#data science and networking
Explore tagged Tumblr posts
aipuconnects · 6 months ago
Text
The future in the era of big data and AI lies in the hands of bold innovators. At PADAI, we focus on supporting these creative thinkers so they can drive change and make a difference. Our leaders are experienced experts with a clear vision for progress. Their direction helps us build a strong and supportive community where new ideas can thrive. We focus on encouraging innovation and teamwork, creating an environment where data and AI can reach their full potential. This opens up exciting opportunities for learning, exploration, and growth.
0 notes
scipunk · 1 year ago
Text
Person of Interest (2011-2016)
81 notes · View notes
agileseen24 · 8 months ago
Text
"From Passion to Profession: Steps to Enter the Tech Industry"
How to Break into the Tech World: Your Comprehensive Guide
In today’s fast-paced digital landscape, the tech industry is thriving and full of opportunities. Whether you’re a student, a career changer, or someone passionate about technology, you may be wondering, “How do I get into the tech world?” This guide will provide you with actionable steps, resources, and insights to help you successfully navigate your journey.
Understanding the Tech Landscape
Before you start, it's essential to understand the various sectors within the tech industry. Key areas include:
Software Development: Designing and building applications and systems.
Data Science: Analyzing data to support decision-making.
Cybersecurity: Safeguarding systems and networks from digital threats.
Product Management: Overseeing the development and delivery of tech products.
User Experience (UX) Design: Focusing on the usability and overall experience of tech products.
Identifying your interests will help you choose the right path.
Step 1: Assess Your Interests and Skills
Begin your journey by evaluating your interests and existing skills. Consider the following questions:
What areas of technology excite me the most?
Do I prefer coding, data analysis, design, or project management?
What transferable skills do I already possess?
This self-assessment will help clarify your direction in the tech field.
Step 2: Gain Relevant Education and Skills
Formal Education
While a degree isn’t always necessary, it can be beneficial, especially for roles in software engineering or data science. Options include:
Computer Science Degree: Provides a strong foundation in programming and system design.
Coding Bootcamps: Intensive programs that teach practical skills quickly.
Online Courses: Platforms like Coursera, edX, and Udacity offer courses in various tech fields.
Self-Learning and Online Resources
The tech industry evolves rapidly, making self-learning crucial. Explore resources like:
FreeCodeCamp: Offers free coding tutorials and projects.
Kaggle: A platform for data science practice and competitions.
YouTube: Channels dedicated to tutorials on coding, design, and more.
Certifications
Certifications can enhance your credentials. Consider options like:
AWS Certified Solutions Architect: Valuable for cloud computing roles.
Certified Information Systems Security Professional (CISSP): Great for cybersecurity.
Google Analytics Certification: Useful for data-driven positions.
Step 3: Build a Portfolio
A strong portfolio showcases your skills and projects. Here’s how to create one:
For Developers
GitHub: Share your code and contributions to open-source projects.
Personal Website: Create a site to display your projects, skills, and resume.
For Designers
Design Portfolio: Use platforms like Behance or Dribbble to showcase your work.
Case Studies: Document your design process and outcomes.
For Data Professionals
Data Projects: Analyze public datasets and share your findings.
Blogging: Write about your data analysis and insights on a personal blog.
Step 4: Network in the Tech Community
Networking is vital for success in tech. Here are some strategies:
Attend Meetups and Conferences
Search for local tech meetups or conferences. Websites like Meetup.com and Eventbrite can help you find relevant events, providing opportunities to meet professionals and learn from experts.
Join Online Communities
Engage in online forums and communities. Use platforms like:
LinkedIn: Connect with industry professionals and share insights.
Twitter: Follow tech influencers and participate in discussions.
Reddit: Subreddits like r/learnprogramming and r/datascience offer valuable advice and support.
Seek Mentorship
Finding a mentor can greatly benefit your journey. Reach out to experienced professionals in your field and ask for guidance.
