#hiveql
Explore tagged Tumblr posts
Text
Data Masking and Encryption in HiveQL Database Language
Complete Guide to Data Masking and Encryption in HiveQL for Secure Data Management Hello, fellow HiveQL enthusiasts! In this blog post, I will introduce you to Data Masking and Encryption in HiveQL – one of the most important and practical security features in HiveQL: Data Masking and Encryption. These techniques play a crucial role in protecting sensitive information such as personal data,…
0 notes
Text
Price: [price_with_discount] (as of [price_update_date] - Details) [ad_1] Need to move a relational database application to Hadoop? This comprehensive guide introduces you to Apache Hive, Hadoop’s data warehouse infrastructure. You’ll quickly learn how to use Hive’s SQL dialect—HiveQL—to summarize, query, and analyze large datasets stored in Hadoop’s distributed filesystem.This example-driven guide shows you how to set up and configure Hive in your environment, provides a detailed overview of Hadoop and MapReduce, and demonstrates how Hive works within the Hadoop ecosystem. You’ll also find real-world case studies that describe how companies have used Hive to solve unique problems involving petabytes of data.Use Hive to create, alter, and drop databases, tables, views, functions, and indexesCustomize data formats and storage options, from files to external databasesLoad and extract data from tables—and use queries, grouping, filtering, joining, and other conventional query methodsGain best practices for creating user defined functions (UDFs)Learn Hive patterns you should use and anti-patterns you should avoidIntegrate Hive with other data processing programsUse storage handlers for NoSQL databases and other datastoresLearn the pros and cons of running Hive on Amazon’s Elastic MapReduce [ad_2]
0 notes
Text
Mastering Data Transformation: Understanding Big Data Transformation Tools
In today's data-driven world, the ability to transform raw data into meaningful insights is paramount. This process, known as data transformation, is crucial for extracting value from vast amounts of information. Whether you're a data scientist, business analyst, or IT professional, understanding data transformation and the tools available is essential. In this blog, we'll delve into what data transformation entails, explore some of the leading big data transformation tools, and discuss their importance in modern analytics.
What is Data Transformation?
Data transformation involves converting data from one format or structure into another to prepare it for analysis, storage, or presentation. This process is fundamental as raw data often comes in disparate formats, lacks consistency, or requires aggregation before meaningful insights can be extracted. Key tasks in data transformation include:
Cleaning and Validation: Identifying and rectifying errors, inconsistencies, or missing values in the data.
Normalization: Ensuring data conforms to a standard format or structure.
Aggregation: Combining data from multiple sources into a single dataset for analysis.
Integration: Merging different datasets to create a comprehensive view.
Data transformation ensures that data is accurate, reliable, and ready for analysis, enabling organizations to make informed decisions based on trustworthy information.
Importance of Data Transformation
Effective data transformation is critical for several reasons:
Enhanced Data Quality: By cleaning and standardizing data, organizations can trust the accuracy of their analytics.
Improved Decision-Making: Transformed data provides insights that drive strategic decisions and operational improvements.
Operational Efficiency: Automation of transformation processes reduces manual effort and speeds up analysis.
Regulatory Compliance: Ensuring data meets regulatory requirements through proper transformation processes.
Big Data Transformation Tools
As data volumes continue to grow exponentially, traditional methods of data transformation struggle to keep pace. Big data transformation tools are designed to handle the complexities and scale of modern datasets efficiently. Let's explore some prominent tools in this space:
1. Apache Spark
Apache Spark is a powerful open-source framework for distributed data processing. It provides libraries for various tasks including SQL, machine learning, graph processing, and streaming. Spark's DataFrame API facilitates scalable data transformation operations such as filtering, aggregating, and joining datasets. Its in-memory processing capability makes it suitable for handling large-scale data transformation tasks with speed and efficiency.
2. Apache Hadoop
Apache Hadoop is another widely used framework for distributed storage and processing of large datasets. It includes components like HDFS (Hadoop Distributed File System) for storage and MapReduce for parallel processing of data. Hadoop ecosystem tools such as Apache Hive and Apache Pig enable data transformation tasks through high-level query languages (HiveQL and Pig Latin) that abstract complex processing tasks into simpler commands.
3. Talend
Talend is an open-source data integration platform that offers capabilities for data transformation, data integration, and data quality. It provides a graphical interface for designing data transformation workflows, making it accessible to users with varying technical backgrounds. Talend supports integration with various data sources and targets, including cloud-based solutions, making it a versatile choice for organizations looking to streamline their data transformation processes.
