#OpenCL
Explore tagged Tumblr posts
Text
AMD Ryzen 7 8700G APU Zen 4 & Polaris Wonders!

AMD Ryzen 7 8700G APU The company formidable main processing unit (APU) with Zen 4 framework and Polaris designs, the AMD Ryzen 7 processor 8700G
The conclusions of the assessments for the Ryzen 5 processor from AMD 8600G had previously revealed this morning, and now some of the most recent measurements from the Ryzen 7 8700G APU graph G have been released made public. Among AMD’s Hawk A point generation of advanced processing units (APUs), the upcoming Ryzen 7 8700G APU will represent the top of the lineup of the The AM5 series desktops APU. That is going to have an identical blend of Zen 4 and RDNA 3 cores in a single monolithic package.
Featuring 16 MB of L3 memory cache and 8 megabytes of L2 cache, the aforementioned AMD Ryzen 7 8700G APU features a total of 8 CPU cores and a total of 16 threads built onto it. It is possible to quicken the clock to 5.10 GHz from its base frequency of 4.20 GHz. A Radeon 780M based on RDNA 3 with 12 compute units and a clock speed of 2.9 GHz is included in the integrated graphics processing unit (GPU). It is anticipated that future Hawk Point APUs would have support for 64GB DDR5 modules, which will allow for a maximum of 256GB of DRAM capacity to be used on the AM5 architecture.
The study ASUS TUF Extreme X670E-PLUS wireless internet chipset with 32GB of DDR5 4800 RAM was used for the performance tests that were carried out. Because of this design, it is anticipated that the performance would be somewhat reduced. The Hawk Point APUs and the AM5 platform are both compatible with faster memory modules, which may lead to improved performance. This is made possible by the greater bandwidth that is advantageous to the integrated graphics processing unit (iGPU).
The AMD Ryzen 7 8700G “Hawk Point” APU was able to reach a performance of 35,427 points in the Vulkan benchmark, while it earned 29,244 points in the OpenCL benchmark. With the Ryzen 5 8600G equipped with the Radeon 760M integrated graphics processing unit, this results in a 15% improvement in Vulkan and an 18% increase in OpenCL. The 760M integrated graphics processing unit (iGPU) has only 8 compute units, but the AMD 780M has 12 compute units.
In spite of the fact that the 760M integrated graphics processing unit (iGPU) has faster DDR5 6000 memory, performance does not seem to rise linearly whenever there are fifty percent more cores. It would seem that this is the maximum performance that the Radeon IGPs are capable of. The results of future testing, particularly those involving overclocking, will be fascinating. However, the Meteor Lake integrated graphics processing units (iGPUs) might be improved with better quality memory configurations (LPDDR5x).
With the debut of the AM5 “Hawk Point” APUs at the end of January, it is anticipated that the RDNA 3 chips would provide increased performance for the integrated graphics processing unit (iGPU). At AMD’s next CES 2024 event, it is anticipated that further details will be discussed and revealed.
Read more on Govindhtech.com
2 notes
·
View notes
Text
I think I figured out why GNU Backgammon's evaluations have been so stubbornly slow, even despite all of my rewriting, refactoring, and optimizing.
On a whim, I tried turning the "evaluation threads" counter in the options menu all the way down to 1 (from the two dozen or so I had it set at before)... yet the performance / evaluation time was completely identical. I dug a little deeper, and everything I've found thus far has confirmed my suspicion:
The evaluations are all being performed one at a time, in serial.
On one hand, really? Fucking REALLY? I get that this codebase has all the structure and maintainability of a mud puddle, and that the developers are volunteers, but this is egregious!
On the other hand, this will make improving the engine's performance yet further a much simpler task. No need to break out OpenCL if plain ol' threads aren't being properly utilized, heheh.
#backgammon#programming#txt#I might end up using OpenCL anyway#Imagine being able to get near-instant 6-ply and 7-ply analysis...!#XG's days are numbered
1 note
·
View note
Text
scarlets linux misadventures episode 1
attempting to install amd gpu drivers and opencl to edit videos
"why cant you find this package my little zenbook"
"you need to install these other 10 things first and then manually install the latest version of amdgpu-install directly from the repo because for some reason amd does not list the latest version that is for ubuntu 24 at all."
"and then it will work?"
👁️👄👁️
14 notes
·
View notes
Video
youtube
[...]
Quan sát thứ tư, có thể là còn phải tranh cãi.
Cái chính đối với thầy giáo không phải dạy cho người ta cái gì đó, mà là ngăn chặn sai lầm. Tôi thấy trước rằng sẽ có người phản đối ý kiến này: Sao lại thế nhỉ, người học trò đến với thầy là để thu nhận kiến thức, học một cái gì đó kia mà? Đúng thế, nhưng chúng ta đã giao ước với nhau rồi kia mà, rằng sứ mạng của học trò không phải chỉ để tiếp thu kinh nghiệm và và truyền kinh nghiệm ấy cho người khác, mà còn là để nhân nó lên nữa.
Các sai lầm, hiểu theo nghĩa rộng, không thể không mắc phải, nhất là trong tìm kiếm khoa học, những sự lầm lạc là cần thiết, không thế thì không tìm ra chân lý đâu. Nhưng điều quan trọng là ta cần phải biết phát hiện và vượt qua chúng. Có một kiểu dũng cảm đặc biệt, dũng cảm bảo vệ tính khách quan hay có khả năng nói rằng: “Tôi đã không đúng”. Thứ dũng cảm ấy cần cho tất cả, dù người đó có chọn bất kì ngành chuyên môn nào đi chăng nữa. Nhưng lòng dũng cảm ấy chỉ đến đồng thời với học vấn. Một người không biết cái gì khác ngoài cái do chính anh ta làm ra, không thể khiến người khác bị thuyết phục khi nói rằng: “Tôi đã làm không tốt, tôi đã không đúng”.