Step 5: Gain Practical Experience
Hands-on experience is often more valuable than formal education. Here’s how to gain it:
Internships
Apply for internships, even if they are unpaid. They offer exposure to real-world projects and networking opportunities.
Freelancing
Consider freelancing to build your portfolio and gain experience. Platforms like Upwork and Fiverr can connect you with clients.
Contribute to Open Source
Engaging in open-source projects can enhance your skills and visibility. Many projects on GitHub are looking for contributors.
Step 6: Prepare for Job Applications
Crafting Your Resume
Tailor your resume to highlight relevant skills and experiences. Align it with the job description for each application.
Writing a Cover Letter
A compelling cover letter can set you apart. Highlight your passion for technology and what you can contribute.
Practice Interviewing
Prepare for technical interviews by practicing coding challenges on platforms like LeetCode or HackerRank. For non-technical roles, rehearse common behavioral questions.
Step 7: Stay Updated and Keep Learning
The tech world is ever-evolving, making it crucial to stay current. Subscribe to industry newsletters, follow tech blogs, and continue learning through online courses.
Follow Industry Trends
Stay informed about emerging technologies and trends in your field. Resources like TechCrunch, Wired, and industry-specific blogs can provide valuable insights.
Continuous Learning
Dedicate time each week for learning. Whether through new courses, reading, or personal projects, ongoing education is essential for long-term success.
Conclusion
Breaking into the tech world may seem daunting, but with the right approach and commitment, it’s entirely possible. By assessing your interests, acquiring relevant skills, building a portfolio, networking, gaining practical experience, preparing for job applications, and committing to lifelong learning, you’ll be well on your way to a rewarding career in technology.
Embrace the journey, stay curious, and connect with the tech community. The tech world is vast and filled with possibilities, and your adventure is just beginning. Take that first step today and unlock the doors to your future in technology!
contact Infoemation wensite: https://agileseen.com/how-to-get-to-tech-world/ Phone: 01722-326809 Email: [email protected]
9 notes · View notes
d0nutzgg · 2 years ago
Text
Tumblr media
Tonight I am hunting down venomous and nonvenomous snake pictures that are under the creative commons of specific breeds in order to create one of the most advanced, in depth datasets of different venomous and nonvenomous snakes as well as a test set that will include snakes from both sides of all species. I love snakes a lot and really, all reptiles. It is definitely tedious work, as I have to make sure each picture is cleared before I can use it (ethically), but I am making a lot of progress! I have species such as the King Cobra, Inland Taipan, and Eyelash Pit Viper among just a few! Wikimedia Commons has been a huge help!
I'm super excited.
Hope your nights are going good. I am still not feeling good but jamming + virtual snake hunting is keeping me busy!
43 notes · View notes
100-art · 6 months ago
Text
Tumblr media
Liquid Crystal Art
3 notes · View notes
frank-olivier · 8 months ago
Text
Tumblr media
The Mathematical Foundations of Machine Learning
In the world of artificial intelligence, machine learning is a crucial component that enables computers to learn from data and improve their performance over time. However, the math behind machine learning is often shrouded in mystery, even for those who work with it every day. Anil Ananthaswami, author of the book "Why Machines Learn," sheds light on the elegant mathematics that underlies modern AI, and his journey is a fascinating one.
Ananthaswami's interest in machine learning began when he started writing about it as a science journalist. His software engineering background sparked a desire to understand the technology from the ground up, leading him to teach himself coding and build simple machine learning systems. This exploration eventually led him to appreciate the mathematical principles that underlie modern AI. As Ananthaswami notes, "I was amazed by the beauty and elegance of the math behind machine learning."
Ananthaswami highlights the elegance of machine learning mathematics, which goes beyond the commonly known subfields of calculus, linear algebra, probability, and statistics. He points to specific theorems and proofs, such as the 1959 proof related to artificial neural networks, as examples of the beauty and elegance of machine learning mathematics. For instance, the concept of gradient descent, a fundamental algorithm used in machine learning, is a powerful example of how math can be used to optimize model parameters.