4. Informatica PowerCenter
Informatica PowerCenter is a leading enterprise data integration platform that includes robust data transformation capabilities. It supports both traditional on-premises and cloud-based data integration scenarios, offering features such as data profiling, cleansing, and transformation. PowerCenter's visual development environment allows developers to design complex data transformation workflows using a drag-and-drop interface, enhancing productivity and reducing time-to-insight.
5. Apache NiFi
Apache NiFi is an easy-to-use, powerful data integration and dataflow automation tool that excels in handling real-time data streams. It provides a visual interface for designing data pipelines and supports data transformation tasks through a variety of processors. NiFi's flow-based programming model allows for the creation of complex data transformation workflows with built-in support for scalability and fault tolerance.
Choosing the Right Tool
Selecting the right big data transformation tool depends on various factors such as:
Scalability: Ability to handle large volumes of data efficiently.
Ease of Use: Intuitive interfaces that streamline development and maintenance.
Integration Capabilities: Support for diverse data sources and destinations.
Performance: Processing speed and optimization for different types of transformations.
Organizations should evaluate their specific requirements and infrastructure considerations when choosing a tool that aligns with their data transformation needs.
Conclusion
In conclusion, data transformation is a cornerstone of modern analytics, enabling organizations to derive valuable insights from their data assets. Big data transformation tools play a crucial role in simplifying and scaling this process, allowing businesses to process large volumes of data efficiently and effectively. Whether leveraging Apache Spark's distributed computing power or Talend's intuitive interface, choosing the right tool is essential for maximizing the value of data transformation efforts. As data continues to grow in complexity and volume, investing in robust data transformation tools will be key to staying competitive in the digital era.
By mastering data transformation and harnessing the capabilities of big data transformation tools, organizations can unlock the full potential of their data assets and drive innovation across industries.
0 notes
Text
Top 30+ Spark Interview Questions
Apache Spark, the lightning-fast open-source computation platform, has become a cornerstone in big data technology. Developed by Matei Zaharia at UC Berkeley's AMPLab in 2009, Spark gained prominence within the Apache Foundation from 2014 onward. This article aims to equip you with the essential knowledge needed to succeed in Apache Spark interviews, covering key concepts, features, and critical questions.
Understanding Apache Spark: The Basics
Before delving into interview questions, let's revisit the fundamental features of Apache Spark:
1. Support for Multiple Programming Languages:
Java, Python, R, and Scala are the supported programming languages for writing Spark code.
High-level APIs in these languages facilitate seamless interaction with Spark.
2. Lazy Evaluation:
Spark employs lazy evaluation, delaying computation until absolutely necessary.
3. Machine Learning (MLlib):
MLlib, Spark's machine learning component, eliminates the need for separate engines for processing and machine learning.
4. Real-Time Computation:
Spark excels in real-time computation due to its in-memory cluster computing, minimizing latency.
5. Speed:
Up to 100 times faster than Hadoop MapReduce, Spark achieves this speed through controlled partitioning.
6. Hadoop Integration:
Smooth connectivity with Hadoop, acting as a potential replacement for MapReduce functions.
Top 30+ Interview Questions: Explained
Question 1: Key Features of Apache Spark
Apache Spark supports multiple programming languages, lazy evaluation, machine learning, multiple format support, real-time computation, speed, and seamless Hadoop integration.
Question 2: Advantages Over Hadoop MapReduce
Enhanced speed, multitasking, reduced disk-dependency, and support for iterative computation.
Question 3: Resilient Distributed Dataset (RDD)
RDD is a fault-tolerant collection of operational elements distributed and immutable in memory.
Question 4: Functions of Spark Core
Spark Core acts as the base engine for large-scale parallel and distributed data processing, including job distribution, monitoring, and memory management.
Question 5: Components of Spark Ecosystem
Spark Ecosystem comprises GraphX, MLlib, Spark Core, Spark Streaming, and Spark SQL.
Question 6: API for Implementing Graphs in Spark
GraphX is the API for implementing graphs and graph-parallel computing in Spark.
Question 7: Implementing SQL in Spark
Spark SQL modules integrate relational processing with Spark's functional programming API, supporting SQL and HiveQL.
Question 8: Parquet File
Parquet is a columnar format supporting read and write operations in Spark SQL.
Question 9: Using Spark with Hadoop
Spark can run on top of HDFS, leveraging Hadoop's distributed replicated storage for batch and real-time processing.
Question 10: Cluster Managers in Spark
Apache Mesos, Standalone, and YARN are cluster managers in Spark.
