#Automatacodingquestions
Explore tagged Tumblr posts
Text
Power Of Alphabets In Automata

Power Of Alphabets (∑) In Automata, If ∈ Is An Alphabet Then ∑k Is The Set Of All The String From The Alphabet ∈ Of Length Exactly k. Example - ∑= {a,b} // a & b are input alphabets We Are Talking About ∑k (Sigma To The Power Of k) ∑ 1= Set Of All The String Of Length 1. ={a,b} // Formed String ∑ 2= Set Of All The String Of Length 2. ={aa,ab,ba,bb} // Formed Strings ∑ 3= Set Of All The String Of Length 3. ={aa,ab,ba,bb,aab,aba,baa,bba} // Formed Strings ∑ 0= Set Of All The String Of Length 0 (Empty Set) ={∈} // Empty Set Or Epsilon Positive Closure Of ∑ ∑+=∑1 ∪ ∑2∪ ∑3 ∪ ∑4...... Kleen Closure Of ∑ ∑*= ∑0 ∪Σ1 ∪ ∑2∪ ∑3 ∪ ∑4...... // Kleen Closure Of ∑ Is A ∪niversal Language
To Remember The Above, Remember The Following Rules
(a) ∑+ ⊂ ∑* // Sigma To The Power Of Plus Is The Subset Of SigmaTo The Power Of Star (b) ∑* = ∑+ ∪ {∈} // Sigma To The Power Of Star Is Equal To Sigma To The Power Of Plus ∪nion Epsilon ( Empty Set) (c) ∑+ = ∑*- {∈} (d) ∑* ∪ ∑+ = ∑* (e) ∑* ∩ ∑+ = ∑+ (f) ∑* ∑+ = ∑+ (g) ∑* ∑* = ∑* (h) ∑+ ∑+ = ∑+ - ∑1 Read the full article
#Automata#Automata2014#Automatacodingquestions#Automataimdb#Automatameaning#Automatamovie#Automatatheory#Automatatheorypdf#Automatatrailer#Automatatutorial#PowerOfAlphabetsOnAutomata#TheoryOfComputation#TheoryOfComputationbook#TheoryOfComputationforgate#TheoryOfComputationgatequestions#TheoryOfComputationgeekforgeeks#TheoryOfComputationnotespdf#TheoryOfComputationnptel#TheoryOfComputationpdf#TheoryOfComputationpeterlinzpdf#TheoryOfComputationquestionpaper#TheoryOfComputationtutorialspoint
0 notes