Ananthaswami emphasizes the need for a broader understanding of machine learning among non-experts, including science communicators, journalists, policymakers, and users of the technology. He believes that only when we understand the math behind machine learning can we critically evaluate its capabilities and limitations. This is crucial in today's world, where AI is increasingly being used in various applications, from healthcare to finance.
A deeper understanding of machine learning mathematics has significant implications for society. It can help us to evaluate AI systems more effectively, develop more transparent and explainable AI systems, and address AI bias and ensure fairness in decision-making. As Ananthaswami notes, "The math behind machine learning is not just a tool, but a way of thinking that can help us create more intelligent and more human-like machines."
The Elegant Math Behind Machine Learning (Machine Learning Street Talk, November 2024)
youtube
Matrices are used to organize and process complex data, such as images, text, and user interactions, making them a cornerstone in applications like Deep Learning (e.g., neural networks), Computer Vision (e.g., image recognition), Natural Language Processing (e.g., language translation), and Recommendation Systems (e.g., personalized suggestions). To leverage matrices effectively, AI relies on key mathematical concepts like Matrix Factorization (for dimension reduction), Eigendecomposition (for stability analysis), Orthogonality (for efficient transformations), and Sparse Matrices (for optimized computation).
The Applications of Matrices - What I wish my teachers told me way earlier (Zach Star, October 2019)
youtube
Transformers are a type of neural network architecture introduced in 2017 by Vaswani et al. in the paper “Attention Is All You Need”. They revolutionized the field of NLP by outperforming traditional recurrent neural network (RNN) and convolutional neural network (CNN) architectures in sequence-to-sequence tasks. The primary innovation of transformers is the self-attention mechanism, which allows the model to weigh the importance of different words in the input data irrespective of their positions in the sentence. This is particularly useful for capturing long-range dependencies in text, which was a challenge for RNNs due to vanishing gradients. Transformers have become the standard for machine translation tasks, offering state-of-the-art results in translating between languages. They are used for both abstractive and extractive summarization, generating concise summaries of long documents. Transformers help in understanding the context of questions and identifying relevant answers from a given text. By analyzing the context and nuances of language, transformers can accurately determine the sentiment behind text. While initially designed for sequential data, variants of transformers (e.g., Vision Transformers, ViT) have been successfully applied to image recognition tasks, treating images as sequences of patches. Transformers are used to improve the accuracy of speech-to-text systems by better modeling the sequential nature of audio data. The self-attention mechanism can be beneficial for understanding patterns in time series data, leading to more accurate forecasts.
Attention is all you need (Umar Hamil, May 2023)
youtube
Geometric deep learning is a subfield of deep learning that focuses on the study of geometric structures and their representation in data. This field has gained significant attention in recent years.
Michael Bronstein: Geometric Deep Learning (MLSS Kraków, December 2023)
youtube
Traditional Geometric Deep Learning, while powerful, often relies on the assumption of smooth geometric structures. However, real-world data frequently resides in non-manifold spaces where such assumptions are violated. Topology, with its focus on the preservation of proximity and connectivity, offers a more robust framework for analyzing these complex spaces. The inherent robustness of topological properties against noise further solidifies the rationale for integrating topology into deep learning paradigms.
Cristian Bodnar: Topological Message Passing (Michael Bronstein, August 2022)
youtube
Sunday, November 3, 2024
4 notes · View notes
Text
Tumblr media
Day 3/100 days of productivity | Wed 21 Feb, 2024
Long day at work, chatted with colleagues about career paths in data science, met with my boss for a performance evaluation (it went well!). Worked on writing some Quarto documentation for how to build one of my Tableau dashboards, since it keeps breaking and I keep referring to my notes 😳
In non-work productivity, I completed the ‘Logistic Regression as a Neural Network’ module of Andrew Ng’s Deep Learning course on Coursera and refreshed my understanding of backpropagation using the calculus chain rule. Fun!