Question 11: Using Spark with Cassandra Databases
Spark Cassandra Connector allows Spark to access and analyze data in Cassandra databases.
Question 12: Worker Node
A worker node is a node capable of running code in a cluster, assigned tasks by the master node.
Question 13: Sparse Vector in Spark
A sparse vector stores non-zero entries using parallel arrays for indices and values.
Question 14: Connecting Spark with Apache Mesos
Configure Spark to connect with Mesos, place the Spark binary package in an accessible location, and set the appropriate configuration.
Question 15: Minimizing Data Transfers in Spark
Minimize data transfers by avoiding shuffles, using accumulators, and broadcast variables.
Question 16: Broadcast Variables in Spark
Broadcast variables store read-only cached versions of variables on each machine, reducing the need for shipping copies with tasks.
Question 17: DStream in Spark
DStream, or Discretized Stream, is the basic abstraction in Spark Streaming, representing a continuous stream of data.
Question 18: Checkpoints in Spark
Checkpoints in Spark allow programs to run continuously and recover from failures unrelated to application logic.
Question 19: Levels of Persistence in Spark
Spark offers various persistence levels for storing RDDs on disk, memory, or a combination of both.
Question 20: Limitations of Apache Spark
Limitations include the lack of a built-in file management system, higher latency, and no support for true real-time data stream processing.
Question 21: Defining Apache Spark
Apache Spark is an easy-to-use, highly flexible, and fast processing framework supporting cyclic data flow and in-memory computing.
Question 22: Purpose of Spark Engine
The Spark Engine schedules, monitors, and distributes data applications across the cluster.
Question 23: Partitions in Apache Spark
Partitions in Apache Spark split data logically for more efficient and smaller divisions, aiding in faster data processing.
Question 24: Operations of RDD
RDD operations include transformations and actions.
Question 25: Transformations in Spark
Transformations are functions applied to RDDs, creating new RDDs. Examples include Map() and filter().
Question 26: Map() Function
The Map() function repeats over every line in an RDD, splitting them into a new RDD.
Question 27: Filter() Function
The filter() function creates a new RDD by selecting elements from an existing RDD based on a specified function.
Question 28: Actions in Spark
Actions bring back data from an RDD to the local machine, including functions like reduce() and take().
Question 29: Difference Between reduce() and take()
reduce() repeatedly applies a function until only one value is left, while take() retrieves all values from an RDD to the local node.
Question 30: Coalesce() and Repartition() in MapReduce
Coalesce() and repartition() modify the number of partitions in an RDD, with Coalesce() being part of repartition().
Question 31: YARN in Spark
YARN acts as a central resource management platform, providing scalable operations across the cluster.
Question 32: PageRank in Spark
PageRank in Spark is an algorithm in GraphX measuring the importance of each vertex in a graph.
Question 33: Sliding Window in Spark
A Sliding Window in Spark specifies each batch of Spark streaming to be processed, setting batch intervals and processing several batches.
Question 34: Benefits of Sliding Window Operations
Sliding Window operations control data packet transfer, combine RDDs within a specific window, and support windowed computations.
Question 35: RDD Lineage
RDD Lineage is the process of reconstructing lost data partitions, aiding in data recovery.
Question 36: Spark Driver
Spark Driver is the program running on the master node, declaring transformations and actions on data RDDs.
Question 37: Supported File Systems in Spark
Spark supports Amazon S3, HDFS, and Local File System as file systems.
If you like to read more about it please visit
https://analyticsjobs.in/question/what-is-apache-spark/
0 notes
Text
Hive Bigdata
Hive is a data warehousing tool in the Hadoop ecosystem for processing structured data. It’s designed to simplify and manage large datasets residing in distributed storage. Hive makes querying and analyzing easy, allowing traditional map-reduce programmers to plug in their custom mappers and reducers.
Here’s a brief overview of some key features and aspects of Hive in the context of big data:
SQL-like Language: Hive uses HiveQL (HQL), a language similar to SQL, which makes it easy for those familiar with SQL to query big data.
Storage and Processing: It stores data in the Hadoop Distributed File System (HDFS) and offers ways to query that data. Hive abstracts the complexity of Hadoop, allowing for data summarization, query, and analysis.
Schema on Read: Hive reads data from a database and applies a schema when reading the data.
Compatibility with Hadoop: As part of the Hadoop ecosystem, Hive can process structured data in Hadoop files.
Use Cases: Commonly used for data warehousing tasks like data analysis, large-scale data mining, log processing, and business intelligence.
