#Silicon Photonics-Based Pluggable Optical Transceiver
Explore tagged Tumblr posts
otiskeene · 2 years ago
Text
Jabil Invests In The Future Of AI With Intel Silicon Photonics Transceiver Deal
Tumblr media
Global leader in supply chain, manufacturing, and design solutions Jabil Inc. (NYSE: JBL) has revealed a big development in its operations. The existing Silicon Photonics-based pluggable optical transceiver product lines from Intel, also referred to as modules, will be manufactured and sold by Jabil, while future generations of these modules will be developed by Jabil as well. By responding to the changing demands of data centers, such as hyperscale, next-wave, and AI cloud data centers, Jabil hopes to strengthen its position in the market.
Jabil's Senior Vice President of Cloud and Enterprise Infrastructure, Matt Crowley, stressed the significance of this agreement in tackling the particular difficulties presented by intricate data center settings. Jabil is dedicated to providing cutting-edge solutions that meet the dynamic needs of the data center ecosystem. Jabil will be able to increase its footprint in the data center value chain thanks to the cooperation with Intel.
Jabil is well-positioned to make it easier for enterprises to create and implement cutting-edge optical networking solutions thanks to its photonics business unit. They provide full photonics capabilities, such as simplified supply chain management, system assembly, and component design. This action demonstrates Jabil's dedication to offering comprehensive optical networking solutions for data centers.
By entering into this deal with Jabil, Intel Corporation said it was happy to be working with a top-tier supplier. Intel's focus will shift to silicon photonics components for both established markets and new applications, and it will work closely with Jabil, customers, and suppliers to ensure a smooth transition. This shift will provide Intel the opportunity to focus on silicon photonics components, with Jabil handling the development and manufacturing of optical transceiver modules.
Read More - https://bit.ly/46WLnE6
0 notes
news24-amit · 10 days ago
Text
Optical Transceiver Technology to Reshape Telecom and Data Center Sectors
Tumblr media
The global optical transceiver market, valued at US$ 14.2 billion in 2023, is on track to soar to US$ 43.5 billion by 2034, expanding at a robust CAGR of 10.5% between 2024 and 2034. Fueled by the explosive growth of data centers, the accelerated rollout of 5G networks, and emerging low-latency applications, optical transceivers are set to become even more indispensable in modern communication infrastructures.
Market Overview: Optical transceivers compact, pluggable modules that convert electrical signals into optical signals and vice versa are the workhorses of fiber-optic networks. Available in a range of form factors from SFP (Small Form-factor Pluggable) to QSFP DD (Quad Small Form-factor Pluggable Double Density), these modules support data rates from sub-Gbps to multiple Tbps. Their ability to transmit high-volume data over long distances with minimal latency makes them critical for data centers, telecom backbones, and emerging industrial applications.
Market Drivers & Trends
Data Center Proliferation: The rapid expansion of hyperscale and cloud data centers has driven unprecedented demand for high-speed, low-power optical modules. As enterprises and service providers ramp up AI, big data, and cloud-native deployments, transceiver shipments especially in QSFP and SR-based SFP+ form factors are climbing sharply.
5G Network Rollout: The need for ultra-fast, reliable backhaul and fronthaul connectivity in 5G networks has positioned optical transceivers at the forefront of network upgrades. Their support for multi-Tbps links and real-time data transfer underpins applications from enhanced mobile broadband (eMBB) to network slicing.
Low-Latency Industrial Applications: Use cases such as autonomous vehicles, remote surgery, and automated manufacturing demand latency measured in microseconds. Optical transceivers, with their near-real-time signaling, are key enablers of mission-critical communication in these sectors.
Latest Market Trends
Higher-Density Form Factors: Adoption of QSFP DD and OSFP modules is rising as network operators seek greater port density in limited rack space.
Integrated Photonics: Silicon photonics and indium phosphide integration are reducing module footprint and power consumption, while boosting data rates of 200 Gbps per lane and beyond.
Pluggable Tunable Transceivers: Modules with tunable wavelengths are gaining traction in metro and long-haul networks, enabling dynamic bandwidth allocation and simplified inventory management.
Environmental Compliance: RoHS- and REACH-compliant designs, alongside lower-power “green” transceiver options, are becoming industry norms as sustainability becomes a procurement priority.
Key Players and Industry Leaders
The competitive landscape features a mix of established giants and emerging innovators:
Broadcom and Ciena Corporation are advancing ultra-high-speed coherent solutions for carrier networks.