Nhưng ngay đây có một đường ranh giới mà mắt thường không nhìn thấy. Ranh giới giữa sự hoài nghi và lòng tin vững chắc. Sự quá tin dẫn tới mất tính khách quan. Quá hoài nghi cũng ngăn chặn công việc sáng tạo. Anh ta có thể suốt đời tự bảo mình: “Tôi đã làm không tốt, tôi đã không đúng”, mà vẫn không tặng cho nhân loại một tuyệt tác nào.
Bởi thế cái chính đối với người thầy không chỉ đơn thuần có việc ��nhồi nhét” các tri thức cho học trò, không phải chỉ dạy làm việc, mà còn phải ngăn ngừa khuyết điểm, sai lầm, sự quá tin, quá hoài nghi. Thầy phải đánh giá khách quan kết quả công việc của học trò. Norbert Wiener đã viết những dòng rất hay để minh họa ý này, rằng sự sáng tạo chân chính là sự cắt bỏ cái thừa. Có thể dạy cho một đàn khỉ đánh máy chữ. Chúng có thể gõ lung tung vào máy và đánh hết một núi giấy. Giữa những dòng chữ vô nghĩa ấy có thể sẽ có cả lời thoại từ vở “Hamlet” của Shakespeare. Nhưng phải cần đến Shakespeare để gạt bỏ những chữ thừa và lúc đó mới còn lại lời của vở bi kịch bất hủ ấy.
[...]
Hãy bám sát mục tiêu - Tôi hay không phải tôi - R.V Petrov - 1983
***
Ờ. OpenCL đang là thương hiệu của Apple và lý do tại sao Apple không chuyển quyền sở hữu nó cho Khronos Group dù đã ngừng phát triển và loại bỏ thì chịu. À mà kể ra thì cái này giống một thư viện hơn bởi đây là C chuẩn kèm từ khóa mở rộng chứ không buộc phải sử dụng cú pháp khác như Go từ Google và thực tế thì C++ cũng là cách viết tốt. Điểm khó nhất lúc này là cần viết lại các bài toàn đang được giải theo hướng tuần tự (Sequential) sang đồng thời (Concurrency) và/hoặc song song (Parallelism). Tuy nhiên, ngay việc phân biệt thế nào là đồng thời với thế nào là song song đã tốn khá nhiều sức để nghĩ thì con đường cách mạng còn lắm gian truân. *Apple bỏ rơi còn Nvidia và AMD thì ưu tiên gà nhà là CUDA và HIP nên hóa ra Intel là bên nghiêm túc nhất với OpenCl khi chạy mã OpenCl trên các GPU Intel gặp khá ít lỗi. Yes. Với thư viện PoCL, ta cũng có thể chuyển các CPU đời cũ thành các Đơn vị tính toán (CUs) của hệ thống lớn hơn*
*Cho bạn nào có hứng thú* Điện toán hỗn tạp (Heterogeneous computing) là mô hình tính toán sử dụng hệ thống được tạo ra bởi nhiều loại phần cứng tính toán khác nhau như CPU, GPU, DSP, ASIC, FPGA, hay NPU. Và bằng cách phân bổ tác vụ thích hợp, năng lực tính toán có thể tăng lên trong khi vẫn làm giảm năng lượng tiêu thụ bởi cả hệ thống. Hiện tại, một chương trình điện toán hỗn tạp bao gồm hai phần là Host Context và Device Context. Trong khi mã Host Conext chỉ chạy trên CPU chính và có thể được viết bằng bất kì ngôn ngữ nào thì mã trong Device Context chạy trên các thiết bị tăng tốc cần được viết bằng ngôn ngữ mà thư viện thực thi (runtime library) hỗ trợ ví dụ OpenCL là C và C++ thì HIP chỉ là C++ còn CUDA có thêm Fortran và cả Python với Java khi bổ sung các thư viện thích hợp. Tuy nhiên, hiện cả CUDA lẫn HIP lại chỉ chạy trên mỗi GPU và đây là chỗ bạn có thể sử dụng bất kì ngôn ngữ nào để viết mã Device Context aka làm kernel language cho OpenCl, miễn là sau đó mã được biên dịch sang SPIR-V :D
***
Nào. Trước khi tranh luận xem VNCH có là quốc gia không thì chúng ta cần thống nhất xem một quốc gia thì gồm những gì hay dễ hơn là đâu là giới hạn sử dụng của từ quốc gia. Ví dụ Úc là một quốc gia ở trong Vương quốc Thịnh vương chung (Anh) và cái này là một quốc gia có chủ quyền (a sovereign state) trong khối Thịnh vượng chung Anh. *Bản sắc là sai nhiều nên các bạn cứ kệ mấy cái như thế này đi*
0 notes
Text
Software Development Engineer - HIP/OpenCL Runtime
_ Responsibilities: THE ROLE: AMD is looking for an influential software engineer who is passionate about improving the performance… and will work with the very latest hardware and software technology. THE PERSON: The ideal candidate should be passionate… Apply Now
0 notes
Video
youtube
oneplus pad 3 vs Xiaomi pad 7 | xiaomi pad 7 vs one plus pad 3