Extensibility: It supports custom User Defined Functions (UDFs) for tasks like data cleansing, filtering, and complex calculations.
Performance: While Hive provides a convenient SQL interface, it’s sometimes slower than traditional databases, especially for low-latency queries, due to its reliance on MapReduce for data processing.
Community and Ecosystem: Hive is an Apache open-source project with a large community. It integrates well with other technologies in the Hadoop ecosystem.
Remember, Hive is especially beneficial in scenarios where the data warehousing approach and SQL-like querying are needed on top of extensive data systems like Hadoop. However, other tools might be more suitable for real-time processing and analysis.
Hadoop Training Demo Day 1 Video:
youtube
You can find more information about Hadoop Training in this Hadoop Docs Link
Conclusion:
Unogeeks is the №1 IT Training Institute for Hadoop Training. Anyone Disagree? Please drop in a comment
You can check out our other latest blogs on Hadoop Training here — Hadoop Blogs
Please check out our Best In Class Hadoop Training Details here — Hadoop Training
S.W.ORG
— — — — — — — — — — — -
For Training inquiries:
Call/Whatsapp: +91 73960 33555
Mail us at: [email protected]
Our Website ➜ https://unogeeks.com
Follow us:
Instagram: https://www.instagram.com/unogeeks
Facebook: https://www.facebook.com/UnogeeksSoftwareTrainingInstitute
Twitter: https://twitter.com/unogeeks
#unogeeks #training #ittraining #unogeekstraining
0 notes
Text
The Ultimate Guide to Becoming an Azure Data Engineer

The Azure Data Engineer plays a critical role in today's data-driven business environment, where the amount of data produced is constantly increasing. These professionals are responsible for creating, managing, and optimizing the complex data infrastructure that organizations rely on. To embark on this career path successfully, you'll need to acquire a diverse set of skills. In this comprehensive guide, we'll provide you with an extensive roadmap to becoming an Azure Data Engineer.
1. Cloud Computing
Understanding cloud computing concepts is the first step on your journey to becoming an Azure Data Engineer. Start by exploring the definition of cloud computing, its advantages, and disadvantages. Delve into Azure's cloud computing services and grasp the importance of securing data in the cloud.
2. Programming Skills
To build efficient data processing pipelines and handle large datasets, you must acquire programming skills. While Python is highly recommended, you can also consider languages like Scala or Java. Here's what you should focus on:
Basic Python Skills: Begin with the basics, including Python's syntax, data types, loops, conditionals, and functions.
NumPy and Pandas: Explore NumPy for numerical computing and Pandas for data manipulation and analysis with tabular data.
Python Libraries for ETL and Data Analysis: Understand tools like Apache Airflow, PySpark, and SQLAlchemy for ETL pipelines and data analysis tasks.
3. Data Warehousing
Data warehousing is a cornerstone of data engineering. You should have a strong grasp of concepts like star and snowflake schemas, data loading into warehouses, partition management, and query optimization.
4. Data Modeling
Data modeling is the process of designing logical and physical data models for systems. To excel in this area:
Conceptual Modeling: Learn about entity-relationship diagrams and data dictionaries.
Logical Modeling: Explore concepts like normalization, denormalization, and object-oriented data modeling.
Physical Modeling: Understand how to implement data models in database management systems, including indexing and partitioning.
5. SQL Mastery
As an Azure Data Engineer, you'll work extensively with large datasets, necessitating a deep understanding of SQL.
SQL Basics: Start with an introduction to SQL, its uses, basic syntax, creating tables, and inserting and updating data.
Advanced SQL Concepts: Dive into advanced topics like joins, subqueries, aggregate functions, and indexing for query optimization.
SQL and Data Modeling: Comprehend data modeling principles, including normalization, indexing, and referential integrity.
6. Big Data Technologies
Familiarity with Big Data technologies is a must for handling and processing massive datasets.
Introduction to Big Data: Understand the definition and characteristics of big data.
Hadoop and Spark: Explore the architectures, components, and features of Hadoop and Spark. Master concepts like HDFS, MapReduce, RDDs, Spark SQL, and Spark Streaming.
Apache Hive: Learn about Hive, its HiveQL language for querying data, and the Hive Metastore.
Data Serialization and Deserialization: Grasp the concept of serialization and deserialization (SerDe) for working with data in Hive.
7. ETL (Extract, Transform, Load)
ETL is at the core of data engineering. You'll need to work with ETL tools like Azure Data Factory and write custom code for data extraction and transformation.
8. Azure Services
Azure offers a multitude of services crucial for Azure Data Engineers.