Cisco Systems and Juniper Networks integrate optical modules into broader routing and switching portfolios.
Fujitsu Optical Components and Sumitomo Electric Industries lead in indium phosphide-based transceivers.
Accelink Technology and Source Photonics cater to cost-sensitive metro and data center segments with high-volume SFP+ and QSFP28 modules.
Amphenol Communications Solutions and Molex focus on ruggedized, industrial-grade transceivers for harsh environments.
Recent Developments
October 2023: Semtech Corporation demonstrated a 200 G/lane optical transceiver, leveraging its FiberEdge® 200G PAM4 PMDs with a Broadcom DSP for single-mode optics.
October 2023: Coherent Corp. unveiled next-generation 800G and 1.6T datacom transceivers and laser modules at ECOC 2023.
Q1 2025: Cisco Systems launched its SFP-NFR series, offering fully programmable, pluggable transceivers that simplify network automation.
May 2025: Fujitsu announced the commercial release of its silicon photonics-based QSFP28-DD, achieving 400 Gbps in a standard DD footprint.
Discover essential conclusions and data from our Report in this sample - https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=36179
Market Opportunities
Hyperscale Cloud Services: Expansion of AI and machine learning workloads in the cloud requires continuous upgrades to transceiver performance and power efficiency.
Edge Computing: Distributed edge data centers will drive demand for compact, low-power modules that can be deployed in space-constrained facilities.
Automotive Ethernet: As vehicles adopt gigabit-speed Ethernet backbones for infotainment and sensor fusion, ruggedized optical transceivers tailored for automotive standards will emerge.
Smart Cities & IoT: Smart-city infrastructure, including traffic management and public safety systems, will rely on fiber-optic networks anchored by high-density transceivers.
Future Outlook
The transition to 800 Gbps and 1.6 Tbps links, alongside the maturation of silicon photonics, will redefine the performance envelope of optical transceivers. By 2034, next-generation form factors supporting multi-Tbps per lane speeds and sub-milliwatt power budgets will be commercially viable. Market entrants focusing on innovative materials—such as lithium niobate on insulator (LNOI)—and photonic integration platforms will challenge incumbents, fostering a highly dynamic competitive environment.
Market Segmentation
By Data Rate
Up to 10 Gbps
10 Gbps to 40 Gbps
41 Gbps to 100 Gbps
Above 100 Gbps
By Fiber Type
Single-mode Fiber
Multimode Fiber
By Distance
Up to 2 km
2–10 km
10–40 km
40–80 km
Above 80 km
By Form Factor
QSFP DD
QSFP
SFP
XFP
CFP
Others (X2, GBIC, etc.)
By Wavelength
850 nm Band
1310 nm Band
1550 nm Band
Others
By Application
Data Communication
Telecommunication
Regional Insights
Asia Pacific: Dominated the market in 2023, driven by massive digital infrastructure investments in China, India, and Southeast Asia. Government programs for smart cities, 5G, and AI initiatives underpin ongoing growth.
North America: Expected to register significant gains, fueled by hyperscale data center builds, advanced research in photonics, and early adoption of 800G+ network technologies.
Europe: Moderate growth anticipated, with strong demand in financial hubs and progressive rollout of Open RAN networks.
Middle East & Africa: Emerging deployments in energy and government sectors, supported by fiber-backbone expansion projects.
South America: Gradual uptake driven by telecom modernization programs and cloud service expansion.
Why Buy This Report?
Comprehensive Coverage: Detailed analysis of market drivers, restraints, opportunities, and key trends through 2034.
Competitive Intelligence: In-depth profiles of leading vendors, recent developments, and strategic initiatives.
Quantitative Insights: Historical data (2020–2022), 2023 market sizing, and 2034 forecasts by value and volume.
Segmentation Analysis: Breakdowns by data rate, fiber type, distance, form factor, wavelength, and application.
Regional Breakdown: Five-region analysis covering country-level trends and government initiatives.
Decision-Maker Tools: Porter’s Five Forces, value-chain analysis, and growth-opportunity matrices to inform strategic planning.
Formats Provided: Electronic (PDF) report plus an Excel workbook with customizable data tables.
