Tumgik
#interstellar_medium
phonemantra-blog · 10 months
Link
The unexpected discovery has given rise to new theories about the mechanism by which phosphorus is formed without the outbursts of massive stars. The origin of life from “organic soup” is a complex process. This requires many different components assembled in one place and under the right conditions. Although the exact conditions are still a matter of debate, scientists have an idea of ​​what elements of the periodic table are needed. One important component is phosphorus, which was recently discovered on the outskirts of the Milky Way. The presence of this element among others is considered necessary for the formation of basic biochemical molecules. Therefore, the presence of phosphorus determines the boundaries of habitable zones in galaxies. Phosphorus is typically produced by the death of massive stars, making its presence at the outskirts of a galaxy a rare occurrence. However, the recent discovery of phosphorus in this area suggests that other mechanisms for its formation may exist. [caption id="attachment_85298" align="aligncenter" width="780"] Milky Way galaxy[/caption] “Phosphorus is an element that requires a special, catastrophic event to form. According to popular belief, phosphorus is formed as a result of supernova explosions of stars with a mass of at least 20 solar masses. They are the source of strong energetic emissions and a series of nucleosynthesis reactions that form not only phosphorus, but also many other heavy elements,” says astronomer and chemist Lucy Ziouris, who works at Arizona State University and Steward Observatory. This is the generally accepted view, and the discovery of phosphorus far from massive stars or supernova remnants suggests that there are other ways this element can be formed. All the elements we see around us are formed in stars. After the formation of the first atoms of the Universe from the primordial plasma, the atoms were mainly composed of hydrogen and helium, and all other elements appeared after the birth of the first stars. Stars play an important role in the fusion and combination of atoms in their cores, resulting in the formation of heavier elements. On the outskirts of the Milky Way galaxy The formation of elements in a star depends on its mass. Stars are the size of our Sun and are smaller able to support reactions that create light elements such as lithium and beryllium when hydrogen and helium combine. More massive stars can produce heavier elements such as oxygen and nitrogen. However, phosphorus is not produced during such reactions inside the star. Supernova explosions, accompanied by the death of massive stars, are one of the known mechanisms for the origin of phosphorus. Flares eject elements into space, scattering astromaterials into the interstellar medium, where they can be absorbed by new generations of stars, as well as comets and planets. Massive stars can only form in regions where there is enough material to feed them. As you move away from the center of the galaxy, the density of matter decreases - the outskirts of galaxies are usually populated by massive stars. So the presence of phosphorus in a cloud called WB89-621, located about 74,000 light-years from the center of the Milky Way, poses a mystery to astrochemists. “The discovery of phosphorus at the edge of the galaxy raises questions and adds an additional piece to our puzzle. The presence of phosphorus in this area suggests that the process of its formation is more complex and is not limited only to supernova explosions,” explains chemist Liliya Koelemey, collaborating with Arizona State University. There are two main explanations for this phenomenon. One of them is associated with the “galactic fountain” model, which assumes the movement of elements from the inner regions of the galaxy to the outer through supernova explosions, ejecting matter from the galactic disk into the halo and its subsequent cooling and return. However, this explanation is questionable, since observational data on galactic fountains is not yet sufficient. Another explanation involves the possibility of phosphorus being formed in the region around the core of less massive stars by capturing neutrons. Here, silicon isotopes can capture additional neutrons to form phosphorus. The discovery of phosphorus on the outskirts of the Milky Way is an exciting and important study, valuable for understanding the formation of life in the Universe. This element is the last of the NCHOPS - nitrogen, carbon, hydrogen, oxygen, phosphorus and sulfur - essential building blocks for the emergence of life and which define the habitable zones of a galaxy. Previously, astronomers had not paid much attention to the outskirts of galaxies in search of exoplanets with biomarkers, because they believed that regions far from the center of galaxies did not have enough phosphorus. However, this discovery allows us to expand the scope of searches.
0 notes
apod · 4 years
Photo
Tumblr media
2020 June 17
Magnetic Streamlines of the Milky Way Image Credit: ESA, Planck; Text: Joan Schmelz (USRA)
Explanation: What role do magnetic fields play in interstellar physics? Analyses of observations by ESA's Planck satellite of emission by small magnetically-aligned dust grains reveal previously unknown magnetic field structures in our Milky Way Galaxy -- as shown by the curvy lines in the featured full-sky image. The dark red shows the plane of the Milky Way, where the concentration of dust is the highest. The huge arches above the plane are likely remnants of past explosive events from our Galaxy's core, conceptually similar to magnetic loop-like structures seen in our Sun's atmosphere. The curvy streamlines align with interstellar filaments of neutral hydrogen gas and provide tantalizing evidence that magnetic fields may supplement gravity in not only in shaping the interstellar medium, but in forming stars. How magnetism affected our Galaxy's evolution will likely remain a topic of research for years to come.
∞ Source: apod.nasa.gov/apod/ap200617.html
41 notes · View notes
wigmund · 6 years
Photo
Tumblr media
From NASA Image Of The Day; April 17, 2018:
Sounding Rocket Launches CHESS Mission to Study the Matter Between Stars
The Colorado High-resolution Echelle Stellar Spectrograph, or CHESS 4, was successfully launched on a NASA Black Brant IX sounding rocket at 12:47 p.m. EDT, April 16 (4:47 a.m. local, April 17) from the Kwajalein Atoll in The Republic of the Marshall Islands.
