#Automation Using IOT
Explore tagged Tumblr posts
Text
Home Automation: Save Time, Energy, and Effort

Nowadays, optimizing basic things in daily life has become a must. Let us solve this problem together. With the ever-increasing accessibility of smart technology, automating different aspects of your home makes it convenient, safe, and eco-friendly. In this blog post, we’ll explain how Home Automation can enhance your life, the amazing tools it provides, and the steps towards automation in your house.
What is Home Automation?
Any smart device installed in a house that allows control of devices from a single interface through a smartphone or voice is known as Home Automation. Anything from smart controlled lighting, thermostats, security cameras, or voice assistants is included in the Home Automation System. You can also seamlessly streamline regular activities. Which enhances energy efficiency and making your residence safe through automation.
Examples of common Home Automation Systems include:
Smart thermostats that automatically adjust the temperature to preferred requirements.
Smart switches and LED lights that allow control of a home’s lights from a distance.
Home security systems that secure homes monitor them live and provide notifications.
Benefits of Home Automation
1. Time Savings
One of the biggest home benefits of home automation is saving time. With automation using IOT, we can control devices from anywhere and it saves time doing repetitive things. For instance, you can set the timer for your LED lights to switch on, at a particular time or you can warm the thermostat before arriving home so that it is proactively done. This way, you avoid being surprised.
People setting up schedules for remembering tasks such as watering their plants or turning on security systems have now all but eliminated the need to remember these things enabling them to be more productive in every aspect of their lives.
2. Reduction in Energy Usage
Home automation highly reduces energy wastage and being energy efficient is also an advantage of home automation. Programs embedded in smart thermostats can recognize preferred weather conditions and self-adjust, helping save energy when you are away. Smart switches and lights can be set up to automatically shut off when not needed, which aids in slashing electricity costs. One of how control over energy use is offered is through contributing to sustainability, which decreases your carbon footprint.
Moreover, through the use of automation of energy consumption, energy consumption tracking is enabled. This feature empowers homeowners to track their energy usage and adjust their consumption patterns to maximize efficiency.
3. Effort Reduction
Home automation takes away the hassle of performing many chores, such as switching on and off the lights, handling security, or using the entertainment systems. Just say it out loud or set up a time for it to be done and know that the tasks will be done with the help of machines.
While using security cameras, one can remotely monitor their property and even receive alerts to better protect their house.
Popular Home Automation Devices
When one wants to incorporate a home automation system in the house, the following devices are used widely:
LED Lighting – Smartly control brightness and colour, enhancing ambiance and energy efficiency.
Smart Chandeliers - Adjust brightness and schedules with a tap or voice command for a luxurious and enhanced lighting experience.
Advanced Fans – Control and operate, set schedules, and adjust speeds of fans with just one click enhancing comfort and energy savings.
Smart ACs - Easily maintain best temperatures with automated controls and remote access, reducing energy consumption.
Automatic Thermostats – Control the temperature of a room whether heating and cooling by knowing your preferences, improving efficiency and comfort.
Smart Curtains - Open or close with a voice command or app, provides comfort and convenience.
Smart Geysers - Get warm or cold water at any time with just a single command.
How to Get Started with Home Automation
We are on the verge of a generation that accepts technology with open arms. If you wish to welcome this technology to your home, here is how you can transform your home to be a smart home:
Assess Your Needs and Goals: It is crucial to establish what you wish to do with the electronics in your home. Are you looking to reduce energy consumption, improve security, or make life more convenient?
Choose Compatible Devices: Always consider compatibility before purchasing electronics. Many devices are made in such a way that they can be integrated making the setup quite maintenance-free.
Setup A Hub: A hub centralizes all of your devices and makes it easier to control everything via voice or an app. A hub should be an investment for anyone looking to have a functional Home Automation System.
Challenges of Home Automation
There is an obvious list of positive aspects that come as an advantage of having automation in a residential property. But there are some disadvantages and challenges too that come with having automation introduced in your home:
Initial Setup Costs: Installing an entirely automated home can cost a lot of money at the start but the savings over a long time justify the investment made at the start as there are savings in the energy bills.
A Learning Curve: If technology isn’t your strong point, then getting new devices integrated can be a hassle.
Security Risks: Security automation can be helpful, however, it can create weaknesses, and security management is crucial for the safe operation of computerized systems. Your computers and network equipment must be properly protected to limit any possible abuse.
Conclusion
Home Automation is important since it can help you better manage your time, energy, and effort. From lighting, temperature control, security, and more, there’s a substantial number of things to gain. Every Home Automation Project that you are contemplating will surely provide a great deal of comfort, savings, and added peace of mind all worth investing in.
While researching the Applications of Home Automation, always engage the Best Home Automation Company in India so that you can have an outstanding, dependable, safe, and efficient home system as per your requirements.
By using Home Automation, you can improve your lifestyle quality, cut down your carbon footprints, and enjoy life in a smarter and more integrated home environment.
What are you waiting for? Take that first step now and turn your house into a smart and automated oasis!
#Applications of Home Automation#Automation Using IOT#Benefits of Home Automation#Best Home Automation Company in India#Home Automation Projects#Home Automation System#smart home automation
0 notes
Text
Why IoT is Used in Home Automation?

The Foundation of a Smart Home
At its core, the Internet of Things (IoT) is a system of devices that are connected to the Internet and can exchange data with one another. In the context of smart homes, these devices include everything from thermostats and lighting systems to security cameras and kitchen appliances. The ability of these devices to communicate and operate in sync is what makes them “smart.”
This interconnectedness is the foundation of a home automation solution. By linking various devices, IoT enables homeowners to control and monitor their home environment from anywhere, at any time. Whether it’s adjusting the temperature, turning off the lights, or checking security footage, IoT provides the control and flexibility that traditional home systems simply cannot offer.
Convenience at Your Fingertips
One of the most significant benefits of IoT in Smart Homes is the convenience it brings to everyday life. With a centralized app or voice commands, homeowners can control multiple devices without having to operate each one manually. For example, you can set your lights to turn on as you approach your home, or your coffee maker to start brewing as soon as your alarm goes off.
This level of automation saves time and effort, allowing you to focus on more important tasks. Additionally, many home automation solutions allow for the creation of “scenes” or routines, where multiple actions are triggered simultaneously. For instance, a “Goodnight” scene could dim the lights, lower the thermostat, and lock the doors with a single command. The convenience of IoT extends to remote access as well. If you forget to turn off the lights or lock the doors, you can easily do so from your smartphone, no matter where you are.
Enhanced Security and Safety
Security is a top priority for any homeowner, and IoT plays a crucial role in enhancing the safety of smart homes. With connected security cameras, doorbell cameras, and smart locks, you can monitor your home in real time and receive alerts if anything unusual occurs. Many home automation solutions also include motion sensors and alarms that can detect potential intruders and notify you instantly.
Moreover, IoT allows for the integration of other safety devices, such as smoke detectors, carbon monoxide detectors, and water leak sensors. These devices can alert you to potential hazards before they escalate, giving you peace of mind knowing that your home is being monitored 24/7.
For families with children or elderly members, IoT offers additional safety features. For instance, smart sensors can detect when a door or window is left open, or when someone enters a restricted area, and send notifications to your phone. This ensures that you are always aware of what’s happening in your home, even when you’re not there.