Azure Data Factory: Create data pipelines and master scheduling and monitoring.
Azure Synapse Analytics: Build data warehouses and marts, and use Synapse Studio for data exploration and analysis.
Azure Databricks: Create Spark clusters for data processing and machine learning, and utilize notebooks for data exploration.
Azure Analysis Services: Develop and deploy analytical models, integrating them with other Azure services.
Azure Stream Analytics: Process real-time data streams effectively.
Azure Data Lake Storage: Learn how to work with data lakes in Azure.
9. Data Analytics and Visualization Tools
Experience with data analytics and visualization tools like Power BI or Tableau is essential for creating engaging dashboards and reports that help stakeholders make data-driven decisions.
10. Interpersonal Skills
Interpersonal skills, including communication, problem-solving, and project management, are equally critical for success as an Azure Data Engineer. Collaboration with stakeholders and effective project management will be central to your role.
Conclusion
In conclusion, becoming an Azure Data Engineer requires a robust foundation in a wide range of skills, including SQL, data modeling, data warehousing, ETL, Azure services, programming, Big Data technologies, and communication skills. By mastering these areas, you'll be well-equipped to navigate the evolving data engineering landscape and contribute significantly to your organization's data-driven success.
Ready to Begin Your Journey as a Data Engineer?
If you're eager to dive into the world of data engineering and become a proficient Azure Data Engineer, there's no better time to start than now. To accelerate your learning and gain hands-on experience with the latest tools and technologies, we recommend enrolling in courses at Datavalley.
Why choose Datavalley?
At Datavalley, we are committed to equipping aspiring data engineers with the skills and knowledge needed to excel in this dynamic field. Our courses are designed by industry experts and instructors who bring real-world experience to the classroom. Here's what you can expect when you choose Datavalley:
Comprehensive Curriculum: Our courses cover everything from Python, SQL fundamentals to Snowflake advanced data engineering, cloud computing, Azure cloud services, ETL, Big Data foundations, Azure Services for DevOps, and DevOps tools.
Hands-On Learning: Our courses include practical exercises, projects, and labs that allow you to apply what you've learned in a real-world context.
Multiple Experts for Each Course: Modules are taught by multiple experts to provide you with a diverse understanding of the subject matter as well as the insights and industrial experiences that they have gained.
Flexible Learning Options: We provide flexible learning options to learn courses online to accommodate your schedule and preferences.
Project-Ready, Not Just Job-Ready: Our program prepares you to start working and carry out projects with confidence.
Certification: Upon completing our courses, you'll receive a certification that validates your skills and can boost your career prospects.
On-call Project Assistance After Landing Your Dream Job: Our experts will help you excel in your new role with up to 3 months of on-call project support.
The world of data engineering is waiting for talented individuals like you to make an impact. Whether you're looking to kickstart your career or advance in your current role, Datavalley's Data Engineer Masters Program can help you achieve your goals.
#datavalley#dataexperts#data engineering#dataexcellence#data engineering course#online data engineering course#data engineering training
0 notes
Link
0 notes
Text
Hadoop Ecosystem: A Comprehensive Overview
The technological advancements and the increasing use of smart devices in recent years have contributed to a data revolution. The quantum of existing data (business or personal) is growing at a relentless pace overwhelming every known computational mechanism or tool. To deal with this humongous data processing requirement, we need a robust solution. This is where the software platform Hadoop comes into the picture.
What Is Hadoop
Hadoop is an open-source software platform that stores a huge amount of data and runs multiple applications on various commodity software. It possesses a massive computational power, vast data storage facility, and the ability to handle various virtually unlimited tasks.

Its core aim is to support the expanding technologies such as Big Data, Data Mining, Machine Learning, and Predictive Analytics. It has the capability to handle several modes/types of data including structured, semi-structured, and unstructured. Thus, Hadoop offers the flexibility to collect, process, and finally, analyze data that the old data warehouses failed to do.
Overview of Hadoop Ecosystem
The Hadoop ecosystem comprises numerous components, which can be learnt in all their dimensions should one enrol in any reputed Hadoop training institute in Kolkata.
Some of the components are as follow:
HDFS
Hadoop Distributed File System or HDFS is a storage system that operates on a Java-based programming language. This is used as the main storage device in Hadoop applications. HDFS has two primary components: Namenode and Datanode. These applications store a massive amount of data across several nodes in the Hadoop cluster.