The CHESS 4 mission will study the interstellar me­dium, the matter between stars. The mission focuses on translucent clouds of gas, that provide the fundamental building blocks for stars and planets. These clouds have very low densities and the only way to study them is to measure how a cloud is affected by a star -- and its associated outpouring of stellar material, the stellar wind -- moving through it.
The payload systems reported a nominal flight, proceeding as expected. The payload is to be recovered, making it the second NASA astronomical mission with water recovery. Hampered by high winds since the targeted launch day of April 13, the CHESS 4 left the pad with only 13 minutes left on the last day of the launch window.
The CHESS 4 instrument was developed by the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The mission was preceded by the launch of the Penn State Water Recovery X-ray (WRX) rocket experiment on April 4. The successful launch of both missions brings to an end this year’s Kwajalein campaign.
Image Credit: NASA
56 notes · View notes
phonemantra-blog · 10 months
Link
The unexpected discovery has given rise to new theories about the mechanism by which phosphorus is formed without the outbursts of massive stars. The origin of life from “organic soup” is a complex process. This requires many different components assembled in one place and under the right conditions. Although the exact conditions are still a matter of debate, scientists have an idea of ​​what elements of the periodic table are needed. One important component is phosphorus, which was recently discovered on the outskirts of the Milky Way. The presence of this element among others is considered necessary for the formation of basic biochemical molecules. Therefore, the presence of phosphorus determines the boundaries of habitable zones in galaxies. Phosphorus is typically produced by the death of massive stars, making its presence at the outskirts of a galaxy a rare occurrence. However, the recent discovery of phosphorus in this area suggests that other mechanisms for its formation may exist. [caption id="attachment_85298" align="aligncenter" width="780"] Milky Way galaxy[/caption] “Phosphorus is an element that requires a special, catastrophic event to form. According to popular belief, phosphorus is formed as a result of supernova explosions of stars with a mass of at least 20 solar masses. They are the source of strong energetic emissions and a series of nucleosynthesis reactions that form not only phosphorus, but also many other heavy elements,” says astronomer and chemist Lucy Ziouris, who works at Arizona State University and Steward Observatory. This is the generally accepted view, and the discovery of phosphorus far from massive stars or supernova remnants suggests that there are other ways this element can be formed. All the elements we see around us are formed in stars. After the formation of the first atoms of the Universe from the primordial plasma, the atoms were mainly composed of hydrogen and helium, and all other elements appeared after the birth of the first stars. Stars play an important role in the fusion and combination of atoms in their cores, resulting in the formation of heavier elements. On the outskirts of the Milky Way galaxy The formation of elements in a star depends on its mass. Stars are the size of our Sun and are smaller able to support reactions that create light elements such as lithium and beryllium when hydrogen and helium combine. More massive stars can produce heavier elements such as oxygen and nitrogen. However, phosphorus is not produced during such reactions inside the star. Supernova explosions, accompanied by the death of massive stars, are one of the known mechanisms for the origin of phosphorus. Flares eject elements into space, scattering astromaterials into the interstellar medium, where they can be absorbed by new generations of stars, as well as comets and planets. Massive stars can only form in regions where there is enough material to feed them. As you move away from the center of the galaxy, the density of matter decreases - the outskirts of galaxies are usually populated by massive stars. So the presence of phosphorus in a cloud called WB89-621, located about 74,000 light-years from the center of the Milky Way, poses a mystery to astrochemists. “The discovery of phosphorus at the edge of the galaxy raises questions and adds an additional piece to our puzzle. The presence of phosphorus in this area suggests that the process of its formation is more complex and is not limited only to supernova explosions,” explains chemist Liliya Koelemey, collaborating with Arizona State University. There are two main explanations for this phenomenon. One of them is associated with the “galactic fountain” model, which assumes the movement of elements from the inner regions of the galaxy to the outer through supernova explosions, ejecting matter from the galactic disk into the halo and its subsequent cooling and return. However, this explanation is questionable, since observational data on galactic fountains is not yet sufficient. Another explanation involves the possibility of phosphorus being formed in the region around the core of less massive stars by capturing neutrons. Here, silicon isotopes can capture additional neutrons to form phosphorus. The discovery of phosphorus on the outskirts of the Milky Way is an exciting and important study, valuable for understanding the formation of life in the Universe. This element is the last of the NCHOPS - nitrogen, carbon, hydrogen, oxygen, phosphorus and sulfur - essential building blocks for the emergence of life and which define the habitable zones of a galaxy. Previously, astronomers had not paid much attention to the outskirts of galaxies in search of exoplanets with biomarkers, because they believed that regions far from the center of galaxies did not have enough phosphorus. However, this discovery allows us to expand the scope of searches.
0 notes
wigmund · 7 years
Photo
Tumblr media
From SpaceTelescope.Org Picture of the Week; July 24, 2017:
A Cosmic Atlas
This beautiful clump of glowing gas, dark dust, and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs).
This image was produced by the NASA/ESA Hubble Space Telescope as it embarked upon compiling the first Hubble ultraviolet “atlas”, for which the telescope targeted 50 nearby star-forming galaxies. A sample spanning all kinds of different morphologies, masses, and structures. Studying this sample can help us to piece together the star-formation history of the Universe.
By exploring how massive stars form and evolve within such galaxies, astronomers can learn more about how, when, and where star formation occurs, how star clusters change over time, and how the process of forming new stars is related to the properties of both the host galaxy and the surrounding interstellar medium (the “stuff” that fills the space between individual stars).
This image is formed of observations from Hubble’s Wide Field Camera 3.
Credit: ESA/Hubble & NASA
1 note · View note