Explore Latest Research Reports by Transparency Market Research: Data Center Accelerator Market: https://www.transparencymarketresearch.com/data-center-accelerator-market.html
GPS Tracking Device Market: https://www.transparencymarketresearch.com/gps-tracking-device-market.html
Agriculture Lighting Market: https://www.transparencymarketresearch.com/agriculture-lighting-market.html
E-Beam Wafer Inspection System Market: https://www.transparencymarketresearch.com/e-beam-wafer-inspection-system-market.htmlAbout Transparency Market Research Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyses information. Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports. Contact: Transparency Market Research Inc. CORPORATE HEADQUARTER DOWNTOWN, 1000 N. West Street, Suite 1200, Wilmington, Delaware 19801 USA Tel: +1-518-618-1030 USA - Canada Toll Free: 866-552-3453 Website: https://www.transparencymarketresearch.com Email: [email protected]
0 notes
govindhtech · 1 year ago
Text
Optical I/O Shines Intel’s OCI Chiplet Powers Next-Decade AI
Tumblr media
First Integrated Optical I/O Chiplet
With integrated photonics technology, Intel Corporation has made significant progress towards high-speed data transmission. The first-ever fully integrated optical computing interconnect (OCI) chiplet, co-packaged with an Intel CPU and executing real data, was showcased by Intel’s Integrated Photonics Solutions (IPS) Group at the Optical Fibre Communication Conference (OFC) 2024. This chiplet is the most sophisticated in the industry. By enabling co-packaged optical input/output (I/O) in developing  AI infrastructure for data centres and high performance computing (HPC) applications, Intel’s OCI chiplet marks a significant advancement in high-bandwidth connection.
What It Does
This is the first OCI chiplet, intended to meet the increasing demands of  AI infrastructure for greater bandwidth, lower power consumption, and longer reach. It can support 64 channels of 32 gigabits per second (Gbps) data transmission in each direction on up to 100 metres of fibre optics. It makes it possible for CPU/GPU cluster connectivity to grow in the future and for innovative compute designs like resource disaggregation and coherent memory extension.
Why It Matters
Large language models (LLM) and generative  AI are two recent advancements that are speeding up the global deployment of AI-based applications. Machine learning (ML) models that are larger and more effective will be essential in meeting the new demands of workloads involving AI acceleration. Future  AI computing platforms will need to be scaled, which will require exponential expansion in I/O bandwidth and longer reach to support larger CPU/GPU/IPU clusters and architectures with more effective resource utilisation, like memory pooling and xPU disaggregation.
High bandwidth density and low power consumption are supported via electrical I/O, or copper trace connectivity, although its reach is limited to one metre or less. When employed in data centres and early  AI clusters, pluggable optical transceiver modules can expand reach at power and cost levels that are unsustainable for the scalability demands of AI workloads. AI/ML infrastructure scalability calls for co-packaged xPU optical I/O that can enable greater bandwidths with better power efficiency, longer reach, and low latency.
Electrical I/O
To use an analogy, switching from horse-drawn carriages, which had a limited capacity and range, to cars and trucks, which can transport much bigger amounts of products over much longer distances, is analogous to replacing electrical I/O with optical I/O in CPUs and GPUs to convey data. Optical I/O solutions such as Intel’s OCI chiplet could offer this kind of enhanced performance and energy efficiency to  AI scalability.
How It Works
The fully integrated OCI chiplet combines an electrical integrated circuit (IC) with a silicon photonics integrated circuit (PIC), which incorporates on-chip lasers and optical amplifiers, by utilising Intel’s field-proven silicon photonics technology. Although the OCI chiplet showcased at OFC was co-packaged with an Intel CPU, it can be combined with different system-on-chips (SoCs), GPUs, IPUs, and next-generation CPUs.
This initial OCI version is compatible with PCIe Gen5 and provides bidirectional data transmission rates of up to 4 terabits per second (Tbps). A transmitter (Tx) and receiver (Rx) connection between two CPU platforms via a single-mode fibre (SMF) patch cord is shown in the live optical link demonstration. The demonstration shows the Tx optical spectrum with 8 wavelengths at 200 gigahertz (GHz) spacing on a single fibre, along with a 32 Gbps Tx eye diagram demonstrating strong signal quality. The CPUs generated and tested the optical Bit Error Rate (BER).
The current chiplet uses eight fibre pairs, each carrying eight dense wavelength division multiplexing (DWDM) wavelengths, to provide 64 channels of 32 Gbps data in each direction up to 100 metres (though actual implementations may be limited to tens of metres due to time-of-flight latency). In addition to being incredibly energy-efficient, the co-packaged solution uses only 5 pico-Joules (pJ) per bit, as opposed to around 15 pJ/bit for pluggable optical transceiver modules.  AI’s unsustainable power requirements may be addressed with the help of this level of hyper-efficiency, which is essential for data centres and high-performance computing settings.