Pig
Pig or PigLatin is a high-level procedural language, which is recommended for processing a huge quantum of semi-structured data. Pig performs as an alternative language to Java for MapReduce and thereby automatically generates MapReduce functions. Here, programmers can create various customized functions.
It comes in handy when developers are not familiar with high-level languages like Java. Nevertheless, one ought to have a strong scripting knowledge to excel in Pig language. That’s why you may enrol in any reputed Hadoop training institute in Kolkata to acquire the much-preferred scripting knowledge.
Hive
Hive is an open-source software for performing data query and analysis. It has three major functions: data summarization, query, and analysis. Hive uses HiveQL (HQL) language, which is akin to SQL. This language translates the SQL queries into MapReduce jobs. Hive has three main components: Metastore, Driver, and Compiler.
HBase
This is a type of NoSQL database. It offers a distributed and scalable database service. It has two major components including HBase Master and Regional Server.
The HBase Master performs some administration activities like offering an interface for creating, updating, and deleting tables. On the other hand, the Regional Server is a worker node that can read, write, and delete requests from the clients.
Conclusion
Every component of Hadoop has unique functions. To become an expert in Hadoop, you better learn these components and practice well. You may apply for Hadoop spark training from Samavetah Softteq Solutions - one of the leading software training institutes in Kolkata. To know more about the training programme, call 033 23342233 / 033 35522366 / 9836582751 or drop a mail at [email protected].
1 note
·
View note
Text
Managing User Permissions (GRANT, REVOKE) in HiveQL
Complete Guide to Managing User Permissions in HiveQL Using GRANT and REVOKE Commands Hello, fellow HiveQL enthusiasts! In this blog post, I will introduce you to Managing User Permissions in HiveQL – one of the most crucial and practical aspects of HiveQL: managing user permissions. Proper permission control is essential for securing your Hive database and ensuring only authorized users can…
0 notes
Text
The Most Popular Big Data Frameworks in 2023

Big data is the vast amount of information produced by digital devices, social media platforms, and various other internet-based sources that are part of our daily lives. Utilizing the latest techniques and technology, huge data can be used to find subtle patterns, trends, and connections to help improve processing, make better decisions, and predict the future, ultimately improving the quality of life of people, companies, and society all around.
As more and more data is generated and analyzed, it is becoming increasingly hard for researchers and companies to get insights into their data quickly. Therefore, Big Data frameworks are becoming ever more crucial. In this piece, we’ll examine the most well-known big data frameworks- Apache Storm, Apache Spark, Presto, and others – which are increasingly sought-after for Big Data analytics.
What are Big Data Frameworks?
Big data frameworks are a set of tools that make it simpler to handle large amounts of information. Big data framework is made to handle extensive data efficiently and quickly, and be safe. The frameworks that deal with big data are generally open source are big data frameworks. This means they’re available for free, with the possibility of obtaining the support you require.
Big Data is about collecting, processing, and analyzing Exabytes of data and petabyte-sized sets. Big Data concerns the amount of data, the speed, and the variety of data. Big Data is about the capability to analyze and process data at speeds and in a way that was impossible before that.
Hadoop
Apache Hadoop is an open-source big data framework that can store and process huge quantities of data. Written in Java and is suitable to process streams, batch processing, and real-time analytics.
Apache Hadoop is home to several programs that allow you to deal with huge amounts of data within just one computer or multiple machines via networks in an approach that the programs don’t know they’re distributed over multiple computers.
One of the major strengths of Hadoop is its ability to manage huge volumes of information. Based upon a distributed computing model, Hadoop breaks down large data sets into smaller pieces processed by a parallel process across a set of nodes. This method helps achieve the highest level of fault tolerance and faster processing speed, making it the ideal choice for managing Big Data workloads.
Spark
Apache Spark can be described as a powerful and universal engine to process large amounts of data. It has high-level APIs in Java, Scala, and Python, as well as R (a statically-oriented programming language), and, therefore, developers of any level can utilize the APIs. Spark is commonly utilized in production environments for processing data from several sources, such as HDFS (Hadoop Distributed File System) as well as another system for file storage, Cassandra database, Amazon S3 storage service (which also provides web services for the storage of data over the Internet) in addition to as web services that are external to the Internet including Google’s Datastore.
The main benefit of Spark is the capacity to process information at a phenomenal speed which is made possible through its features for processing in memory. It significantly cuts down on I/O processing, making it ideal for extensive data analyses. Furthermore, Spark offers considerable flexibility in allowing for a wide range of operations in data processing, like streaming, batch processing, and graph processing, using its integrated libraries.