OnePlus Pad 3 vs Xiaomi Pad 7 | Which Tablet Should You Buy in 2025? OnePlus Pad 3 vs Xiaomi Pad 7 – the ultimate 2025 tablet face-off! Searching for the best tablet for gaming, productivity, or streaming? We compare these mid-range beasts to help you pick the perfect one. In-depth pros and cons for gaming, multitasking, and media. India pricing (~₹27,999–₹39,999) and global availability. Ideal for searches like Android tablets 2025, best tablets under ₹40,000, or gaming tablets. * OnePlus Pad 3 Specifications Display: 13.2-inch IPS LCD, 3.4K (3400x2264), 144Hz, 900 nits, Dolby Vision Processor: Qualcomm Snapdragon 8 Elite (8-core, up to 4.32GHz, Adreno 830 GPU) RAM/Storage: 12GB/256GB, 16GB/512GB (LPDDR5X, UFS 4.0) Battery: 12,140mAh, 80W fast charging Cameras: 13MP rear (4K video), 8MP front OS: OxygenOS 15 (Android 15) Price: ~₹39,999 (India, 12GB+256GB, estimated via Smartprix) Other: Quad speakers, Dolby Atmos, stylus support (OnePlus Stylo 2, ₹4,999), Mac/iPhone sync Pros: Massive 13.2-inch 3.4K display, perfect for movies and multitasking. Snapdragon 8 Elite crushes AAA games (e.g., Genshin Impact at 120 FPS, AnTuTu: ~2,849,493). Huge 12,140mAh battery (~14–16 hours) with 80W charging (0–100% in ~75 minutes). Clean OxygenOS, minimal bloat, supports Open Canvas for productivity. Unique iPhone/Mac compatibility for cross-device users. Cons: Higher price (~₹39,999) compared to Xiaomi’s budget-friendly option. Bulkier design (13.2-inch) may feel less portable. Accessories (keyboard ~₹7,999, stylus) add to cost. No headphone jack, unlike some competitors. Xiaomi Pad 7 Specifications Display: 11.2-inch IPS LCD, 3.2K (3200x2136), 144Hz, 800 nits, Dolby Vision Processor: Qualcomm Snapdragon 7+ Gen 3 (8-core, up to 2.8GHz, Adreno 732 GPU) RAM/Storage: 8GB/128GB, 12GB/256GB (LPDDR5X, UFS 4.0) Battery: 8,850mAh, 45W fast charging Cameras: 13MP rear, 8MP front (with LED privacy light) OS: HyperOS 2 (Android 15) Price: ~₹27,999 (India, 8GB+128GB, Smartprix) Other: Quad speakers, Dolby Atmos, stylus support (Focus Pen, ₹5,999) Pros: Sharper 3.2K display (345 PPI) with 800 nits, great for outdoor visibility. Snapdragon 7+ Gen 3 handles gaming well (90 FPS in PUBG, Geekbench: 1,900 single-core). Budget-friendly at ~₹27,999, excellent value for money. Fast UFS 4.0 storage speeds up apps and editing. HyperOS 2 offers AI tools (e.g., Mi Canvas for sketching). Cons: Smaller 8,850mAh battery (~10–12 hours) vs. OnePlus’ longer runtime. HyperOS has bloatware, less streamlined than OxygenOS. Slower 45W charging (~100 minutes to full). Comparison Highlights Performance: OnePlus Pad 3’s Snapdragon 8 Elite dominates with flagship-grade gaming and multitasking (OpenCL: 18,461 vs. Xiaomi’s 12,500). Xiaomi’s Snapdragon 7+ Gen 3 is solid for mid-range gaming. Display: Xiaomi’s 11.2-inch is sharper (345 PPI); OnePlus’ 13.2-inch is bigger for media. Battery: OnePlus lasts longer and charges faster; Xiaomi is adequate but lags. Software: OxygenOS is cleaner; HyperOS is feature-rich but cluttered. Who Should Buy Which Tablet? Buy OnePlus Pad 3 If: You’re a gamer or professional needing top-tier performance for AAA games (e.g., CODM, Genshin Impact) or heavy multitasking. You prioritize battery life and fast charging for all-day use (~₹39,999). Ideal for: Power users, content creators, or Apple ecosystem users. Buy Xiaomi Pad 7 If: You’re a budget-conscious gamer or student seeking strong gaming performance (90 FPS) under ₹30,000. one plus pad 3 vs Xiaomi pad 7 | xiaomi pad 7 vs one plus pad 3 which tablet you should buy? one plus pad 3 specifications one plus pad 3 specs one plus pad 3 price in INdia one plus pad 3 price one plus pad 3 oneplus pad 3 oneplus pad 3 unboxing oneplus pad 3 release date oneplus pad 3 review oneplus pad 3 leaks oneplus pad 3 launch date in india oneplus pad 3 pro oneplus pad 3 pubg test oneplus pad 3r oneplus pad 3 vs xiaomi pad 7 oneplus pad 3 upcoming one plus pad 3 launch date in india oneplus pad 3 launch date oneplus pad 3 price oneplus pad 3 price in india #jatintechtalks OnePlue Pad 3 Unboxing | Price in UK | Depth Review | Release Date OnePlus Pad 3 & Pad 3 Pro - Official Look | Price | India Launch & all features in hindi one plus pad 3 one plus pad 3 unboxing one plus pad 3 release date one plus pad 3 review one plus pad 3 leaks one plus pad 3 launch date in india one plus pad 3 pro one plus pad 3 pubg test one plus pad 3r one plus pad 3 vs xiaomi pad 7 one plus pad 3 upcoming one plus pad 3 launch date in india one plus pad 3 launch date Investigations by Kevin MacLeod is licensed under a Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/
0 notes
Text
高通Snapdragon 7 Gen 4 行動平台導入圖像生成工具|榮耀、vivo 新機率先搭載
高通前幾天公開了中階機最新行動平台 –Snapdragon 7 Gen 4,除了效能提升、優化來自 Snapdragon Elite Gaming 驅動遊戲體驗之外,下放了來自8系列所支援的高通擴充個人區域網路(XPAN)技術,不過最大亮點是讓中階機也支援「機上AI」,可以運行生成式AI助理和 LLM 語言模型,並新增Stable Diffusion圖像生成工具,首波採用該平台的新機包括榮耀、vivo等廠商,預計 5 月發表。 從技術規格來看,這組 4nm 製程的 Snapdragon 7 Gen 4行動平台採用的Kryo CPU 為 1(2.8GHz)+4(2.4GHz)+3(1.8GHz) 的架構,相較前代 CPU 運算效能提升 27%,GPU 效能提升 30%,支援 HDR 10+、OpenGL ES 3.2, OpenCL 2.0 FP, Vulkan 1.3…
0 notes
Text
Install Davinci Resolve in any Linux distro