3 notes · View notes
jcmarchi · 2 years ago
Text
New AI noise-canceling headphone technology lets wearers pick which sounds they hear - Technology Org
New Post has been published on https://thedigitalinsider.com/new-ai-noise-canceling-headphone-technology-lets-wearers-pick-which-sounds-they-hear-technology-org/
New AI noise-canceling headphone technology lets wearers pick which sounds they hear - Technology Org
Most anyone who’s used noise-canceling headphones knows that hearing the right noise at the right time can be vital. Someone might want to erase car horns when working indoors but not when walking along busy streets. Yet people can’t choose what sounds their headphones cancel.
A team led by researchers at the University of Washington has developed deep-learning algorithms that let users pick which sounds filter through their headphones in real time. Pictured is co-author Malek Itani demonstrating the system. Image credit: University of Washington
Now, a team led by researchers at the University of Washington has developed deep-learning algorithms that let users pick which sounds filter through their headphones in real time. The team is calling the system “semantic hearing.” Headphones stream captured audio to a connected smartphone, which cancels all environmental sounds. Through voice commands or a smartphone app, headphone wearers can select which sounds they want to include from 20 classes, such as sirens, baby cries, speech, vacuum cleaners and bird chirps. Only the selected sounds will be played through the headphones.
The team presented its findings at UIST ’23 in San Francisco. In the future, the researchers plan to release a commercial version of the system.
[embedded content]
“Understanding what a bird sounds like and extracting it from all other sounds in an environment requires real-time intelligence that today’s noise canceling headphones haven’t achieved,” said senior author Shyam Gollakota, a UW professor in the Paul G. Allen School of Computer Science & Engineering. “The challenge is that the sounds headphone wearers hear need to sync with their visual senses. You can’t be hearing someone’s voice two seconds after they talk to you. This means the neural algorithms must process sounds in under a hundredth of a second.”
Because of this time crunch, the semantic hearing system must process sounds on a device such as a connected smartphone, instead of on more robust cloud servers. Additionally, because sounds from different directions arrive in people’s ears at different times, the system must preserve these delays and other spatial cues so people can still meaningfully perceive sounds in their environment.
Tested in environments such as offices, streets and parks, the system was able to extract sirens, bird chirps, alarms and other target sounds, while removing all other real-world noise. When 22 participants rated the system’s audio output for the target sound, they said that on average the quality improved compared to the original recording.
In some cases, the system struggled to distinguish between sounds that share many properties, such as vocal music and human speech. The researchers note that training the models on more real-world data might improve these outcomes.
Source: University of Washington
You can offer your link to a page which is relevant to the topic of this post.
2 notes · View notes
tandeminformaticsmadurai · 18 days ago
Text
UI/UX Design Mastery Course in Madurai – Elevate Your Design Skills
The UI/UX Design Mastery Course in Madurai is an ideal program for aspiring designers and tech enthusiasts eager to break into the world of user interface and user experience design. Tailored for beginners as well as professionals looking to enhance their skills, this course offers a perfect blend of theoretical knowledge and hands-on experience.
Participants will learn the fundamentals of design thinking, user research, wireframing, prototyping, and usability testing. The curriculum also covers industry-leading tools like Figma, Adobe XD, and Sketch, ensuring learners gain practical expertise. The course emphasizes real-world projects and case studies to help students build an impressive design portfolio.
Guided by experienced mentors and industry experts, students receive personalized feedback and career guidance throughout the program. Whether you aim to work with top tech companies, start your freelance design journey, or build your own product, this course equips you with the skills to deliver intuitive and engaging digital experiences.
Located in Madurai, this program offers in-person and hybrid learning options, making it accessible and flexible for learners from different backgrounds. With a focus on creativity, innovation, and user-centric design, the UI/UX Design Mastery Course is your gateway to a rewarding career in the dynamic field of digital design.
Enroll today to unlock the power of design and transform your ideas into user-friendly interfaces that make a lasting impact.
