#poseestimation
Explore tagged Tumblr posts
Text

Data Annotation Services for Swimming Athlete Detection
Wisepl don’t just annotate data — we decode performance. In the fast-paced world of competitive sports, milliseconds matter. That’s why our specialized Data Annotation Services for Swimming Athlete Detection are built to deliver high-accuracy labeling, enabling AI systems to track, analyze, and enhance swimmer performance like never before.
Whether you're building a smart coaching app, training an AI model for underwater analytics, or tracking motion patterns frame-by-frame — we bring exceptional precision, domain-trained annotators, and tailor-made solutions that fit your vision.
Expertise in sports-specific annotation workflows
Advanced techniques for underwater and in-pool movement tracking
100% manual annotations – no auto-labeling shortcuts
Rapid turnaround times with scalable workforce
Trusted by research institutes, sports tech startups & AI labs globally
NDAs, data privacy & QC protocols for every project
Let us transform your raw footage into actionable AI data. Partner with Wisepl - a Place to Learn and Label with Intelligence.
Get in touch with us : [email protected]
#SwimmingAI#DataAnnotationExperts#SportsAnalytics#AthleteDetection#AIForSports#SmartSwimming#AnnotationServices#Wisepl#ComputerVision#PoseEstimation#UnderwaterTracking#SportsTech#AITrainingData#DataLabeling#SwimmerTracking#AIAnnotationServices#DeepLearningData#MLAnnotation#CustomAnnotations
0 notes
Photo

via @PINTO03091
CPU only + OpenVINO による Multi-Person 3D PoseEstimation の味見Qiita記事書きました。 正直言って、だれでもすぐ出来ますのでお試しあれ。 いつもどおり、 Intel の公式チュートリアルには何も書かれていませんでしたので多少検証に時間を掛けています。https://t.co/9gzzrVBJYm
— Super PINTO (@PINTO03091) March 21, 2020
0 notes
Photo
ofxWrnchAI: addon for fast & stable pose estimation software, wrnchAI #openframeworks #poseestimation #wrnchAI https://t.co/kwTNYUrQrx https://t.co/kTeBgP5rIh http://twitter.com/Akira_At_Asia/status/1179974703865159682
0 notes
Text
Improving Posture with Depth Camera
Using Microsoft Kinect which has a build in depth camera, researchers from the university of Hong Kong has developed a more accurate way of detecting posture. They use classify behavior, kinematics, colour and depth as reliability terms to produce more accurate detection. The application has potential uses in smart offices, laborious work environments and hospitals.
Researchers from the University of Hong Kong are developing a framework for human activity monitoring that uses depth cameras (Microsoft Kinect) to determine 3D posture. New concepts that are introduced in this paper are a set of reliability measurements use to produce increasingly more accurate joint detection. The reliability terms used include behavior, kinematics, colour and depth. 2D analysis techniques used in the past lacks sufficient information and motion capture techniques required extensive set up. This new framework produces more reliable results through machine learning algorithms that combining depth information, context of the activity, and available background knowledge of possible range of motion. The results are surprisingly accurate and can identify differences in posture that are imperceivable to the untrained human eye in seconds. Real-world applications of this technique could increase postural health in smart offices, reduce repetitive stress injuries for the workforce and aid in early detection of several musculoskeletal diseases. This framework can be applied to detecting mistakes in athletic form and provide valuable analysis of how injuries can occur. A cross discipline approach with the field of kinesiology and sports medicine could yield greater understanding of the human body.
Ho, Edmond S.L., et al. “Improving Posture Classification Accuracy for Depth Sensor-Based Human Activity Monitoring in Smart Environments.” Computer Vision and Image Understanding, vol. 148, July 2016, pp. 97–110, doi:10.1016/j.cviu.2015.12.011.
0 notes
Text

Unlock the Power of Visual Data with our Keypoint Annotation Service! 🚀
Accurate and Efficient AI-powered Keypoint Annotation for your Images and Videos. Enhance Object Detection, Pose Estimation, and Gesture Recognition models with our expertly curated annotations. Get precise and reliable results for your computer vision projects. Try our KeyPoint Annotation Service today!
#machinelearning#imageannotation#artificialintelligence#datalabeling#dataannotation#lowcostannotation#ai#india#wisepl#keypointannotation#skeletonannotation#pointannotation#poseestimation#datasetannotation#annotationsupplier
0 notes
Photo

Pose Estimation Labeling Services
Are you looking for a reliable and efficient solution for your pose estimation labeling needs? Look no further! At Wisepl, we offer top-notch pose estimation labeling services that are tailored to meet the specific requirements of your business. Our team of experts is equipped with the latest technologies and tools to provide you with accurate and high-quality labeling services
#computervision#dataannotation#poseestimation#objectdetection#datalabeling#machinelearning#wisepl#ai#artificialintelligence#imageannotation#lowcostannotation#boundingboxannotation#bestannotationservice#annotationpartners
0 notes
Photo

via @PINTO03091
3D PoseEstimation+OpenVINO+Corei7 CPU only+720p USB Camera [推論スピード 18 FPS相当] yukihiko-chan には勝てません。 が、CPU onlyかつHD 画質でこのパフォーマンスが出ます。 録画とUI表示にパフォーマンスを持って行かれています。 3Dモデリングはきついと思います。https://t.co/rvZC00Olrl
— Super PINTO (@PINTO03091) March 21, 2020
0 notes
Photo

via @DeepMotionInc
Watch our AR Digital Avatar perform jumping motions in #RealTime! #ComputerVision #AR #PoseEstimationhttps://t.co/Mt2Ga4aB5C pic.twitter.com/rckAcnJ0wT
— DeepMotion (@DeepMotionInc) July 18, 2019
0 notes
Photo

via @yukihiko_a
3Dの姿勢推定でUnityちゃんを動かしてみました。動画を再生しながらのRealTimeでの推定です。pytorchのモデルをonnxにしてUnityで実装しています。顔の向きがまだ適当ですがそれっぽく動いているようです。 #poseestimation 動画:ミソジサラリーマン様(@keriwaza) pic.twitter.com/pmjVCRXL1r
— Yukihiko Aoyagi (@yukihiko_a) April 29, 2019
0 notes
Photo

via @foka22ok
画像系機械学習のリアルタイム連携はTouchDesignerでもできる。 tf-pose estimationの動画を使わせてもらいましたが、webカメラでもこの速度で動かせる。#touchdesigner #poseestimation pic.twitter.com/dG8XfJaSCx
— foka (@foka22ok) February 13, 2019
0 notes
Photo

via @foka22ok
結構高速に画像系機械学習のリアルタイム連携方法がわかった気がする。 UnityのVFX Graphのテストも兼ねて、OpenPose的なポーズ推定(tf-pose estimation)をリアルタイムでやってみました。 動画の人物は同僚のK島氏です。#madewithunity #VisualEffectGraph #poseestimation pic.twitter.com/Y3CmmtKkB5
— foka (@foka22ok) February 13, 2019
0 notes