Energy Efficiency and Cost Savings
Another compelling reason to use IoT in home automation is the potential for energy efficiency and cost savings. Smart thermostats, lighting systems, and appliances can be programmed to operate only when needed, reducing unnecessary energy consumption. For example, a smart thermostat can learn your schedule and adjust the temperature accordingly, ensuring that your home is comfortable when you’re there and saving energy when you’re not.
Similarly, smart lighting systems can detect when a room is empty and automatically turn off the lights, preventing wasted electricity. Some systems even allow you to monitor your energy usage in real-time, giving you insights into how you can further reduce your energy consumption.
By optimizing energy usage, IoT not only contributes to a more sustainable lifestyle but also helps reduce utility bills. Over time, the savings on energy costs can offset the initial investment in home automation solutions, making it a financially wise choice for homeowners.
Seamless Integration and Customization
One of the key advantages of IoT in Smart Homes is the ability to integrate various devices and systems into a single, cohesive network. This integration allows for seamless communication between devices, enabling them to work together to create a more comfortable and efficient living environment.
Moreover, home automation solutions are highly customizable, allowing homeowners to choose the devices and systems that best suit their needs. Whether you want a simple setup with a few smart lights and a thermostat, or a fully integrated system with security cameras, sensors, and automated appliances, IoT provides the flexibility to build the smart home of your dreams.
The Role of TechVault in Smart Home Automation
At TechVault, we understand the transformative power of IoT in Smart Homes. Our advanced home automation solutions are designed to enhance convenience, security, and energy efficiency, making your home smarter and your life easier. We offer a wide range of products and services that cater to your specific needs, ensuring that you get the most out of your smart home experience.
Whether you’re looking to upgrade your current home automation system or start from scratch, TechVault, Best Home Automation company in Noida has the expertise and technology to help you create a smart home that fits your lifestyle.
Conclusion
The integration of IoT in Smart Homes is not just a trend; it’s a fundamental shift in how we interact with our living spaces. By offering unparalleled convenience, enhanced security, energy efficiency, and seamless integration, IoT is revolutionizing the concept of home automation. As more homeowners embrace this technology, the future of smart homes looks brighter than ever.
With TechVault’s cutting-edge home automation solutions, you can experience the full benefits of IoT and transform your home into a smart, connected, and efficient living space.
Originally published at: https://techvault.co.in/blog/article/Why-IoT-is-Used-in-Home-Automation
Read more blogs:
Advantages of Voice Controlled Home Automation Products
Energy Efficiency with Smart Home Technology
How to Choose a Professional Home Theatre Speaker
#home automation#iot in home automation#internet of things#iot use in home automation#home automation system
0 notes
Video
youtube
IoT Home Automation - DHT11(T/H) - Air Quality Monitoring ESP32
#youtube#IoT Home Automation | Temperature Humidity & Air Quality Monitoring using ESP32 & Blynk 2.0 | IoT Home Automation - DHT11(T/H) - Air Quality
0 notes
Text
Deep Tech: Advancing Innovation


#deep tech#tech#deep technology#deep techno#deep techno mix#tech house#techno#Major Deep Tech Fields#Deep Tech: Advancing Innovation#Why do we need deep tech#Basic Use of Deep Tech#Importance of deep tech#Challenges of deep tech#Futures of deep tech#Artificial Intelligence (AI)#Robotics and automation#Biotechnology and Genetic Engineering#Nanotechnology#Internet of Things (IoT)
0 notes
Text
Real innovation vs Silicon Valley nonsense

This is the LAST DAY to get my bestselling solarpunk utopian novel THE LOST CAUSE (2023) as a $2.99, DRM-free ebook!
If there was any area where we needed a lot of "innovation," it's in climate tech. We've already blown through numerous points-of-no-return for a habitable Earth, and the pace is accelerating.
Silicon Valley claims to be the epicenter of American innovation, but what passes for innovation in Silicon Valley is some combination of nonsense, climate-wrecking tech, and climate-wrecking nonsense tech. Forget Jeff Hammerbacher's lament about "the best minds of my generation thinking about how to make people click ads." Today's best-paid, best-trained technologists are enlisted to making boobytrapped IoT gadgets:
https://pluralistic.net/2024/05/24/record-scratch/#autoenshittification
Planet-destroying cryptocurrency scams:
https://pluralistic.net/2024/02/15/your-new-first-name/#that-dagger-tho
NFT frauds:
https://pluralistic.net/2022/02/06/crypto-copyright-%f0%9f%a4%a1%f0%9f%92%a9/
Or planet-destroying AI frauds:
https://pluralistic.net/2024/01/29/pay-no-attention/#to-the-little-man-behind-the-curtain
If that was the best "innovation" the human race had to offer, we'd be fucking doomed.
But – as Ryan Cooper writes for The American Prospect – there's a far more dynamic, consequential, useful and exciting innovation revolution underway, thanks to muscular public spending on climate tech:
https://prospect.org/environment/2024-05-30-green-energy-revolution-real-innovation/
The green energy revolution – funded by the Bipartisan Infrastructure Act, the Inflation Reduction Act, the CHIPS Act and the Science Act – is accomplishing amazing feats, which are barely registering amid the clamor of AI nonsense and other hype. I did an interview a while ago about my climate novel The Lost Cause and the interviewer wanted to know what role AI would play in resolving the climate emergency. I was momentarily speechless, then I said, "Well, I guess maybe all the energy used to train and operate models could make it much worse? What role do you think it could play?" The interviewer had no answer.
Here's brief tour of the revolution:
2023 saw 32GW of new solar energy come online in the USA (up 50% from 2022);
Wind increased from 118GW to 141GW;
Grid-scale batteries doubled in 2023 and will double again in 2024;
EV sales increased from 20,000 to 90,000/month.
https://www.whitehouse.gov/briefing-room/blog/2023/12/19/building-a-thriving-clean-energy-economy-in-2023-and-beyond/
The cost of clean energy is plummeting, and that's triggering other areas of innovation, like using "hot rocks" to replace fossil fuel heat (25% of overall US energy consumption):
https://rondo.com/products
Increasing our access to cheap, clean energy will require a lot of materials, and material production is very carbon intensive. Luckily, the existing supply of cheap, clean energy is fueling "green steel" production experiments:
https://www.wdam.com/2024/03/25/americas-1st-green-steel-plant-coming-perry-county-1b-federal-investment/
Cheap, clean energy also makes it possible to recover valuable minerals from aluminum production tailings, a process that doubles as site-remediation:
https://interestingengineering.com/innovation/toxic-red-mud-co2-free-iron
And while all this electrification is going to require grid upgrades, there's lots we can do with our existing grid, like power-line automation that increases capacity by 40%:
https://www.npr.org/2023/08/13/1187620367/power-grid-enhancing-technologies-climate-change
It's also going to require a lot of storage, which is why it's so exciting that we're figuring out how to turn decommissioned mines into giant batteries. During the day, excess renewable energy is channeled into raising rock-laden platforms to the top of the mine-shafts, and at night, these unspool, releasing energy that's fed into the high-availability power-lines that are already present at every mine-site:
https://www.euronews.com/green/2024/02/06/this-disused-mine-in-finland-is-being-turned-into-a-gravity-battery-to-store-renewable-ene
Why are we paying so much attention to Silicon Valley pump-and-dumps and ignoring all this incredible, potentially planet-saving, real innovation? Cooper cites a plausible explanation from the Apperceptive newsletter:
https://buttondown.email/apperceptive/archive/destructive-investing-and-the-siren-song-of/
Silicon Valley is the land of low-capital, low-labor growth. Software development requires fewer people than infrastructure and hard goods manufacturing, both to get started and to run as an ongoing operation. Silicon Valley is the place where you get rich without creating jobs. It's run by investors who hate the idea of paying people. That's why AI is so exciting for Silicon Valley types: it lets them fantasize about making humans obsolete. A company without employees is a company without labor issues, without messy co-determination fights, without any moral consideration for others. It's the natural progression for an industry that started by misclassifying the workers in its buildings as "contractors," and then graduated to pretending that millions of workers were actually "independent small businesses."