Concerning Intel’s Preeminence in Silicon Photonics
With over 25 years of in-house research from Intel Labs, the company that invented integrated photonics, Intel is a market leader in silicon photonics. The first business to create and supply industry-leading dependability silicon photonics-based connectivity solutions in large quantities to major cloud service providers was Intel.
The primary point of differentiation for Intel is their unmatched integration of direct and hybrid laser-on-wafer technologies, which result in reduced costs and increased reliability. Intel is able to preserve efficiency while delivering higher performance thanks to this innovative method. With over 8 million PICs and over 32 million integrated on-chip lasers shipped, Intel’s reliable, high-volume platform has a laser failures-in-time (FIT) rate of less than 0.1, which is a commonly used reliability metric that shows failure rates and the frequency of failures.
For use in 100, 200, and 400 Gbps applications, these PICs were installed in big data centre networks at prominent hyperscale cloud service providers in the form of pluggable transceiver modules. In development are next generation 200G/lane PICs to handle 800 Gbps and 1.6 Tbps applications that are only starting to gain traction.
Additionally, Intel is introducing a new fab process node for silicon photonics that offers significantly better economics, higher density, better coupling, and state-of-the-art (SOA) device performance. Intel keeps improving SOA performance, cost (more than 40% reduction in die size), power (more than 15% reduction), and on-chip laser performance.
What’s Next
This OCI chiplet from Intel is a prototype. Intel is collaborating with a small number of clients to co-package OCI as an optical I/O solution with their SoCs.
The OCI chiplet from Intel is a significant advancement in high-speed data transfer. Intel continues to be at the forefront of innovation and is influencing the future of connectivity as the  AI infrastructure landscape changes.
Read more on govindhtech.com
1 note · View note
qocsuing · 2 years ago
Text
Eoptolink Launches Innovative 800G Linear-drive Pluggable Optics During OFC 2023
Eoptolink Launches Innovative 800G Linear-drive Pluggable Optics During OFC 2023
800G LPOs are designed without DSPs or CDRs, resulting in significantly lower power consumption and dramatically reduce latency compared to conventional DSP based solutions. The reduction in latency has become a key driver for the growing demand for LPOs in applications such as switch-to-switch, switch-to-server, and GPU-to-GPU connectivity in Machine Learning and High-Performance Computing.Get more news about linear drive,you can vist our website!
Eoptolink's LPO portfolio consists of modules for both multimode and singlemode applications. For multimode fiber applications, portfolio includes 800G LPO based on VCSEL technology. For single mode fiber applications, LPO transceivers are available based on Silicon Photonics, EMLs, and Thin-film Lithium Niobate modulators. These modules will be offered in both OSFP and QSFP-DD800 form factors.
"LPOs without a DSP chip enable a new suite of optical transceiver products using only linear analog components in the data link, leading to lower power and lower link latency", said Mr. Sean Davies, VP of US Sales at Eoptolink.
"LPOs providing high bandwidth connectivity with less power and less cost than today's solutions are a benefit to Mega data center market in general" said Richard Huang, CEO Eoptolink. "They offer measurable cost savings in mega data center operations and enable latency sensitive application in AI and ML. Eoptolink's innovative approach will enable its customers to improve their network performance."
0 notes
larebomrglobal · 5 years ago
Text
Global Optical Interconnect Market  Share, Trends and Forecast to 2026
The global market for optical interconnect is projected to have considerable CAGR during the forecast period.  The major factors that propels the optical interconnect market include growing deployment of data centers, increasing adoption of big data analytics and cloud-based services across the globe. The rise in the demand for cloud-based services is further projected to enhance the demand for optical interconnect services in enterprises that further provide a significant opportunity to the market.  There are various factors that can influence the adoption of optical interconnect by SMEs such as organization competitiveness and management strategies. The SMEs are adopting cloud services to enhance flexibility and scalability of their business performance, and to lower the cost of operations. Moreover, integration of advanced technology such as IoT and AI further provide substantial opportunity to the market.  