Hive
Apache Hive is an open-source big data framework software allowing users to access and modify large data sets. It’s a big data framework built upon Hadoop, which allows users to create SQL queries and use different languages such as HiveQL and Pig Latin (a scripting language ). Apache Hive is part of the Hadoop ecosystem. You require an installation of Apache Hadoop before installing Hive.
Apache Hive’s advantage is managing petabytes of data effectively by using Hadoop Distributed File System (HDFS) to store data and Apache Tez or MapReduce for processing.
Elasticsearch
Elasticsearch is a fully-managed open-source, distributed column-oriented analytics and big data framework. Elasticsearch is used for search (elastic search), real-time analytics (Kibana), log storage/analytics/visualization (Logstash), centralized server logging aggregation (Logstash Winlogbeat), and data indexing.
Elasticsearch consulting may be utilized to analyze large amounts of data as it’s highly scalable and resilient and has an open architecture that allows using more than one node on various servers or possibly cloud servers. It has an HTTP interface that includes JSON support, allowing easy integration with other apps using common APIs, such as RESTful calls and Java Spring Data JPA annotations for domain classes.
MongoDB
MongoDB is a NoSQL database. It holds data in JSON-like formats, so there’s no requirement to establish schemas before creating your app. MongoDB is a free-of-cost open source available for on-premises use and as a cloud-based solution (MongoDB Atlas ).
MongoDB as a big data framework can serve numerous purposes: from logs to analysis and from ETL to machine learning (ML). The database can hold millions of documents and not worry about performance issues due to its horizontal scaling mechanism and efficient management of memory. Additionally, it is easy for developers of software who wish to concentrate on developing their apps instead of having to think about designing data models and tuning the systems behind them; MongoDB offers high availability using replica sets, a cluster model that lets multiple nodes duplicate their data automatically, or manually establishing clusters that have auto failover when one fails.
MapReduce
MapReduce is a big data framework that can process large data sets within a group. It was built to be fault-tolerant and spread the workload across the machines.
MapReduce is an application that is batch-oriented. This means it can process massive quantities of data and produce results within a relatively short duration.
MapReduce’s main strength is its capacity to divide massive data processing tasks over several nodes, which allows it to run parallel tasks and dramatically improves efficiency.
Samza
Samza is the name of a big data framework for stream processing. It utilizes Apache Kafka as the underlying messages bus and data store and is run on YARN. The Samza development is run by Apache, which means that it’s freely available and open to download, make use of, modify, and distribute in accordance with the Apache License version 2.0.
An example of how this is implemented in real life is how a user looking to handle a stream of messages could write the application in any programming software they want to use (Java or Python is currently supported). The application runs in a container located on at least one worker node, which is part of the Samza-Samza cluster. They form an internal pipeline that processes all messages coming from Kafka areas in conjunction with similar pipelines. Every message is received by the workers responsible for processing it before it is sent out to Kafka, another location in the system, or out of it, if needed, to accommodate the growing demands.
Flink
Flink is an another big data framework for processing data streams. It’s also a hybrid big-data processor. Flink can perform real-time analysis ETL, batch, or real-time processing.
Flink’s architecture is designed for stream processing and interactive queries for large data sets. Flink allows events and processing metadata for data streams, allowing it to manage real-time analytics and historical analysis on the same cluster using the identical API. Flink is especially well-suited to applications that require real-time data processing, like financial transactions, anomaly detection, and applications based on events that are part of IoT ecosystems. Additionally, its machine-learning and graph processing capabilities make Flink a flexible option for decision-making based on data within various sectors.
Heron
Heron is an another big data framework for distributed stream processing that is utilized to process real-time data. It can be utilized to build low-latency applications such as microservices and IoT devices. Heron can be written using C++. It offers a high-level programming big data framework to write streams processing software distributed across Apache YARN, Apache Mesos, and Kubernetes in a tightly integrated way to Kafka or Flume for the communication layer.
Heron’s greatest strength lies in its ability to offer the highest level of fault tolerance and excellent performance for large-scale data processing. The software is developed to surpass the weaknesses of Apache Storm, its predecessor Apache Storm, by introducing an entirely new scheduling model and a backpressure system. This allows Heron to ensure high performance and low latency. This makes Heron ideal for companies working with huge data collections.
Kudu
Kudu is a columnar data storage engine designed for the analysis of work. Kudu is the newest youngster on the block, yet it’s already taking the hearts of data scientists and developers. Data scientists, thanks to their capacity to combine the best features of relational databases and NoSQL databases in one.