It's also the natural next step for an industry that hates workers so much that it will pretend that their work is being done by robots, and then outsource the labor itself to distant Indian call-centers (no wonder Indian techies joke that "AI" stands for "absent Indians"):
https://pluralistic.net/2024/05/17/fake-it-until-you-dont-make-it/#twenty-one-seconds
Contrast this with climate tech: this is a profoundly physical kind of technology. It is labor intensive. It is skilled. The workers who perform it have power, both because they are so far from their employers' direct oversight and because these fed-funded sectors are more likely to be unionized than Silicon Valley shops. Moreover, climate tech is capital intensive. All of those workers are out there moving stuff around: solar panels, wires, batteries.
Climate tech is infrastructural. As Deb Chachra writes in her must-read 2023 book How Infrastructure Works, infrastructure is a gift we give to our descendants. Infrastructure projects rarely pay for themselves during the lives of the people who decide to build them:
https://pluralistic.net/2023/10/17/care-work/#charismatic-megaprojects
Climate tech also produces gigantic, diffused, uncapturable benefits. The "social cost of carbon" is a measure that seeks to capture how much we all pay as polluters despoil our shared world. It includes the direct health impacts of burning fossil fuels, and the indirect costs of wildfires and extreme weather events. The "social savings" of climate tech are massive:
https://arstechnica.com/science/2024/05/climate-and-health-benefits-of-wind-and-solar-dwarf-all-subsidies/
For every MWh of renewable power produced, we save $100 in social carbon costs. That's $100 worth of people not sickening and dying from pollution, $100 worth of homes and habitats not burning down or disappearing under floodwaters. All told, US renewables have delivered $250,000,000,000 (one quarter of one trillion dollars) in social carbon savings over the past four years:
https://arstechnica.com/science/2024/05/climate-and-health-benefits-of-wind-and-solar-dwarf-all-subsidies/
In other words, climate tech is unselfish tech. It's a gift to the future and to the broad public. It shares its spoils with workers. It requires public action. By contrast, Silicon Valley is greedy tech that is relentlessly focused on the shortest-term returns that can be extracted with the least share going to labor. It also requires massive public investment, but it also totally committed to giving as little back to the public as is possible.
No wonder America's richest and most powerful people are lining up to endorse and fund Trump:
https://prospect.org/blogs-and-newsletters/tap/2024-05-30-democracy-deshmocracy-mega-financiers-flocking-to-trump/
Silicon Valley epitomizes Stafford Beer's motto that "the purpose of a system is what it does." If Silicon Valley produces nothing but planet-wrecking nonsense, grifty scams, and planet-wrecking, nonsensical scams, then these are all features of the tech sector, not bugs.
As Anil Dash writes:
Driving change requires us to make the machine want something else. If the purpose of a system is what it does, and we don’t like what it does, then we have to change the system.
https://www.anildash.com/2024/05/29/systems-the-purpose-of-a-system/
To give climate tech the attention, excitement, and political will it deserves, we need to recalibrate our understanding of the world. We need to have object permanence. We need to remember just how few people were actually using cryptocurrency during the bubble and apply that understanding to AI hype. Only 2% of Britons surveyed in a recent study use AI tools:
https://www.bbc.com/news/articles/c511x4g7x7jo
If we want our tech companies to do good, we have to understand that their ground state is to create planet-wrecking nonsense, grifty scams, and planet-wrecking, nonsensical scams. We need to make these companies small enough to fail, small enough to jail, and small enough to care:
https://pluralistic.net/2024/04/04/teach-me-how-to-shruggie/#kagi
We need to hold companies responsible, and we need to change the microeconomics of the board room, to make it easier for tech workers who want to do good to shout down the scammers, nonsense-peddlers and grifters:
https://pluralistic.net/2023/07/28/microincentives-and-enshittification/
Yesterday, a federal judge ruled that the FTC could hold Amazon executives personally liable for the decision to trick people into signing up for Prime, and for making the unsubscribe-from-Prime process into a Kafka-as-a-service nightmare:
https://arstechnica.com/tech-policy/2024/05/amazon-execs-may-be-personally-liable-for-tricking-users-into-prime-sign-ups/
Imagine how powerful a precedent this could set. The Amazon employees who vociferously objected to their bosses' decision to make Prime as confusing as possible could have raised the objection that doing this could end up personally costing those bosses millions of dollars in fines:
https://pluralistic.net/2023/09/03/big-tech-cant-stop-telling-on-itself/
We need to make climate tech, not Big Tech, the center of our scrutiny and will. The climate emergency is so terrifying as to be nearly unponderable. Science fiction writers are increasingly being called upon to try to frame this incomprehensible risk in human terms. SF writer (and biologist) Peter Watts's conversation with evolutionary biologist Dan Brooks is an eye-opener:
https://thereader.mitpress.mit.edu/the-collapse-is-coming-will-humanity-adapt/
They draw a distinction between "sustainability" meaning "what kind of technological fixes can we come up with that will allow us to continue to do business as usual without paying a penalty for it?" and sustainability meaning, "what changes in behavior will allow us to save ourselves with the technology that is possible?"
Writing about the Watts/Brooks dialog for Naked Capitalism, Yves Smith invokes William Gibson's The Peripheral:
With everything stumbling deeper into a ditch of shit, history itself become a slaughterhouse, science had started popping. Not all at once, no one big heroic thing, but there were cleaner, cheaper energy sources, more effective ways to get carbon out of the air, new drugs that did what antibiotics had done before…. Ways to print food that required much less in the way of actual food to begin with. So everything, however deeply fucked in general, was lit increasingly by the new, by things that made people blink and sit up, but then the rest of it would just go on, deeper into the ditch. A progress accompanied by constant violence, he said, by sufferings unimaginable.
https://www.nakedcapitalism.com/2024/05/preparing-for-collapse-why-the-focus-on-climate-energy-sustainability-is-destructive.html
Gibson doesn't think this is likely, mind, and even if it's attainable, it will come amidst "unimaginable suffering."
But the universe of possible technologies is quite large. As Chachra points out in How Infrastructure Works, we could give every person on Earth a Canadian's energy budget (like an American's, but colder), by capturing a mere 0.4% of the solar radiation that reaches the Earth's surface every day. Doing this will require heroic amounts of material and labor, especially if we're going to do it without destroying the planet through material extraction and manufacturing.
These are the questions that we should be concerning ourselves with: what behavioral changes will allow us to realize cheap, abundant, green energy? What "innovations" will our society need to focus on the things we need, rather than the scams and nonsense that creates Silicon Valley fortunes?
How can we use planning, and solidarity, and codetermination to usher in the kind of tech that makes it possible for us to get through the climate bottleneck with as little death and destruction as possible? How can we use enforcement, discernment, and labor rights to thwart the enshittificatory impulses of Silicon Valley's biggest assholes?