A full report description of Global Optical Interconnect Market at https://www.omrglobal.com/industry-reports/optical-interconnect-market
The global optical interconnect market is segmented based on product type and application. Based on the product type, the market is further classified into connectors, cable assemblies, optical transceivers silicon photonics, and other. The optical transceivers market is projected to grow at a significant CAGR during the forecast period. On the basis of application, the market is further segregated into data communication and telecommunication.
Request a Free Report on Sample of Global Fiberglass Market @ https://www.omrglobal.com/request-sample/optical-interconnect-market
Geographically, the global optical interconnect market is further classified into North America, Europe, Asia-Pacific and the Rest of the World. Asia-Pacific is estimated to have considerable market growth in the global market during the forecast period. The market growth is attributed to the significant adoption of datacenter services economies such as China, Japan, India, South Korea, Thailand, and Australia. The increasing internet penetration has increased the concerns associated with data traffic and data security, which in turn, is expected to drive the adoption of optical interconnect technology in the region.
The key players in the optical interconnect market contributing significantly by providing different types of products and increasing their geographical presence across the globe. The key players of the market include II-VI Inc., Broadcom Inc., Fujitsu Ltd., Intel Corp., NVIDIA Corp., and others. These market players adopt various strategies such as product launch, partnerships, collaborations, mergers, and acquisitions to sustain a strong position in the market. For instance, in March 2020 II-VI Inc., announced the launch of 400G CFP2-DCO pluggable transceivers for high-speed backbone networks and datacenter interconnects.  
Global Optical Interconnect Market Segmentation
By Product Type
        Connectors
        Cable Assemblies
        Optical Transceivers
        Silicon Photonics
        Other(Optical Engines)
By Application  
        Data Communication
        Telecommunication  
Regional Analysis
North America
        United States
        Canada
Europe
        UK
        Germany
        Italy
        Spain
        France
        Rest of Europe  
Asia-Pacific
        China
        India
        Japan
        Rest of Asia-Pacific  
Rest of the World
Company Profiles
        II-VI Inc.
        Acacia Communications, Inc.
        Accelink Technology Co. Ltd.
        Amphenol Corp  
        Broadcom Inc.
        Corning Inc.
        Fujitsu Ltd.
        Furukawa Electric Co., Ltd.
        Huawei Technologies Co., Ltd.
        InnoLight Technology (Suzhou) Ltd.
        Infinera Corp.
        Intel Corp.
        Juniper Networks, Inc.
        Lumentum Operations LLC
        Molex, LLC
        NVIDIA Corp.
        NeoPhotonics Corp.
        Optoscribe Ltd.
        Sumitomo Electric Industries, Ltd.
        TE Connectivity Corp.
For More Customized Data, Request for Report Customization @ https://www.omrglobal.com/report-customization/optical-interconnect-market
About Orion Market Research
Orion Market Research (OMR) is a market research and consulting company known for its crisp and concise reports. The company is equipped with an experienced team of analysts and consultants. OMR offers quality syndicated research reports, customized research reports, consulting and other research-based services.
For More Information, Visit Orion Market Research
Media Contact:
Company Name: Orion Market Research
Contact Person: Mr. AnuragTiwari
Contact no: +1 646-755-7667, +91 780-304-0404
0 notes
govindhtech · 1 year ago
Text
Intel Unveiling the OCI Chiplet Co-packaged with CPU
Tumblr media
Intel OCI Chiplet In order to give the industry a glimpse into the future of high-bandwidth compute interconnect, Intel plans to showcase their cutting-edge Optical Compute Interconnect (OCI) chiplet co-packaged with a prototype of a next-generation Intel CPU running live error-free traffic at the Optical Fiber Conference in San Diego on March 26–28, 2024.
They also intend to showcase their most recent Silicon Photonics Tx and Rx ICs, which are made to enable new pluggable connectivity applications in hyperscale data centers at 1.6 Tbps.
Optical I/O as a Facilitator for AI Pervasiveness More people are using AI-powered apps, which will drive the global economy and shape society. This trend has been accelerated by recent advances in generative AI and LLM.
The development of larger and more effective Machine Learning (ML) models will be essential to meeting the growing demands of workloads involving AI acceleration. Exponentially increasing I/O bandwidth and longer reach in connectivity are required to support larger xPU clusters and more resource-efficient architectures like memory pooling and GPU disaggregation, which are made possible by the need to dramatically scale future compute fabrics.