New Post has been published on https://tuts.kandz.me/install-davinci-resolve-in-any-linux-distro/
Install Davinci Resolve in any Linux distro

youtube
on host sudo usermod -a -G render,video $LOGNAME install distrobox and podman sudo zypper in podman distrobox or sudo apt install -y podman distrobox or sudo dnf install -y podman distrobox or sudo pacman -S -y podman distrobox reboot go url to download https://www.blackmagicdesign.com/no/p... create a Fedora 40 container and enter it distrobox create distrobox create --name fedora40 --image registry.fedoraproject.org/fedora:40 distrobox enter fedora40 install dependencies sudo dnf install fuse fuse-devel alsa-lib \ apr apr-util dbus-libs fontconfig freetype \ libglvnd libglvnd-egl libglvnd-glx \ libglvnd-opengl libICE librsvg2 libSM \ libX11 libXcursor libXext libXfixes libXi \ libXinerama libxkbcommon libxkbcommon-x11 \ libXrandr libXrender libXtst libXxf86vm \ mesa-libGLU mtdev pulseaudio-libs xcb-util \ xcb-util-image xcb-util-keysyms \ xcb-util-renderutil xcb-util-wm \ mesa-libOpenCL rocm-opencl libxcrypt-compat \ alsa-plugins-pulseaudio unzip it. Change the name with the version you have downloaded, and the location you have downloaded it. cd ~/Downloads unzip DaVinci_Resolve_Studio_19.1.3_Linux run the DaVinci Resolve installer. Change the name with the version you have downloaded chmod +x DaVinci_Resolve_Studio_19.1.3_Linux.run sudo ./DaVinci_Resolve_Studio_19.1.3_Linux.run --appimage-extract sudo SKIP_PACKAGE_CHECK=1 ./squashfs-root/AppRun apply workaround for outdated libraries sudo mkdir /opt/resolve/libs/disabled sudo mv /opt/resolve/libs/libglib* /opt/resolve/libs/disabled sudo mv /opt/resolve/libs/libgio* /opt/resolve/libs/disabled sudo mv /opt/resolve/libs/libgmodule* /opt/resolve/libs/disabled run DaVinci Resolve /opt/resolve/bin/resolve export desktop files distrobox-export --app resolve In case more problems cd /opt/resolve/libs sudo mkdir disabled sudo mv libglib* disabled sudo mv libgio* disabled sudo mv libgmodule* disabled
0 notes
Photo
🚀 Curious about the future of graphics tech? Nvidia's RTX Pro 6000 Blackwell is making waves with its 96GB powerhouse capabilities 💪. Though this new card was expected to outperform the GeForce RTX 5090, benchmarks reveal only a small 2.3% performance gap despite the hardware differences. Interestingly, this high-powered unit is still under testing and might see improvements once final drivers are released. The RTX Pro 6000’s advanced architecture offers superior performance in tasks like horizon and edge detection, showcasing Nvidia’s commitment to pushing the boundaries of professional visualization technology. The card's impressive CUDA core count and memory configuration position it as a significant player in professional settings. However, constraints in current testing conditions mean that some specifications, like the full memory capacity, are yet to be fully leveraged. 👌 With pre-release drivers in use, actual performance is expected to rise with final updates. This shines a light on Nvidia's proactive role in tech advancements. Do you believe this powerhouse card will redefine the ProViz landscape once fully optimized? Share your thoughts below! 🎨💻 #RTXPro6000 #Nvidia #Blackwell #GraphicsCard #TechInnovation #ProVisualization #FutureTechnology #GPU #TechNews #HighPerformanceComputing #VisualizationExperts #Benchmark #ProViz #CUDA #OpenCL #InnovationInTech #GraphicsTech
0 notes
Photo

Intel 13th Gen Core i3-13100 LGA1700 3.4GHZ 4-Core CPU With an increase in core count, Intel 13th Gen processors continue to utilize Intel’s performance hybrid architecture to optimize your gaming, content creation, and productivity. Leverage industry-first bandwidth of up to 16 PCIe 5.0 lanes and DDR5 memory up to 4800 MT/s. Supercharge your CPU performance with a powerful suite of tuning and overclocking tools. Enjoy your favourite experiences in up to 4 simultaneous 4K@60Hz displays or up to 8K@60Hz HDR Video with dynamic noise suppression. Support for the Intel® 700 series chipsets and backwards compatibility with the Intel® 600 series chipsets allow you to access the features you need for any task. Whether you are working, streaming, gaming, or creating, the 13th Gen Intel® Core™ desktop processors deliver the next generation of breakthrough performance. The 13th Gen Intel® Core™ desktop processors deliver the next generation of breakthrough core performance. Meanwhile, additional E-cores enable an increase in Intel® Smart Cache (L3) for more efficient processing