If you'd like an essay-formatted version of this post to read or share, here's a link to it on pluralistic.net, my surveillance-free, ad-free, tracker-free blog:
https://pluralistic.net/2024/05/30/posiwid/#social-cost-of-carbon
#pluralistic#ai#hype#anil dash#stafford beer#amazon#prime#scams#dark patterns#POSIWID#the purpose of a system is what it does#climate#economics#innovation#renewables#social cost of carbon#green energy#solar#wind#ryan cooper#peter watts#the jackpot#ai hype#chips act#ira#inflation reduction act#infrastructure#deb chachra
157 notes
·
View notes
Text
It starts with him
What was once a promise of technology to allow us to automate and analyze the environments in our physical spaces is now a heap of broken ideas and broken products. Technology products have been deployed en masse, our personal data collected and sold without our consent, and then abandoned as soon as companies strip mined all the profit they thought they could wring out. And why not? They already have our money.
The Philips Hue, poster child of the smart home, used to work entirely on your local network. After all, do you really need to connect to the Internet to control the lights in your own house? Well you do now!Philips has announced it will require cloud accounts for all users—including users who had already purchased the hardware thinking they wouldn’t need an account (and the inevitable security breaches that come with it) to use their lights.
Will you really trust any promises from a company that unilaterally forces a change like this on you? Does the user actually benefit from any of this?
Matter in its current version … doesn’t really help resolve the key issue of the smart home, namely that most companies view smart homes as a way to sell more individual devices and generate recurring revenue.
It keeps happening. Stuff you bought isn’t yours because the company you bought it from can take away features and force you to do things you don’t want or need to do—ultimately because they want to make more money off of you. It’s frustrating, it’s exhausting, and it’s discouraging.
And it has stopped IoT for the rest of us in its tracks. Industrial IoT is doing great—data collection is the point for the customer. But the consumer electronics business model does not mesh with the expected lifespan of home products, and so enshittification began as soon as those first warranties ran out.
How can we reset the expectations we have of connected devices, so that they are again worthy of our trust and money? Before we can bring the promise back, we must deweaponize the technology.
Guidelines for the hardware producer
What we can do as engineers and business owners is make sure the stuff we’re building can’t be wielded as a lever against our own customers, and to show consumers how things could be. These are things we want consumers to expect and demand of manufacturers.
Control
Think local
Decouple
Open interfaces
Be a good citizen
1) Control over firmware updates.
You scream, “What about security updates!” But a company taking away a feature you use or requiring personal data for no reason is arguably a security flaw.
We were once outraged when intangible software products went from something that remained unchanging on your computer, to a cloud service, with all the ephemerality that term promises. Now they’re coming for our tangible possessions.
No one should be able to do this with hardware that you own. Breaking functionality is entirely what security updates are supposed to prevent! A better checklist for firmware updates:
Allow users to control when and what updates they want to apply.
Be thorough and clear as to what the update does and provide the ability to downgrade if needed.
Separate security updates from feature additions or changes.
Never force an update unless you are sure you want to accept (financial) responsibility for whatever you inadvertently break.
Consider that you are sending software updates to other people’s hardware. Ask them for permission (which includes respecting “no”) before touching their stuff!
2) Do less on the Internet.
A large part of the security issues with IoT products stem from the Internet connectivity itself. Any server in the cloud has an attack surface, and now that means your physical devices do.
The solution here is “do less”. All functionality should be local-only unless it has a really good reason to use the Internet. Remotely controlling your lights while in your own house does not require the cloud and certainly does not require an account with your personal information attached to it. Limit the use of the cloud to only the functions that cannot work without it.
As a bonus, less networked functionality means fewer maintenance costs for you.
3) Decouple products and services.
It’s fine to need a cloud service. But making a product that requires a specific cloud service is a guarantee that it can be enshittified at any point later on, with no alternative for the user owner.
Design products to be able to interact with other servers. You have sold someone hardware and now they own it, not you. They have a right to keep using it even if you shut down or break your servers. Allow them the ability to point their devices to another service. If you want them to use your service, make it worthwhile enough for them to choose you.
Finally, if your product has a heavy reliance on the cloud to work, consider enabling your users to self-host their own cloud tooling if they so desire. A lot of people are perfectly capable of doing this on their own and can help others do the same.
4) Use open and standard protocols and interfaces.
Most networked devices have no reason to use proprietary protocols, interfaces, and data formats. There are open standards with communities and software available for almost anything you could want to do. Re-inventing the wheel just wastes resources and makes it harder for users to keep using their stuff after you’re long gone. We did this with Twine, creating an encrypted protocol that minimized chatter, because we needed to squeeze battery life out of WiFi back when there weren’t good options.
If you do have a need for a proprietary protocol (and there are valid reasons to do so):
Document it.
If possible, have a fallback option that uses an open standard.
Provide tooling and software to interact with your custom protocols, at the very least enough for open source developers to be able to work with it. This goes for physical interfaces as much as it does for cloud protocols.
If the interface requires a custom-made, expensive, and/or hard-to-find tool to use, then consider using something else that is commonly available and off the shelf instead.
5) Be a good citizen.
Breaking paid-for functionality on other people’s stuff is inherently unethical. Consider not doing this! Enshittification is not a technical problem, it is a behavioral one. Offer better products that are designed to resist enshittification, and resist it yourself in everything you do.
Nothing forced Philips to do what they are doing: a human made a decision to do it. They could have just as easily chosen not to. With Twine’s server lock-in, at least we chose to keep it running, for 12 years now. Consider that you can still make a decent living by being honest and ethical towards the people who are, by purchasing your products, paying for your lifestyle.
We didn’t get here by accident. Humans made choices that brought us to this point, and we can’t blame anyone for being turned off by it. But we can choose to do better. We can design better stuff. And we can choose not to mess things up after the fact.
We’re putting this into practice with Pickup. (We also think that part of an IoT reset is giving users the creative freedom of a general-purpose device.) If you’re looking for something better and our product can fill a need you have, consider backing us. We cannot claim to be perfect or have all of the answers, but we are absolutely going to try. The status quo sucks. Let’s do something about it.
Published October 15, 2023 By Jeremy Billheimer
137 notes
·
View notes
Text
Revolutionize Your Automation with the 4G/2G Pico 2-Channel Relay!
Looking for a smarter way to control your devices remotely? The 4G/2G Pico 2-Channel Relay is here to transform home automation, industrial control, and IoT projects! 🌍✨
✅ Remote Control via 4G/2G network ✅ Dual Relay Channels for flexible automation ✅ Secure & Reliable connection ✅ Perfect for IoT, Smart Homes & Industrial Use
Back this innovative project now on Kickstarter and be part of the future of automation! 🚀🔥
👉 Check it out here! -Kickstarter
5 notes
·
View notes
Text
Top 5 Industrial Automation Low-Voltage Switchgear Accessories You Need to Utilize
Stable and proper electrical systems are most important in industrial automation, and low-voltage switchgear is one of the most important elements that connects these systems. However, to reach the best performance, safety, and lifespan, the correct accessories for low-voltage switchgear need to be selected.
In this article, we will discuss the 5 must-have low-voltage switchgear accessories that industrial automation requires to run at its optimum and be less down.
1. Circuit Breakers – Protection and Safety from Overloading
Circuit breakers are the most important devices of low-voltage switchgear equipment. Circuit breakers safeguard electric circuits from problems like short circuits, overloads, and faults by breaking power supply to the circuit when they detect abnormal conditions.
Why They Are Important?
- Protect equipment from electrical fire and damage.