0 notes
ultrakey · 26 days ago
Text
Final Year Projects That Impress and Inspire
Stand out with smart, practical final year projects in tech, science, and engineering streams.
0 notes
vengoai · 2 months ago
Text
Can AI truly reflect our deepest beliefs? 🧠 Dive into this fascinating discussion on scalable learning, data limitations, and how AI translates across modalities. Unlock the tech driving tomorrow’s breakthroughs. Visit: vengoai.com
0 notes
spinnrblog · 2 months ago
Text
Can AI truly reflect our deepest beliefs? 🧠 Dive into this fascinating discussion on scalable learning, data limitations, and how AI translates across modalities. Unlock the tech driving tomorrow’s breakthroughs. Visit: vengoai.com
0 notes
tanishksingh · 2 months ago
Text
0 notes
delicatelysublimeforester · 4 months ago
Text
Plant Blindness and Beyond: Shifting Our Perception of Urban Nature
Tumblr media
View On WordPress
1 note · View note
frank-olivier · 7 months ago
Text
Tumblr media
Deep Learning, Deconstructed: A Physics-Informed Perspective on AI’s Inner Workings
Dr. Yasaman Bahri’s seminar offers a profound glimpse into the complexities of deep learning, merging empirical successes with theoretical foundations. Dr. Bahri’s distinct background, weaving together statistical physics, machine learning, and condensed matter physics, uniquely positions her to dissect the intricacies of deep neural networks. Her journey from a physics-centric PhD at UC Berkeley, influenced by computer science seminars, exemplifies the burgeoning synergy between physics and machine learning, underscoring the value of interdisciplinary approaches in elucidating deep learning’s mysteries.
At the heart of Dr. Bahri’s research lies the intriguing equivalence between neural networks and Gaussian processes in the infinite width limit, facilitated by the Central Limit Theorem. This theorem, by implying that the distribution of outputs from a neural network will approach a Gaussian distribution as the width of the network increases, provides a probabilistic framework for understanding neural network behavior. The derivation of Gaussian processes from various neural network architectures not only yields state-of-the-art kernels but also sheds light on the dynamics of optimization, enabling more precise predictions of model performance.
The discussion on scaling laws is multifaceted, encompassing empirical observations, theoretical underpinnings, and the intricate dance between model size, computational resources, and the volume of training data. While model quality often improves monotonically with these factors, reaching a point of diminishing returns, understanding these dynamics is crucial for efficient model design. Interestingly, the strategic selection of data emerges as a critical factor in surpassing the limitations imposed by power-law scaling, though this approach also presents challenges, including the risk of introducing biases and the need for domain-specific strategies.
As the field of deep learning continues to evolve, Dr. Bahri’s work serves as a beacon, illuminating the path forward. The imperative for interdisciplinary collaboration, combining the rigor of physics with the adaptability of machine learning, cannot be overstated. Moreover, the pursuit of personalized scaling laws, tailored to the unique characteristics of each problem domain, promises to revolutionize model efficiency. As researchers and practitioners navigate this complex landscape, they are left to ponder: What unforeseen synergies await discovery at the intersection of physics and deep learning, and how might these transform the future of artificial intelligence?
Yasaman Bahri: A First-Principle Approach to Understanding Deep Learning (DDPS Webinar, Lawrence Livermore National Laboratory, November 2024)
youtube
Sunday, November 24, 2024
3 notes · View notes
hotzimbabwejobs · 4 months ago
Text
Shape the Future of Tech: University of Zimbabwe Hiring in Computer Engineering, Informatics, and Communications - February 2025
The University of Zimbabwe is seeking passionate and qualified individuals to join its Faculty of Computer Engineering, Informatics and Communications. This is a fantastic opportunity to contribute to the cutting edge of technology education and research. If you’re an expert in your field with a passion for teaching and innovation, we encourage you to apply! Departments with Openings: Analytics…
Tumblr media
View On WordPress
0 notes