of larger data sets and better performance. The P-core and E-core L2 cache has also increased compared to the previous generation of Intel® processors, minimizing the amount of time spent swapping data between cache and memory to speed up your workflow. Unleash the power of next-level performance with the 13th Gen Intel® Core™ desktop processor advantage. FEATURES: 4 Cores 8 Threads Max Turbo Frequency of up to 4.50GHz 12MB Intel® Smart Cache Support for DDR4 and DDR5 memory Built for serious gaming Smart solutions for enthusiasts and creators SPECIFICATIONS: Essentials: Product Collection: 13th Generation Intel® Core™ i3 Processors Code Name: Products formerly Raptor Lake Vertical Segment: Desktop Processor Number: i3-13100 CPU Specifications: Total Cores: 4 # of Performance-cores: 4 # of Efficient-cores: 0 Total Threads: 8 Max Turbo Frequency: 4.50 GHz Performance-core Max Turbo Frequency: 4.50 GHz Performance-core Base Frequency: 3.40 GHz Cache: 12 MB Intel® Smart Cache Total L2 Cache: 5 MB Processor Base Power: 60 W Maximum Turbo Power: 89 W Memory Specifications: Max Memory Size (dependent on memory type): 128 GB Memory Types: Up to DDR5 4800 MT/s, Up to DDR4 3200 MT/s Max # of Memory Channels: 2 Max Memory Bandwidth: 76.8 GB/s Processor Graphics: Processor Graphics: Intel® UHD Graphics 730 Graphics Base Frequency: 300 MHz Graphics Max Dynamic Frequency: 1.50 GHz Graphics Output: eDP 1.4b, DP 1.4a, HDMI 2.1 Execution Units: 24 Max Resolution (HDMI): 4096 x 2160 @ 60Hz Max Resolution (DP): 7680 x 4320 @ 60Hz Max Resolution (eDP – Integrated Flat Panel): 5120 x 3200 @ 120Hz DirectX* Support: 12 OpenGL* Support: 4.5 OpenCL* Support: 3.0 Multi-Format Codec Engines: 1 Intel® Quick Sync Video: Yes Intel® Clear Video HD Technology: Yes # of Displays Supported: 4 Device ID: 0x4692 Expansion Options: Direct Media Interface (DMI) Revision: 4.0 Max # of DMI Lanes: 8 Scalability: 1S Only PCI Express Revision: 5.0 and 4.0 PCI Express Configurations: Up to 1×16+4, 2×8+4 Max # of PCI Express Lanes: 20 Advanced Features: Intel® Gaussian & Neural Accelerator: 3.0 Intel® Thread Director: No Intel® Deep Learning Boost (Intel® DL Boost): Yes Intel® Speed Shift Technology: Yes Intel® Turbo Boost Max Technology 3.0: No Intel® Turbo Boost Technology: 2.0 Intel® Hyper-Threading Technology: Yes Intel® 64: Yes Instruction Set: 64-bit Instruction Set Extensions: Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2 Idle States: Yes Enhanced Intel SpeedStep® Technology: Yes Thermal Monitoring Technologies: Yes Intel® Volume Management Device (VMD): Yes Security & Reliability Intel® Threat Detection Technology (TDT): Yes Intel® Standard Manageability (ISM): Yes Intel® Control-Flow Enforcement Technology: Yes Intel® AES New Instructions: Yes Secure Key: Yes Intel® OS Guard: Yes Execute Disable Bit: Yes Intel® Boot Guard: Yes Mode-based Execute Control (MBEC): Yes Intel® Virtualization Technology (VT-x): Yes Intel® Virtualization Technology for Directed I/O (VT-d): Yes Intel® VT-x with Extended Page Tables (EPT): Yes WHAT’S IN THE BOX: Intel 13th Gen Core i3-13100 LGA1700 3.4GHz 4-Core CPU x1
0 notes
Text
Intel’s oneAPI 2024 Kernel_Compiler Feature Improves LLVM

Kernel_Compiler
The kernel_compiler, which was first released as an experimental feature in the fully SYCL2020 compliant Intel oneAPI DPC++/C++ compiler 2024.1 is one of the new features. Here’s another illustration of how Intel advances the development of LLVM and SYCL standards. With the help of this extension, OpenCL C strings can be compiled at runtime into kernels that can be used on a device.
For offloading target hardware-specific SYCL kernels, it is provided in addition to the more popular modes of Ahead-of-Time (AOT), SYCL runtime, and directed runtime compilation.
Generally speaking, the kernel_compiler extension ought to be saved for last!
Nonetheless, there might be some very intriguing justifications for leveraging this new extension to create SYCL Kernels from OpenCL C or SPIR-V code stubs.
Let’s take a brief overview of the many late- and early-compile choices that SYCL offers before getting into the specifics and explaining why there are typically though not always better techniques.
Three Different Types of Compilation
The ability to offload computational work to kernels running on another compute device that may be installed on the machine, such as a GPU or an FPGA, is what SYCL offers your application. Are there thousands of numbers you need to figure out? Forward it to the GPU!