- Comply with industry safety standards.
- Recover quickly from a fault.
Recommendation: Use high-level circuit breakers with remote monitoring and diagnostic capabilities to improve automation efficiency.
2. Surge Protection Devices (SPDs) – Voltage Spike Protection
Voltage spikes and transients destroy electrical equipment in automation systems. SPDs function by absorbing excess voltage, thereby safeguarding sensitive hardware.
Why They Are Important?
- Reduce electrical surge downtime.
- Protect the automatic equipment and control panel from damage.
- Extend the life of electrical equipment.
Pro Tip: Install SPDs with real-time sensing sensors. That way, you can detect and fix voltage problems as they occur.
3. Busbar Systems – More Efficient Power Distribution
A busbar system is important since it allows the transmission of electrical energy more efficiently in switchgear setups. Busbars conduct better, lose less energy, and work better with systems than regular wiring.
Why They Matter?
- Simplified and less costly wiring installation.
- Minimization of energy losses by reducing the power loss.
- Simple extension to and integration with automated systems.
It is suggested that insulated busbar systems shall be employed for safety and to prevent accidental short circuits.
4. Motor Protection Relays – Intelligent Monitoring for Motors
Electric motors are a fundamental component of industrial automation. Motor protection relays safeguard motors against overloading, phase imbalance, and overheating to enable motors to run faultlessly and continuously.
Why Are They Important?
- Prevent costly motor failure and operational downtime.
- Allow remote monitoring for easy predictive maintenance. - Improve operational efficiency with auto-reset.
Tip: Incorporate programmable motor protection relays with automation systems for real-time monitoring and control.
5. Remote Monitoring and Control Devices – Increasing Automation Scope
New businesses must monitor switchgear remotely to be efficient and have low maintenance costs.
Remote monitoring devices allow operators to monitor voltage levels, power consumption, and system status from a distance.
Why Are They Important?
- Perform routine maintenance to avoid unexpected breakdowns.
- Require fewer resources and time to reduce manual inspections.
- Increase system reliability with real-time fault notifications.
Pro Tip: Implement IoT-enabled remote monitoring systems for easy integration with industrial automation systems.
Final Thoughts:
Buy good quality low-voltage switchgear accessories when you purchase them for safety, performance, and efficiency in industrial automation.
Circuit breakers, surge protective devices, busbar systems, motor protection relays, and remote monitoring systems will help you to ensure a healthy and strong electrical system.
4 notes
·
View notes
Text
How to Choose the Best Low Voltage Switchgear for Your Project

Low voltage switch gears are significant to an industry, commercial or residential installation in ensuring the safe and effective power distribution. Selecting the right switchgear is key in making sure the system will be reliable, preventing electrical faults, and optimizing energy efficiency. Buying switchgear may appear challenging, given the number of options available in the market. The guide below will assist in grasping the vital aspects to consider in choosing low-voltage switchgear in 2025.
What is Low Voltage Switchgear?
Low voltage (LV) switchgear is an assembly of circuit breakers, disconnects, fuses, relays, and other protective equipment for controlling and protecting electric systems in voltages of up to 1,000V AC. It is commonly used in:
Industrial power distribution systems;
Commercial buildings;
Data centers;
Hospitals;
Renewable energy systems.
Choosing Low Voltage Switchgear: Important Considerations
1. Understand Your Project Requirements
Understanding your project requirements for assessing power distribution should include:
Voltage and current rating. This is for ensuring compatibility of load.
Type of application: For example, both industrial and commercial as well as residential and renewable sources.
The fault current rating: Ensure that it can withstand the maximum possible fault current.
Number of feeders and expansion requirements: Be sure to plan for possible future growth.
2. Safety and Compliance with Standards
As far as safety is concerned, the other critical consideration when selecting switchgear is to ensure that it has met the following:
IEC 61439 or ANSI/NEMA standards-Properly complying with international safety and performance standards.
Arc flash protection-Reduces the risk of being exposed to electrical hazards.
Short-circuit withstand capability-Makes sure switchgear withstands those high fault conditions.
3. Type of Switchgear Configuration
The correct configuration should be selected based on the size and complexity of the project:
Fixed Type Switchgear — Cost-wise, the cheapest and most suitable for small installations.
Withdrawable Type Switchgear — Provides ease of maintenance expected for an industrial facility.
Compartmentalized Switchgear — Offers improved safety and isolation of components.
4. Energy Efficiency and Sustainability
Modern switchgear are also designed to optimize energy usage and reduce losses. Look for: Low power loss components — More efficient. Eco-friendly insulation materials — Leverage the environment. Smart grid compatibility — Include renewables.
5. Smart Features and Digitalization-
Soon after Industry 4.0 and IoT, digital switchgear became a standard. Consider: Remote monitoring and diagnostics-The predictive maintenance help. Automated fault detection-Reduced downtime, and increased safety. Data logging and analytics-Optimizes power usage.
6. Brand Reputation and After-Sales Support
Choosing a reliable brand ensures long-term performance and support. Some of the top low voltage switchgear Suppliers are:
Al Mayar Electric Switchgear Ind LLC is the new milestone in the mastering of Mayar Holding in electrical technology. The company is committed to cater quality electrical and switchgear products in Middle East, Asia, Europe & Africa ensuring high standards and reliability
Enza Electric stands out as the best manufacturer of electrical switchgear in the GCC countries, providing top-notch products that lead the market and offer reliable electrical solutions.
Al Daleel Electrical Switch Gear Trading LLC is one of the leading Supplier and Distributor of Electrical Switchgear Products in GCC.
Civaux Electric proudly stands at the forefront of electrical manufacturing, delivering a diverse range of premium products, including Panel Fans & Filters, Panel Heaters, Cabinet LED Lamps, Regulators, and Indication Lamps & Switches.
Stefan Electric based in Germany, specializes in manufacturing and distributing a wide range of switchgear products such as Current Transformers, Analog and Digital Meters, Relay and Timer Meters, and Door Limit Switches across the UAE, including Dubai, Qatar, Oman, Bahrain, Sharjah, and Saudi Arabia.
Additionally, check for:
Spare parts availability, thereby facilitating easy maintenance and repair.
Local service centers for a quick troubleshooting and support.
Warranty and possible extended service offerings would enhance long-term value.
7. Budget and Cost Considerations
The performance-to-cost trade-off is thus an important consideration. One could consider comparing:
- Initial costs versus future savings: Although more energy-efficient switchgear might entail higher initial costs, the operational expenses are going to be much lesser.
- Customization options: Some brands are more conducive to modular designs to accommodate specific budgets.
- Installation and maintenance costs: Include considerations for servicing and availability of spare parts.
3 notes
·
View notes
Text
What is Cybersecurity? Types, Uses, and Safety Tips
What is Cyber security?
Cyber security, also known as information security, is the practice of protecting computers, servers, networks, and data from cyberattacks. With the increasing reliance on technology in personal, professional, and business environments, the importance of cyber security has grown significantly. It helps protect sensitive data, ensures the integrity of systems, and prevents unauthorized access to confidential information.
For businesses in Jaipur, cyber security services play a crucial role in safeguarding digital assets. Whether you're an e-commerce platform, an IT company, or a local enterprise, implementing strong cyber security in Jaipur can help mitigate risks like hacking, phishing, and ransomware attacks.
Types of Cyber security
Cyber security is a vast domain that covers several specialized areas. Understanding these types can help individuals and organizations choose the right protection measures.
