating with Arizona State University. There are two main explanations for this phenomenon. One of them is associated with the “galactic fountain” model, which assumes the movement of elements from the inner regions of the galaxy to the outer through supernova explosions, ejecting matter from the galactic disk into the halo and its subsequent cooling and return. However, this explanation is questionable, since observational data on galactic fountains is not yet sufficient. Another explanation involves the possibility of phosphorus being formed in the region around the core of less massive stars by capturing neutrons. Here, silicon isotopes can capture additional neutrons to form phosphorus. The discovery of phosphorus on the outskirts of the Milky Way is an exciting and important study, valuable for understanding the formation of life in the Universe. This element is the last of the NCHOPS - nitrogen, carbon, hydrogen, oxygen, phosphorus and sulfur - essential building blocks for the emergence of life and which define the habitable zones of a galaxy. Previously, astronomers had not paid much attention to the outskirts of galaxies in search of exoplanets with biomarkers, because they believed that regions far from the center of galaxies did not have enough phosphorus. However, this discovery allows us to expand the scope of searches.
0 notes
phonemantra-blog · 10 months
Link
The unexpected discovery has given rise to new theories about the mechanism by which phosphorus is formed without the outbursts of massive stars. The origin of life from “organic soup” is a complex process. This requires many different components assembled in one place and under the right conditions. Although the exact conditions are still a matter of debate, scientists have an idea of ​​what elements of the periodic table are needed. One important component is phosphorus, which was recently discovered on the outskirts of the Milky Way. The presence of this element among others is considered necessary for the formation of basic biochemical molecules. Therefore, the presence of phosphorus determines the boundaries of habitable zones in galaxies. Phosphorus is typically produced by the death of massive stars, making its presence at the outskirts of a galaxy a rare occurrence. However, the recent discovery of phosphorus in this area suggests that other mechanisms for its formation may exist. [caption id="attachment_85298" align="aligncenter" width="780"] Milky Way galaxy[/caption] “Phosphorus is an element that requires a special, catastrophic event to form. According to popular belief, phosphorus is formed as a result of supernova explosions of stars with a mass of at least 20 solar masses. They are the source of strong energetic emissions and a series of nucleosynthesis reactions that form not only phosphorus, but also many other heavy elements,” says astronomer and chemist Lucy Ziouris, who works at Arizona State University and Steward Observatory. This is the generally accepted view, and the discovery of phosphorus far from massive stars or supernova remnants suggests that there are other ways this element can be formed. All the elements we see around us are formed in stars. After the formation of the first atoms of the Universe from the primordial plasma, the atoms were mainly composed of hydrogen and helium, and all other elements appeared after the birth of the first stars. Stars play an important role in the fusion and combination of atoms in their cores, resulting in the formation of heavier elements. On the outskirts of the Milky Way galaxy The formation of elements in a star depends on its mass. Stars are the size of our Sun and are smaller able to support reactions that create light elements such as lithium and beryllium when hydrogen and helium combine. More massive stars can produce heavier elements such as oxygen and nitrogen. However, phosphorus is not produced during such reactions inside the star. Supernova explosions, accompanied by the death of massive stars, are one of the known mechanisms for the origin of phosphorus. Flares eject elements into space, scattering astromaterials into the interstellar medium, where they can be absorbed by new generations of stars, as well as comets and planets. Massive stars can only form in regions where there is enough material to feed them. As you move away from the center of the galaxy, the density of matter decreases - the outskirts of galaxies are usually populated by massive stars. So the presence of phosphorus in a cloud called WB89-621, located about 74,000 light-years from the center of the Milky Way, poses a mystery to astrochemists. “The discovery of phosphorus at the edge of the galaxy raises questions and adds an additional piece to our puzzle. The presence of phosphorus in this area suggests that the process of its formation is more complex and is not limited only to supernova explosions,” explains chemist Liliya Koelemey, collaborating with Arizona State University. There are two main explanations for this phenomenon. One of them is associated with the “galactic fountain” model, which assumes the movement of elements from the inner regions of the galaxy to the outer through supernova explosions, ejecting matter from the galactic disk into the halo and its subsequent cooling and return. However, this explanation is questionable, since observational data on galactic fountains is not yet sufficient. Another explanation involves the possibility of phosphorus being formed in the region around the core of less massive stars by capturing neutrons. Here, silicon isotopes can capture additional neutrons to form phosphorus. The discovery of phosphorus on the outskirts of the Milky Way is an exciting and important study, valuable for understanding the formation of life in the Universe. This element is the last of the NCHOPS - nitrogen, carbon, hydrogen, oxygen, phosphorus and sulfur - essential building blocks for the emergence of life and which define the habitable zones of a galaxy. Previously, astronomers had not paid much attention to the outskirts of galaxies in search of exoplanets with biomarkers, because they believed that regions far from the center of galaxies did not have enough phosphorus. However, this discovery allows us to expand the scope of searches.
0 notes
phonemantra-blog · 10 months
Link
How galaxy interactions affect their shape For a long time, astronomers have been grappling with the mystery of the rarity of spiral galaxies, including the Milky Way—why do elliptical galaxies make up most of the universe? A recent study using computer models found that the rarity of spiral galaxies is due to natural interactions between galaxies within the galactic plane, which smooth out potential spiral structures and lead to the formation of elliptical galaxies. [caption id="attachment_84315" align="aligncenter" width="650"] spiral galaxies[/caption] Stars in spiral galaxies like the Milky Way usually move in circular orbits around the center of their galaxies, but when two galaxies of comparable mass are close to each other, their orbits become unstable and their motion becomes chaotic. This leads to redistribution and mixing of stars, which ultimately leads to the disappearance of spiral structures and the formation of elliptical galaxies. A simulation of the evolution of the universe explains why spiral galaxies are so rare The interactions of large galaxies have other consequences. Not only do they disrupt the orbits of stars, but they can also lead to intense star formation, leading to the birth of many new stars.  Black holes, found at the centers of most large galaxies, can also be activated by galaxy interactions, which can slow the rate of new star formation after a merger and make the galaxy's shape more elliptical. The growth of the Milky Way occurs due to the absorption of smaller, dwarf galaxies. However, due to their small size, these galaxies do not significantly influence the shape of our Galaxy. However, it is expected that the upcoming collision of the Milky Way with the Andromeda Galaxy in four billion years may have a final impact on the structure of our Galaxy. Andromeda has comparable or even greater mass compared to our galaxy. Models predict that as it evolves and changes shape, the possibility of an elliptical galaxy returning to its original spiral shape is probably not feasible. In spiral galaxies with sufficient gas reserves, the formation of new stars is possible, which can fill the spiral structures. However, elliptical galaxies usually do not have enough gas for such processes. Currently, a group of researchers is working to improve computer models to more accurately match the observed processes. This will help improve our understanding of the universe and perhaps identify inconsistencies or errors in the current knowledge base.
1 note · View note