Power and performance are made possible by this, but it also raises more questions:
Which device are you planning to target? In the future, will that change?
Could it be more efficient if it were customized to parameters that only the running program would know, or do you know the complete domain parameter value for that kernel execution? SYCL offers a number of choices to answer those queries:
Ahead-of-Time (AoT) Compile: This process involves compiling your kernels to machine code concurrently with the compilation of your application.
SYCL Runtime Compilation: This method compiles the kernel while your application is executing and it is being used.
With directed runtime compilation, you can set up your application to generate a kernel whenever you’d want.
Let’s examine each one of these:
1. Ahead of Time (AoT) Compile
You can also precompile the kernels at the same time as you compile your application. All you have to do is specify which devices you would like the kernels to be compiled for. All you need to do is pass them to the compiler with the -fsycl-targets flag. Completed! Now that the kernels have been compiled, your application will use those binaries.
AoT compilation has the advantage of being easy to grasp and familiar to C++ programmers. Furthermore, it is the only choice for certain devices such as FPGAs and some GPUs.
An additional benefit is that your kernel can be loaded, given to the device, and executed without the runtime stopping to compile it or halt it.
Although they are not covered in this blog post, there are many more choices available to you for controlling AoT compilation. For additional information, see this section on compiler and runtime design or the -fsycl-targets article in Intel’s GitHub LLVM User Manual.
SPIR-V
2. SYCL Runtime Compilation (via SPIR-V)
If no target devices are supplied or perhaps if an application with precompiled kernels is executed on a machine with target devices that differ from what was requested, this is SYCL default mode.
SYCL automatically compiles your kernel C++ code to SPIR-V (Standard Portable Intermediate form), an intermediate form. When the SPIR-V kernel is initially required, it is first saved within your program and then sent to the driver of the target device that is encountered. The SPIR-V kernel is then converted to machine code for that device by the device driver.
The default runtime compilation has the following two main benefits:
First of all, you don’t have to worry about the precise target device that your kernel will operate on beforehand. It will run as long as there is one.
Second, if a GPU driver has been updated to improve performance, your application will benefit from it when your kernel runs on that GPU using the new driver, saving you the trouble of recompiling it.
However, keep in mind that there can be a minor cost in contrast to AoT because your application will need to compile from SPIR-V to machine code when it first delivers the kernel to the device. However, this usually takes place outside of the key performance route, before parallel_for loops the kernel.
In actuality, this compilation time is minimal, and runtime compilation offers more flexibility than the alternative. SYCL may also cache compiled kernels in between app calls, which further eliminates any expenses. See kernel programming cache and environment variables for additional information on caching.
However, if you prefer the flexibility of runtime compilation but dislike the default SYCL behavior, continue reading!
3. Directed Runtime Compilation (via kernel_bundles)
You may access and manage the kernels that are bundled with your application using the kernel_bundle class in SYCL, which is a programmatic interface.
Here, the kernel_bundle techniques are noteworthy.build(), compile(), and link(). Without having to wait until the kernel is required, these let you, the app author, decide precisely when and how a kernel might be constructed.
Additional details regarding kernel_bundles are provided in the SYCL 2020 specification and in a controlling compilation example.
Specialization Constants
Assume for the moment that you are creating a kernel that manipulates an input image’s numerous pixels. Your kernel must use a replacement to replace the pixels that match a specific key color. You are aware that if the key color and replacement color were constants instead of parameter variables, the kernel might operate more quickly. However, there is no way to know what those color values might be when you are creating your program. Perhaps they rely on calculations or user input.
Specialization constants are relevant in this situation.
The name refers to the constants in your kernel that you will specialize in at runtime prior to the kernel being compiled at runtime. Your application can set the key and replacement colors using specialization constants, which the device driver subsequently compiles as constants into the kernel’s code. There are significant performance benefits for kernels that can take advantage of this.
The Last Resort – the kernel_compiler
All of the choices that as a discussed thus far work well together. However, you can choose from a very wide range of settings, including directed compilation, caching, specialization constants, AoT compilation, and the usual SYCL compile-at-runtime behavior.
Using specialization constants to make your program performant or having it choose a specific kernel at runtime are simple processes. However, that might not be sufficient. Perhaps all your software needs to do is create a kernel from scratch.
Here is some source code to help illustrate this. Intel made an effort to compose it in a way that makes sense from top to bottom.
When is It Beneficial to Use kernel_compiler?
Some SYCL users already have extensive kernel libraries in SPIR-V or OpenCL C. For those, the kernel_compiler is a very helpful extension that enables them to use those libraries rather than a last-resort tool.
Download the Compiler
Download the most recent version of the Intel oneAPI DPC++/C++ Compiler, which incorporates the kernel_compiler experimental functionality, if you haven’t already. Purchase it separately for Windows or Linux, via well-known package managers only for Linux, or as a component of the Intel oneAPI Base Toolkit 2024.
Read more on Govindhtech.com
#oneAPI#Kernel_Compiler#LLVM#InteloneAPI#SYCL2020#SYCLkernels#FPGA#SYC#SPIR-Vkernel#OpenCL#News#Technews#Technology#Technologynews#Technologytrends#govindhtech
1 note
·
View note
Text
I hate this AI shit. It's stupid and it runs on my ugly cousin OpenCL.