Kudu is a also a big data framework combining relational databases (strict ACID compliance) advantages with NoSQL databases (scalability and speed). Additionally, it comes with several benefits. It comes with native support for streaming analytics. This means you can use your SQL abilities to analyze stream data in real time. It also supports JSON data storage and columnar storage for improved performance of queries by keeping related data values.
Conclusion
The emerging field of Big Data is a sector of research that takes the concept of large information sets and combines the data using hardware-based architectures of super-fast parallel processors, storage software and hardware APIs, and open-source software stacks. It’s a thrilling moment to become an expert in data science. It’s not just that greater tools are available than before within the Big Data ecosystem. Still, they’re also becoming stronger, more user-friendly to work with, and more affordable to manage. That means companies will gain more value from their data and not have to shell out as much for infrastructure.
FunctionUp’s data science online course is exhaustive and a door to take a big leap in mastering data science. The skills and learning by working on multiple real-time projects will simulate and examine your knowledge and will set your way ahead.
Learn more-
Do you know how data science can be used in business to increase efficiency? Read now.
0 notes
Text
Hive vs Pig | Difference Between Hive And Pig | Pig vs Hive | Hive And Pig In Hadoop
A comparison between Apache Hive vs Apache Pig is shown in this brief movie. There will be comparisons of why Hive and Pig, what Hive and Pig are, HiveQL and Pig Latin, data models, execution modes, features, and commands. Apache MapReduce is mostly based on Java code, however Hive and Pig were developed to facilitate data processing. Hive and Pig use SQL-like queries, which makes data processing and analysis much easier than using MapReduce.
youtube
0 notes
Text
Hive Hadoop
Hive and Hadoop are essential components in big data and data analytics. Here’s an overview:
Hadoop: Hadoop is an open-source framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale from single servers to thousands of machines, each offering local computation and storage. The key components of Hadoop include:
Hadoop Distributed File System (HDFS): A distributed file system that provides high-throughput access to application data.
Hadoop YARN: A framework for job scheduling and cluster resource management.
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.
Hive: Hive is a data warehouse software project built on top of Hadoop to provide data querying and analysis. Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop, including the HDFS, Apache HBase, and Amazon S3 filesystems. It is used for:
Data summarization, query, and analysis: Hive provides tools for easy data summarization, ad-hoc query, and analysis of large datasets stored in Hadoop-compatible file systems.
HiveQL: Hive defines a simple SQL-like query language, HiveQL, which can be used to query, summarize, explore, and analyze data. Under the hood, HiveQL queries are converted into a series of MapReduce, Tez, or Spark jobs for execution on Hadoop.
Both Hive and Hadoop are essential for handling big data, especially for large-scale data processing and analysis tasks. They are widely used in industries that handle large volumes of data, such as e-commerce, finance, telecommunications, and more. Their scalability and efficiency make them ideal for businesses leveraging data for strategic decision-making.
Hadoop Training Demo Day 1 Video:
youtube
You can find more information about Hadoop Training in this Hadoop Docs Link
Conclusion:
Unogeeks is the №1 IT Training Institute for Hadoop Training. Anyone Disagree? Please drop in a comment
You can check out our other latest blogs on Hadoop Training here — Hadoop Blogs
Please check out our Best In Class Hadoop Training Details here — Hadoop Training
S.W.ORG
— — — — — — — — — — — -
For Training inquiries:
Call/Whatsapp: +91 73960 33555
Mail us at: [email protected]
Our Website ➜ https://unogeeks.com
Follow us:
Instagram: https://www.instagram.com/unogeeks
Facebook: https://www.facebook.com/UnogeeksSoftwareTrainingInstitute
Twitter: https://twitter.com/unogeeks
#unogeeks #training #ittraining #unogeekstraining
0 notes
Link
0 notes
Text
Sr Data Engineer - Big Data - Chennai Job For 6-11 Year Exp In 2COMS Consulting Private Limited Bengaluru / Bangalore - 3844311
Sr Data Engineer – Big Data – Chennai Job For 6-11 Year Exp In 2COMS Consulting Private Limited Bengaluru / Bangalore – 3844311
job description big data engineer in gurgaon 2-5 Years of experience in Bigdata • Hands-on experience on Python or Java •Hands-on experience on HiveQL or SparkQL • Experience on Agile skills Java, Python, Big Data, Spark, hive qualification B.E/B Gurgaon / Gurugram 3 – 5 Years Apply for the job now! #Data #Engineer #Big #Data #Chennai #Job #Year #Exp #2COMS #Consulting #Private #Limited…
View On WordPress
0 notes