High bandwidth density and low power consumption are supported by electrical I/O, or copper trace connectivity, but only at very short ranges of one meter or less. While early AI clusters and modern data centers use pluggable optical transceiver modules to extend their reach, these modules come at a cost and power that cannot keep up with the demands of AI workloads, which will require exponential growth in the near future.
AI/ML infrastructure scaling requires higher bandwidths with high power efficiency, low latency, and longer reach, all of which can be supported by a co-packaged xPU (CPU, GPU, and IPU) optical I/O solution.
Optical I/O Solution Based on Intel Silicon Photonics Based on its proprietary Silicon Photonics technology, Intel has created a 4 Tbps bidirectional fully integrated OCI chiplet to meet the massive bandwidth requirements of the AI infrastructure and facilitate future scalability. A single Silicon Photonics Integrated Circuit (PIC) with integrated lasers, an electrical IC with RF Through-Silicon-Vias (TSV), and a path to integrate a detachable/reusable optical connector are all present in this OCI chiplet or tile.
Next-generation CPU, GPU, IPU, and other System-on-a-Chip (SOC) applications with high bandwidth demands can be co-packaged with the OCI chiplet. With its first implementation, multi-Terabit optical connectivity is now possible with a reach of more than 100 meters, a <10ns (+TOF) latency, an energy efficiency of pJ/bit, and a shoreline density improvement of >4x over PCIe Gen6.
At OFC 2024 in San Diego on March 26–28 (Intel booth #1501), they intend to showcase their first-generation OCI chiplet co-packaged with a concept Intel CPU running live error-free traffic over fiber. This first OCI implementation, which is a 4 Tbps bidirectional OCI Chiplet compatible with PCIe Gen5, is realized as eight fiber pairs carrying eight DWDM wavelengths each. It supports 64 lanes of 32 Gbps data in each direction over tens of meters. Beyond this initial implementation, 32 Tbps chiplets are in line of sight for the platform.
Thanks to Intel’s unique ability to integrate DWDM laser arrays and optical amplifiers on the PIC, a single PIC in the current die-stack can support up to 8 Tbps bidirectional applications and has a complete optical sub-system, offering orders of magnitude higher reliability than conventional InP lasers. One of their high-volume fabrication facilities in the United States produces these integrated Silicon Photonics chips.
It has shipped over 8 million PICs with over 32 million on-chip lasers embedded in pluggable optical transceivers for data center networking, all with industry-leading reliability. In addition to its demonstrated dependability and improved performance, on-chip laser technology allows for true wafer-scale manufacturing, burn-in, and testing. This results in highly reliable and simple subsystems (e.g., the ELS and PIC are not connected by fibers) as well as efficient manufacturing processes.
Another unique selling point of OCI is that, unlike other technical approaches on the market, it does not require Polarization Maintaining Fiber (PMF) and can use standard, widely-deployed single-mode fiber (SMF-28). Due to the potential harm that system vibration and fiber wiggle can do to PMF’s performance and related link budget, it has not been used much.
As a crucial component enabling optical I/O technology, OCI is being developed and implemented by multiple groups within Intel. It demonstrates how Intel’s superior silicon, optical, packaging, and platform integration capabilities enable us to provide a comprehensive next-generation compute solution.
In order to enable ubiquitous AI, Intel’s field-proven Silicon Photonics technology and platform can offer the best optical connectivity options in terms of both performance and dependability.
FAQS What is Intel OCI? Optical Compute Interconnect is referred to as OCI. This is a new chiplet technology that transmits data via light rather than electricity.
What are the benefits of OCI for AI? When it comes to bandwidth, OCI Chiplet is far more generous than conventional electrical connections such as PCIe Gen 6. For AI applications that need to move large amounts of data, this is essential. With a lower power consumption per bit transferred (measured in picoJoules per bit), OCI is more energy-efficient. With less than 10 nanoseconds of delay, data travels thanks to its lower latency. OCI Chiplet is more capable of transmitting data than electrical interconnects over longer distances more than 100 meters
How does OCI work? OCI chiplet, a tiny chip made specifically to be integrated straight with other chips, such as GPUs and CPUs. Faster data transfer is made possible by this co-packaging, which enables a very short physical distance between OCI Chiplet and the main processor.
When will OCI be available? Intel is showcasing OCI Chiplet at the Optical Fiber Conference (OFC), which takes place from March 26–28, 2024, even though there isn’t an official release date yet. This implies that although the technology is still in development, a possible launch is getting closer.
Read more on Govindhtech.com
0 notes