Link to bypass paywall if necessary
17K notes
·
View notes
Text
DaVinci Resolve 19 on Debian 12 with AMD
For OpenCL use mesa-opencl-icd 25.0.2-1 Delete Clover driver /etc/OpenCL/vendor/mesa.icd Run resolve with RUSTICL_ENABLE='radeonsi'
0 notes
Text
TEDにて
サジャン・サイニ:自動運転車はどのように「見る」のか
(詳しくご覧になりたい場合は上記リンクからどうぞ)
注意!!現在、基本的人権を侵害するストーカーアルゴリズムしか能力のない人工知能です。
注意!!現在、基本的人権を侵害するストーカーアルゴリズムしか能力のない人工知能です。
注意!!現在、基本的人権を侵害するストーカーアルゴリズムしか能力のない人工知能です。
夜遅く、暗闇に1台の自動運転車が、狭い田舎道をクネクネと進む。
突然、3つの危険物が、同時に現れる、次に何が起こるのか?
障害物の猛攻撃を通り抜ける前に、車がそれらを検知しなければならない。
大きさ、形、位置といった情報を十分に収集することで、制御アルゴリズムが���一番安全なコースを決めるのだ。
運転席に人間がいない車は、スマートアイを必要とする。
これは、どんな環境、天気、暗さにおいても、これらの詳細を、一瞬の内に解析するセンサーのことだ。
無理な要求のようだが、次の2つを組合せることで解決する。
LiDAR(ライダー)とよばれるレーザーを用いた特殊な検知器とインターネット通信に用いられている集積フォトニクスという通信技術のミニチュア版だ。
2022年の最新iPhoneにも使用されている。
LiDAR(ライダー)を理解するには、関連技術であるレーダーから始めると良い。
航空技術では、レーダーアンテナが飛行機に向けて電波かマイクロ波のパルスをだすビームが跳ね返り戻ってくるまでの時間で、場所を特定するのだ。
視角が限られているが、太いビームでは対象物の細部の見分けがつかないためだ。
一方、自動運転車のLiDAR(ライダー)システム。LiDAR(ライダー)とは「光による検知と測距」の意味だが、細く絞り込んだ目には見えない赤外線をつかっている。
歩行者のシャツのボタンほどの小さなものを通りの向い側から検知できる。
しかし、対象物の形や奥行きをどのように検知するのか?
LiDAR(ライダー)は奥行き解析のために超短パルスレーザーを次々と発する。
仮にヘラジカが田舎道にいたとして、車が走り過ぎる時。
LiDAR(ライダー)のパルス波が、角の生え際で散乱し、元の位置に戻ってくるより先に、次のパルスが角の先端に到達する。
2つ目のパルスが戻ってくるのに余分にかかる時間を計測することで、角の形に関するデータが得られる。
短いパルスを多く発することで、LiDAR(ライダー)は形の詳細を迅速に伝えるのだ。
光のパルスを発する最もわかりやすい方法は、レーザーをオンオフすることである。
しかし、これではレーザーが安定せず、パルスを正確なタイミングで発信するのに影響し、奥行きの分解能が、制限されてしまうので、オン状態のままにし、光の周期的な遮蔽を信頼性が高く、高速に行える方法を用いるのが良い。
ここで、集積フォトニクスが登場する。
インターネットのデジタルデータは、100ピコ秒ほどの間隔しかない高精度に時間制御された光パルスにより伝送されている。
このようなパルスを作りだす1つの方法は、マッハ・ツェンダー��調器を使うことだ。
この装置は干渉という、波の特性を利用している。
この装置は干渉という波の特性を利用している。池に小石を落とした時の様子を想像してみたまえ。波が広がり、互いに重なり合うと模様が作り出される。ある箇所では波の山が重なり、とても大きくなるし、完全に打ち消しあう箇所もある。
マッハ・ツェンダー変調器は、似たような働きをする。
平行する2本のアームに沿って光の波を分岐させ、最後に再び合流させる。もし光が一本のアームで速度を落とし、遅延させれば、2つの波は同調を失った状態で合流し、打ち消し合うことで光をブロックする。
1本のアームで、この遅延を切換えることで変調器が光のパルスを発するためのオンとオフのスイッチのように作動する。100ピコ秒続く光のパルスは、奥行きについて数センチの解像度をもたらす。
しかし、近い将来に登場する車には、それ以上の解像度が必要だ。
変調器に超高感度で高速に作動する光検出器を組合わせることで、ミリ単位まで解像度が向上する。これは、通りの向う側のものを見る時に、正常な人間の視力よりも100倍以上良いということだ。
初期の車載LiDAR(ライダー)は、屋根かボンネットに取り付けてスキャンする。
複雑に組み合わさった回転部品に、依存していた集積フォトニクスにより、変調器と検知器が、0.1ミリ以下まで小さくなりつつあり、車のライトに入るほどの小さなチップに搭載されるようになるだろう。
さらにこのチップは、巧妙に改良された変調器を搭載しており、動く部品を無くして高速スキャンを可能にしている。変調器のアームの中の光の速度をほんの少し減速させることで
この追加装置はオンオフスイッチというよりは、制光装置として機能するだろう。制御のきいたわずかな遅延を発生させる一連のアームを並列に配置することで、画期的なものができる。
操作可能なレーザービームだ。
この新たな特長により、スマートアイは、自然の生き物が捉えられるよりも徹底的に探査して、見ることができ、どんな数の障害物も、通り抜けられるようになるだろう。
難なく。ただし、方向性を失ったヘラジカは、難しいかもしれないが。
(個人的なアイデア)
イーロンマスクが実用化している自動運転車は、この時点で、約140テラフロップスの処理速度を達成している。
これは、一昔前の地球シュミレーター第二世代2009年並の処理速度のスーパーコンピューターが搭載されていることと同じです。
つまり、走るスーパーコンピューターが搭載されていることに相当します。
未来の最新技術を実用的に活用できて、また低価格でも実現している。一台数十億円が、たった十年くらい��庶民の手の届く数百万円に!