1. Network Security
Network security focuses on protecting the network infrastructure from unauthorized access, data breaches, and other threats. Tools like firewalls, virtual private networks (VPNs), and intrusion detection systems are commonly used. In Jaipur, many businesses invest in cyber security services in Jaipur to ensure their networks remain secure.
2. Information Security
This type of cyber security involves protecting data from unauthorized access, ensuring its confidentiality and integrity. Companies offering cyber security in Jaipur often emphasize securing sensitive customer and business information, adhering to global data protection standards.
3. Application Security
Application security addresses vulnerabilities in software and apps to prevent exploitation by cybercriminals. Regular updates, secure coding practices, and application testing are vital components.
4. Cloud Security
As more businesses move to cloud-based solutions, securing cloud environments has become essential. Cyber security providers in Jaipur specialize in offering services like data encryption and multi-factor authentication to ensure cloud data is safe.
5. Endpoint Security
Endpoint security protects devices such as laptops, desktops, and mobile phones from cyber threats. It is especially critical for remote work setups, where devices may be more vulnerable. Cyber security services in Jaipur provide solutions like antivirus software and mobile device management to secure endpoints.
6. IoT Security
With the rise of Internet of Things (IoT) devices, ensuring the security of connected devices has become crucial. Businesses in Jaipur use cyber security in Jaipur to secure smart devices like industrial sensors and home automation systems.
Uses of Cyber security
Cyber security is indispensable in various domains. From individual users to large organizations, its applications are widespread and critical.
1. Protection Against Cyber Threats
One of the primary uses of cyber security is to safeguard systems and data from threats like malware, ransomware, and phishing. Businesses in Jaipur often rely on cyber security Jaipur solutions to ensure they are prepared for evolving threats.
2. Ensuring Data Privacy
For industries like finance and healthcare, data privacy is non-negotiable. Cyber security measures help organizations comply with laws and protect sensitive customer information. Cyber security services in Jaipur ensure businesses meet data protection standards.
3. Business Continuity
Cyber security is essential for ensuring business continuity during and after cyberattacks. Jaipur businesses invest in robust cyber security services in Jaipur to avoid downtime and minimize financial losses.
4. Securing Financial Transactions
Cyber security ensures the safety of online transactions, a critical aspect for e-commerce platforms and fintech companies in Jaipur. Solutions like secure payment gateways and fraud detection tools are widely implemented.
5. Enhancing Customer Trust
By investing in cyber security in Jaipur, businesses build trust with their customers, demonstrating a commitment to safeguarding their data and transactions.
Cyber security in Jaipur
Jaipur is emerging as a hub for businesses and IT companies, which has increased the demand for reliable cyber security solutions. Cyber security services in Jaipur cater to diverse industries, including retail, healthcare, education, and finance.
Local providers of cyber security Jaipur solutions offer tailored services like:
Vulnerability Assessments: Identifying potential security risks in systems and networks.
Penetration Testing: Simulating attacks to uncover weaknesses and improve defenses.
Managed Security Services: Continuous monitoring and management of security operations.
Many IT firms prioritize cyber security services in Jaipur to ensure compliance with global standards and protect their operations from sophisticated cyber threats.
Safety Tips for Staying Secure Online
With the rising number of cyberattacks, individuals and businesses must adopt proactive measures to stay secure. Here are some practical tips that integrate cyber security in Jaipur into daily practices.
1. Use Strong Passwords
Ensure passwords are long, unique, and a mix of letters, numbers, and symbols. Avoid reusing passwords for multiple accounts. Cyber security experts in Jaipur recommend using password managers for added security.
2. Enable Two-Factor Authentication (2FA)
Adding an extra layer of security through 2FA significantly reduces the risk of unauthorized access. Many cyber security services in Jaipur emphasize implementing this measure for critical accounts.
3. Regular Software Updates
Outdated software can be a gateway for attackers. Keep operating systems, antivirus tools, and applications updated to close security loopholes. Businesses in Jaipur frequently rely on cyber security Jaipur providers to manage system updates.
4. Be Cautious with Emails
Phishing emails are a common attack vector. Avoid clicking on suspicious links or downloading unknown attachments. Cyber security in Jaipur often involves training employees to recognize and report phishing attempts.
5. Invest in Reliable Cyber security Services
Partnering with trusted cyber security services in Jaipur ensures robust protection against advanced threats. From endpoint protection to cloud security, these services help safeguard your digital assets.
6. Avoid Public Wi-Fi for Sensitive Transactions
Public Wi-Fi networks are vulnerable to attacks. Use a VPN when accessing sensitive accounts or conducting financial transactions. Cyber security Jaipur experts often provide VPN solutions to businesses and individuals.
7. Backup Your Data Regularly
Regularly backing up data ensures that critical information is not lost during cyber incidents. Cyber security providers in Jaipur recommend automated backup solutions to minimize risks.
Why Choose Cyber Security Services in Jaipur?
The vibrant business ecosystem in Jaipur has led to a growing need for specialized cyber security services. Local providers like 3Handshake understand the unique challenges faced by businesses in the region and offer customized solutions.
Some reasons to choose cyber security Jaipur services from like 3Handshake include:
Cost-Effective Solutions: Tailored to fit the budgets of small and medium-sized businesses.
Local Expertise: Providers have an in-depth understanding of regional cyber threats.
24/7 Support: Many companies offer round-the-clock monitoring and support to handle emergencies.
For businesses in Jaipur, investing in cyber security services in Jaipur is not just about compliance; it's about ensuring long-term success in a competitive digital landscape.
4 notes
·
View notes
Text
While I am nominally against consumption for consumption’s sake, I have also been cursed by a crone to purchase any terrible novelty product that I can find the barest gasp of justification for buying. I also love IoT devices and smart home automation, especially when the smart product at issue is something that literally no human being could ever need.
As you can imagine, amazon prime day is a real minefield for me, but i’m proud to say that this year I managed to constrain myself to one impulse buy, and I am even prouder to say that this one has real functional practical utility for anyone who wants to start a feud with their neighbors across the courtyard with windows facing your own.
The newly released Govee Curtain Lights consist of 520 individually controllable RGBIC LED lights forming a roughly 5.5’x6.5’ grid. Each of those LEDs can be programmed to turn on or off, and can be set to any color.
I have already made spectacular use of them.
53 notes
·
View notes
Text
Pest Control Market Insights Health and Hygiene Awareness Driving Preventive Solutions
The pest control market is a dynamic industry influenced by evolving consumer demands, regulatory frameworks, and technological advancements. This article delves into key insights about the pest control market, highlighting factors driving growth, challenges, and opportunities for innovation.
Pest Control Market Insights: Urbanization Driving Demand
Rapid urbanization has led to increased pest infestations in cities, requiring effective management strategies. Dense housing developments and waste mismanagement provide fertile grounds for pests, pushing urban consumers and municipalities to seek professional pest control services.
Pest Control Market Insights: Focus on Sustainable Solutions
Consumers and businesses are increasingly favoring environmentally friendly pest control options. The demand for biopesticides, organic repellents, and integrated pest management (IPM) techniques has surged, reflecting a shift toward sustainability within the industry.
Pest Control Market Insights: Technological Advancements in Pest Control
Technology is transforming pest control methods. Innovations such as AI-powered pest monitoring, IoT devices for real-time detection, and drone-based pest spraying systems are enhancing efficiency and precision, catering to both residential and industrial needs.