デフレスパイラルにもならないプラスサムになる真のイノベーションです。素晴らしい。
参考として、2002年の地球シミュレータ第一世代は、35.86 TFLOPS(テラフロップス)
2004年のIBM Blue Gene/Lは、136.8 TFLOPS(テラフロップス)
この処理能力をコンピューターの外部CPU、外部GPUとして機能させることが可能ならば、Thunderbolt3(USB-C)経由のeGPUという形で実現できる。
そして、現在では、活用する機会の少ない車とは、別の使いみちが広がる素晴らしい世の中になるかもしれません。
eGPUとは、External GPU(外付けGPU)の略称で、外付けGPU(グラフィックプロセッサ)を外付けHDDなどと同じようにノートPCなどにケーブルで接続出来るようにして処理能力を増加させること。
Appleのコンピューター、Thunderbolt 3端子が必要です。
MacOS High Sierra 10.13.4 以降の eGPUサポートは、パワフルなeGPUの恩恵を受けられるMetal、OpenGL、OpenCL Appの高速化が狙いです。
しかし、Appによっては、eGPUによる高速化にソフトが対応していない場合もあります。推奨GPU以外は現在、使用できません。
2015年の時点では、影響力が少ないので問題にならなかった。しかし、現在、2020年では・・・
処理速度を補う方法にクラウドコンピューターで処理すれば良さそうですが、以外とプロバイダ経由でデータが読み取られて、知らない間に無断で広告に使われている!
インターネット黎明期から警告されていた基本的人権、プライバシーの侵害などの危険性が高まる傾向が増加し、現実のものとなってきている。
これは、過去にBIGなIBMのデータセンターに対してAppleスティーブジョブズがパーソナルコンピューターを創造したことに似ています。
現在では、走るパーソナルスーパーコンピューターです!!
インテルMacで拡張性の実現ができたeGPUは、その後、2020年の後半に・・・
AppleシリコンのM1チップの登場で外部CPUや外部GPUが繋がらなくなりました。
他に
Apple Vision Pro を装着しながら車載LiDAR(ライダー)と連動して運転できるといいかもしれない。
自動車運転の場合、2024年時点では、現在アメリカ国内では運転しながらは駄目みたいだが・・・運転しながら以外なら助手席に座れば問題はなくなります。
自動車運転はレイテンシーの短さが重要(航空機、宇宙空間なども)
Apple Vision Proが現実空間を認識して画面に反映されるレイテンシーの違いについて。短いほどディスプレイ越しでも半径数メートル以内の状況に対応できる。
「HTC VIVE XR Elite 2024」と「Meta Quest 3」と「Meta Quest Pro 2024」は約40ミリ秒に対してApple Vision Pro 2024は12ミリ秒��車の運転中における人間の認識速度は、重要な役割を果たします。
運転者が周囲の情報を認識し、適切な判断を下すためには、迅速な反応が必要です。
一般的に、人間の認識速度は視覚刺激の検出では約180から200ミリ秒、聴覚刺激の検出では約140から160ミリ秒です。これは、刺激が感覚器から脳に伝わり、脳がそれを認識するまでの時間を指します。
レイテンシーが短いので自動車運転モード(航空機、宇宙空間なども)を搭載してほしい。
<おすすめサイト>
Apple Vision Pro 2024
ベン・カシーラ:3Dスキャナーでとらえる古代遺跡
デニス・ホン:視覚障害者が運転できる車を作る!
クリス・アームソン:自動運転車は周りの世界をどう見ているのか?
Thunderbolt3端子搭載で電気自動車、燃料電池車を外部CPU、GPUとして活用するアイデア2018
Full Self-Driving Hardware on All Teslas Autopilot 2.0 - Level 5 Autonomy
<提供>
東京都北区神谷の高橋クリーニングプレゼント
独自サービス展開中!服の高橋クリーニング店は職人による手仕上げ。お手頃50ですよ。往復送料、曲Song購入可。詳細は、今すぐ電話。東京都内限定。北部、東部、渋谷区周囲。地元周辺区もOKです
東京都北区神谷高橋クリーニング店Facebook版
#サジャン#サイニ#自動車#Apple#vision#人工#知能#Thunderbolt#EMOTIV#CPU#GPU#超電導#フォトン#通信#秘匿#イーロン#マスク#プライバシー#ライダー#LiDAR#スキャナー#レーザー#NHK#zero#ニュース#発見#discover#discovery
0 notes
Text
Filtraciones revelan que la RTX 5070 es un 20% más lenta que la 5070 Ti, pero supera a la RX 9070 XT
Los primeros benchmarks filtrados de la NVIDIA GeForce RTX 5070 en Geekbench revelan un rendimiento 20% inferior al de la RTX 5070 Ti. En las pruebas con OpenCL y Vulkan, la RTX 5070 Ti obtuvo 240,750 y 238,850 puntos respectivamente, mientras que la 5070 marcó 187,414 y 188,712 puntos en las mismas pruebas, mostrando la diferencia de rendimiento entre ambos modelos. Puntuaciones de la RTX…
0 notes
Text
what's webgl and opencl then
Opengl doesn't stand for "open graphics library." It stands for Openly Gay Lesbians.
338 notes
·
View notes