Pest Control Market Insights: Agriculture Sector and Pest Management
Agricultural pest control is critical for ensuring food security and maximizing crop yields. Precision agriculture, biological pest control methods, and automated pest monitoring systems are becoming integral to managing pests in farming.
Pest Control Market Insights: Commercial Sector Expansion
The commercial pest control market is growing significantly as industries like hospitality, food processing, and healthcare prioritize pest management for regulatory compliance and customer safety. Commercial facilities are investing heavily in regular pest inspections and preventive measures.
Pest Control Market Insights: Health and Hygiene Awareness
Heightened awareness about health risks associated with pests, such as disease transmission and allergic reactions, is driving consumers to opt for preventive pest control measures. The focus on hygiene has intensified in the wake of global pandemics.
Pest Control Market Insights: Challenges in Rural Areas
While urban areas have easy access to pest control services, rural regions face challenges such as limited service providers and lack of awareness. Addressing these gaps presents a significant growth opportunity for the pest control market.
Pest Control Market Insights: Regulatory Landscape and Compliance
Strict regulations governing pesticide use and environmental protection are reshaping the pest control industry. Companies must invest in compliance and innovation to meet regulatory standards while delivering effective solutions.
Pest Control Market Insights: Mergers and Strategic Alliances
Mergers, acquisitions, and collaborations among pest control companies are driving market consolidation. Strategic alliances help businesses expand their service offerings, adopt new technologies, and enhance their market presence.
Conclusion: Unlocking Potential in the Pest Control Market
The pest control market offers immense growth opportunities, driven by urbanization, health awareness, and technological advancements. However, addressing challenges such as sustainability, rural access, and regulatory compliance is essential. By focusing on innovation, eco-friendly solutions, and strategic collaborations, the pest control industry can achieve long-term growth and success.
#Pest Control Market#Pest Control Market trends#Pest Control#pest control company#pest regretevator#pest control services
4 notes
·
View notes
Video
youtube
Home automation using ESP32 and Blynk 2.0 App | Blynk ESP32 Relay Control 📱| IoT Projecthttps://www.youtube.com/watch?v=zKe___UK6rM
#youtube#Home automation using ESP32 and Blynk 2.0 App | Blynk ESP32 Relay Control 📱| IoT Project https://www.youtube.com/watch?v=zKe___UK6rM
0 notes
Text
Best Practices for Safe and Efficient LV Electrical Installations in 2025

Introduction
Low Voltage (LV) electrical installations are the backbone of safe and reliable power distribution in residential, commercial, and industrial settings. In 2025, as energy demands rise and smart technologies evolve, following best practices in LV installations is more important than ever to ensure safety, efficiency, and compliance.
This blog outlines the latest best practices for designing, installing, and maintaining LV electrical systems according to international standards and industry trends.
What Is an LV Electrical Installation?
LV (Low Voltage) refers to electrical systems that operate at voltages up to 1000V AC or 1500V DC. These installations include:
· Electrical panels and switchboards
· Distribution circuits
· Lighting systems
· Sockets and fixed appliances
· Motor control systems
Proper LV installation ensures that power is distributed safely and efficiently without risk of fire, equipment failure, or personnel injury.
Why Best Practices Matter in 2025
In the age of smart buildings, renewable integration, and digital energy management, the quality of your LV installation affects:
· Operational reliability
· Energy efficiency
· System lifespan
· User safety
· Regulatory compliance
Failing to adhere to best practices can result in costly downtime, legal penalties, and even life-threatening hazards.
Top Best Practices for Safe and Efficient LV Electrical Installations
1. Conduct Detailed Load Analysis
Before starting any LV installation, carry out a comprehensive load assessment to determine the power requirements, load types, and future expansion needs. This ensures:
· Proper cable sizing
· Correct protection device selection
· Optimized system capacity
Use load flow software tools and factor in diversity and demand coefficients for accuracy.
2. Follow International Standards (IEC, NEC)
Compliance with recognized standards ensures installations meet safety and performance benchmarks. Key references include:
· IEC 60364 for LV electrical installations
· NEC (NFPA 70) for code-compliant wiring in the U.S.
· ISO 50001 for energy management integration
Also, refer to local electrical regulations where applicable.
3. Use Certified, High-Quality Components
Always use LV components from certified manufacturers — this includes:
· Circuit breakers (MCCBs/MCBs)
· Residual current devices (RCDs)
· Surge protection devices (SPDs)
· Busbars, cables, and enclosures
Poor-quality components may not withstand fault conditions, leading to short circuits, fires, or system failure.
4. Ensure Proper Cable Management and Sizing
Correct cable selection and layout are critical:
· Size cables based on current capacity, voltage drop, and ambient temperature
· Use LSZH (Low Smoke Zero Halogen) cables for fire safety
· Label and route cables cleanly using trays, ducts, and tie-downs
Improper cable management is a leading cause of overheating and system inefficiency.
5. Install Proper Earthing and Grounding Systems
An effective earthing system protects against:
· Electric shock
· Equipment damage
· Lightning surges
Use TT, TN, or IT systems as per the application and ensure resistance values are within acceptable limits (e.g., <1 ohm for sensitive equipment).
6. Use Protection Coordination and Selectivity
Install protective devices in a coordinated hierarchy to ensure:
· Quick isolation of faults
· Minimal disruption to unaffected areas
· Avoidance of cascading tripping
Selectivity between breakers and fuses enhances safety and ensures continuity of service.
7. Integrate Smart Monitoring and Control
Modern LV installations benefit from IoT-enabled devices and energy monitoring software. This helps with:
· Real-time energy usage tracking
· Predictive maintenance alerts
· Power quality monitoring
· Remote switching and control
Smart LV systems are increasingly used in data centers, green buildings, and industrial automation setups.
8. Conduct Periodic Testing and Maintenance
Post-installation, regular inspection and testing ensure sustained safety and performance. Best practices include:
· Thermal imaging to detect overheating
· Insulation resistance testing
· RCD trip time checks
· Earth loop impedance measurement
Document all tests and create a preventive maintenance schedule based on manufacturer recommendations and operating conditions.
Common Mistakes to Avoid
· Overloading circuits without upgrading breakers
· Skipping grounding in temporary setups
· Using outdated wiring diagrams
· Mixing incompatible components
· Neglecting ventilation in panel enclosures
Conclusion
Safe and efficient LV electrical installations in 2025 require more than just technical knowledge — they demand a proactive approach that combines regulatory compliance, technology integration, and quality workmanship. By following these best practices, contractors and facility managers can minimize risks, optimize performance, and build future-ready electrical systems.
Whether you’re designing a commercial building, upgrading an industrial site, or installing a smart home system, investing in safe LV practices today is the smartest move for tomorrow.
Connect With Us
Whether you’re a project engineer, contractor, facility manager, or developer — Almond Enterprise is ready to support your next electrical challenge with confidence and capability.
🔗 Visit: www.almondenterprise.com 📞 Contact: [email protected] | +974 33858416
3 notes
·
View notes
Text
ARMxy Series Industrial Embeddedd Controller with Python for Industrial Automation
Case Details
1. Introduction
In modern industrial automation, embedded computing devices are widely used for production monitoring, equipment control, and data acquisition. ARM-based Industrial Embeddedd Controller, known for their low power consumption, high performance, and rich industrial interfaces, have become key components in smart manufacturing and Industrial IoT (IIoT). Python, as an efficient and easy-to-use programming language, provides a powerful ecosystem and extensive libraries, making industrial automation system development more convenient and efficient.
This article explores the typical applications of ARM Industrial Embeddedd Controller combined with Python in industrial automation, including device control, data acquisition, edge computing, and remote monitoring.
2. Advantages of ARM Industrial Embeddedd Controller in Industrial Automation
2.1 Low Power Consumption and High Reliability
Compared to x86-based industrial computers, ARM processors consume less power, making them ideal for long-term operation in industrial environments. Additionally, they support fanless designs, improving system stability.
2.2 Rich Industrial Interfaces
Industrial Embeddedd Controllerxy integrate GPIO, RS485/232, CAN, DIN/DO/AIN/AO/RTD/TC and other interfaces, allowing direct connection to various sensors, actuators, and industrial equipment without additional adapters.
2.3 Strong Compatibility with Linux and Python
Most ARM Industrial Embeddedd Controller run embedded Linux systems such as Ubuntu, Debian, or Yocto. Python has broad support in these environments, providing flexibility in development.
3. Python Applications in Industrial Automation
3.1 Device Control
On automated production lines, Python can be used to control relays, motors, conveyor belts, and other equipment, enabling precise logical control. For example, it can use GPIO to control industrial robotic arms or automation line actuators.
Example: Controlling a Relay-Driven Motor via GPIO
import RPi.GPIO as GPIO import time
# Set GPIO mode GPIO.setmode(GPIO.BCM) motor_pin = 18 GPIO.setup(motor_pin, GPIO.OUT)
# Control motor operation try: while True: GPIO.output(motor_pin, GPIO.HIGH) # Start motor time.sleep(5) # Run for 5 seconds GPIO.output(motor_pin, GPIO.LOW) # Stop motor time.sleep(5) except KeyboardInterrupt: GPIO.cleanup()
3.2 Sensor Data Acquisition and Processing
Python can acquire data from industrial sensors, such as temperature, humidity, pressure, and vibration, for local processing or uploading to a server for analysis.
Example: Reading Data from a Temperature and Humidity Sensor
import Adafruit_DHT
sensor = Adafruit_DHT.DHT22 pin = 4 # GPIO pin connected to the sensor
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin) print(f"Temperature: {temperature:.2f}°C, Humidity: {humidity:.2f}%")
3.3 Edge Computing and AI Inference
In industrial automation, edge computing reduces reliance on cloud computing, lowers latency, and improves real-time response. ARM industrial computers can use Python with TensorFlow Lite or OpenCV for defect detection, object recognition, and other AI tasks.
Example: Real-Time Image Processing with OpenCV
import cv2
cap = cv2.VideoCapture(0) # Open camera
while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Convert to grayscale cv2.imshow("Gray Frame", gray)
if cv2.waitKey(1) & 0xFF == ord('q'): break
cap.release() cv2.destroyAllWindows()
3.4 Remote Monitoring and Industrial IoT (IIoT)
ARM industrial computers can use Python for remote monitoring by leveraging MQTT, Modbus, HTTP, and other protocols to transmit real-time equipment status and production data to the cloud or build a private industrial IoT platform.
Example: Using MQTT to Send Sensor Data to the Cloud
import paho.mqtt.client as mqtt import json
def on_connect(client, userdata, flags, rc): print(f"Connected with result code {rc}")
client = mqtt.Client() client.on_connect = on_connect client.connect("broker.hivemq.com", 1883, 60) # Connect to public MQTT broker
data = {"temperature": 25.5, "humidity": 60} client.publish("industrial/data", json.dumps(data)) # Send data client.loop_forever()
3.5 Production Data Analysis and Visualization
Python can be used for industrial data analysis and visualization. With Pandas��and Matplotlib, it can store data, perform trend analysis, detect anomalies, and improve production management efficiency.
Example: Using Matplotlib to Plot Sensor Data Trends
import matplotlib.pyplot as plt
# Simulated data time_stamps = list(range(10)) temperature_data = [22.5, 23.0, 22.8, 23.1, 23.3, 23.0, 22.7, 23.2, 23.4, 23.1]
plt.plot(time_stamps, temperature_data, marker='o', linestyle='-') plt.xlabel("Time (min)") plt.ylabel("Temperature (°C)") plt.title("Temperature Trend") plt.grid(True) plt.show()
4. Conclusion
The combination of ARM Industrial Embeddedd Controller and Python provides an efficient and flexible solution for industrial automation. From device control and data acquisition to edge computing and remote monitoring, Python's extensive library support and strong development capabilities enable industrial systems to become more intelligent and automated. As Industry 4.0 and IoT technologies continue to evolve, the ARMxy + Python combination will play an increasingly important role in industrial automation.
2 notes
·
View notes
Text
Switchgear Solutions for Solar and Wind Energy Systems
Why Switchgear Matters in Solar and Wind Systems
Switchgear plays a central role in controlling, isolating, and protecting electrical equipment. In renewable energy applications, it helps:
· Manage power flow from variable energy sources.
· Protect systems from faults or overloads.
· Ensure seamless grid integration and disconnection when needed.
Unlike traditional power plants, solar and wind systems generate intermittent power, requiring switchgear that can handle dynamic loads and frequent switching.
Challenges in Renewable Energy Applications
Here are some of the unique challenges renewable energy systems face — and how they impact switchgear selection:
1. Variable Output
Solar and wind energy production fluctuates based on weather and time of day. This demands switchgear that can:
· Handle frequent load changes.
· Operate reliably under fluctuating voltages and currents.
2. Decentralized Generation
Unlike centralized grids, solar and wind systems are often spread out across multiple locations.
· Modular, compact switchgear is preferred for such installations.
· Smart monitoring becomes critical to manage performance remotely.
3. Harsh Environments
Wind turbines operate at high altitudes, and solar farms are often exposed to heat, dust, or salt.
· Switchgear needs to be rugged, weather-resistant, and have high IP ratings.
· Outdoor switchgear enclosures and temperature management are essential.
Key Features of Switchgear for Solar & Wind
When designing or upgrading renewable energy systems, look for switchgear that offers:
1. Remote Monitoring and Control
Smart switchgear integrated with IoT technology allows operators to track real-time data, detect faults early, and optimize system performance.
2. High Interruption Capacity
Wind and solar systems may experience voltage spikes. Modern switchgear provides high breaking capacities to safely interrupt fault currents.
3. Modular Design
Allows for easy upgrades and maintenance — crucial for scaling renewable installations.
4. Eco-Friendly Design
Look for SF₆-free switchgear that uses clean air or other sustainable alternatives to reduce environmental impact.
5. Hybrid Capabilities
Switchgear that can connect both AC and DC sources is increasingly valuable in mixed-source grids.
LV, MV, and HV Switchgear for Renewables
· Low Voltage (LV) Switchgear: Used in residential or small-scale solar systems. Compact, safe, and cost-effective.
· Medium Voltage (MV) Switchgear: Ideal for commercial and industrial solar/wind applications.
· High Voltage (HV) Switchgear: Essential for utility-scale wind farms or solar plants feeding into the national grid.
Each type requires specific protection, metering, and automation components tailored to its load and system requirements.
Final Thoughts
Switchgear is the backbone of any successful solar or wind energy system. As these technologies become more mainstream, the demand for resilient, intelligent, and environmentally friendly switchgear solutions will continue to rise.
Whether you’re an energy consultant, project developer, or facility manager, choosing the right switchgear today will set the stage for long-term efficiency, safety, and scalability.
3 notes
·
View notes