#Pectin fossil
Explore tagged Tumblr posts
Photo

Fossil Pectin Shell – Eocene Epoch, Clallam Bay Washington USA, Genuine Bivalve Specimen
A well-preserved Fossil Pectin Shell (scallop) from the Eocene Epoch, approximately 40–50 million years old. This specimen was collected from the Clallam Formation near Clallam Bay, Washington State, USA, a site known for producing beautifully preserved marine invertebrate fossils from the early Paleogene period.
Pectin shells belong to the family Pectinidae, a group of marine bivalves distinguished by their fan-shaped, radially ribbed shells. This fossil showcases the elegant symmetry and surface ribbing typical of this family, preserved in fine-grained sediment.
Fossil Type: Bivalve (Scallop) Shell
Geological Age: Eocene – Ypresian to Lutetian Stages
Formation: Clallam Formation
Depositional Environment: The Clallam Formation was deposited in a shallow marine environment along a continental shelf. Calm conditions and fine silts contributed to the exceptional preservation of molluscs, echinoderms, and other invertebrates in the fossil record.
Morphological Features:
Distinct fan-shaped shell outline
Radiating ribs across the surface
Some specimens retain hinge or growth lines
Notable:
Classic marine invertebrate from the Eocene of the Pacific Northwest
Ideal for educational displays, fossil collectors, or palaeontology enthusiasts
The photograph shows the exact item offered for sale
Authenticity: All of our fossils are 100% genuine natural specimens and come with a Certificate of Authenticity. Please refer to the scale image for exact size – each square or cube equals 1cm.
This Eocene Pectin shell from Clallam Bay offers a glimpse into the marine ecosystems of ancient Washington. A beautiful and scientifically valuable specimen for any fossil enthusiast.
#Pectin fossil#fossil bivalve shell#Eocene fossil USA#Clallam Bay fossil#scallop fossil#marine fossil shell#Washington State fossil#Pectinidae fossil#genuine fossil specimen#collector fossil shell#Eocene bivalve#fossil clam#authentic fossil scallop
0 notes
Video
instagram
snailsandshrooms Can you believe the #rainbow colors in this #ammonite I picked up from a shop #allthingsnaturalin #hotsprings #arkansas
#Fossil#Ammonite#Shell#Geology#Fossilfriday#Iridescent#Pectin#video#Fossils#arkansas#instagram#the earth story
182 notes
·
View notes
Text
Inappropriate Use of Plastic Packaging - Reviews, Photos - Siam Paragon
Reviewed 3 July 2018 via mobile
Siam Paragon offers all the high end brands. There are brands for clothes, shoes, bags, electronics as well as automobiles. The food court area is usually full of people. It is recommended if one is in a mood to spend loads or just likes to roam around and have a look at the expensive lifestyle.
Date of experience: June 2018
Ask sohu2000 about Siam Paragon
Thank sohu2000
Huge shopping centre with many luxurious stores. You will need a bigger budget to come here. Worth the visit still.
Date of experience: July 2018
Ask azlanooi about Siam Paragon
Thank azlanooi
Siam Paragon could easily be in Singapore! It is a large mall full of high end designer shops so if you have forgotten to order that Bentley, you can buy one here (or a Ferarri if you prefer)!
Hi friends, this shopping mall is ok for all the family members , foods are very cheap in side the Foodcourt . don’t forget to go the see world , actually you can buy the ticket from Siam center . Online promotions also available, cosmetics product price is very aggressive and affordable , buy one get one promotions are always available.all together we can have a superb and cost effective shopping experience here. Thank you
if you are mall lovers, so maybe SIAM PARAGON has everything you need, by visiting this mall you will automatically connected to the other 3 malls located in the heart of bangko by Sky Line.
If your high End spender, this place will measure your expectations, however if you are just window shopper this complex of malls also will measured your expectations. They have many cute and awesome spots for selfie and photography, not to mention dining and lounge area are easy to find.
There has been increasing concern regarding environmental problems arising from the widespread use of petroleum-based plastic materials for packaging. Many efforts have been made to develop sustainable and biodegradable packaging materials to replace plastic products. The current review summarizes recent research progress in developing cellulose packaging materials to replace plastics used for cushioning and barrier packaging functions based on pulp fibers, cellulose nanofibers, and regenerated cellulose films to benefit from their renewability, sustainability and biodegradability. The cushioning packaging materials include molded pulp products and bio-based foams. Advanced cellulose films and paper can be good barriers for oxygen and carbon dioxide gases, as well as for water vapor. Several cellulose fiber-based packaging products have been commercialized in areas that used to be occupied solely by plastic products.
Download PDF
Full Article
Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review
Yanqun Su,a,b Bo Yang,b Jingang Liu,a Bo Sun,a,* Chunyu Cao,aXuejun Zou,cLutes,b and Zhibin He b,*
There has been increasing concern regarding environmental problems arising from the widespread use of petroleum-based plastic materials for packaging. Many efforts have been made to develop sustainable and biodegradable packaging materials to replace plastic products. The current review summarizes recent research progress in developing cellulose packaging materials to replace plastics used for cushioning and barrier packaging functions based on pulp fibers, cellulose nanofibers, and regenerated cellulose films to benefit from their renewability, sustainability and biodegradability. The cushioning packaging materials include molded pulp products and bio-based foams. Advanced cellulose films and paper can be good barriers for oxygen and carbon dioxide gases, as well as for water vapor. Several cellulose fiber-based packaging products have been commercialized in areas that used to be occupied solely by plastic products.
Keywords: Natural fiber; Cellulose nanofiber; Regenerated cellulose film; Cushioning packaging; Barrier performance
Contact information: a: China National Pulp and Paper Research Institute, Beijing, 100102 China; b: Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada; c: FPInnovations, Pointe Claire, Quebec, H9A 3J9 Canada;
* Corresponding authors: [email protected]; [email protected]
INTRODUCTION
In our modern economy, packaging is playing a viable and catalytic role. Not only does it protect the contents, but it also contributes to the convenient transportation, storage, and display of products (Gutta et al. 2013). In that context, packaging is one of the fastest growing markets. The global packaging market was valued at $799 billion in 2012. It continues to grow at 4% per year, and it is expected to reach $1 trillion by 2018 (PIRA 2017).
Table 1 shows the packaging market trends. It is evident that plastic packaging has been a strongly growing product segment from 2011 to 2016, which is particularly true for flexible packaging. The growth of plastics is mainly due to its low cost, convenience to use with chemical resistance, processing possibility, transparency, strength, and so on (Khosravi-Darani and Bucci 2015; Nurul Fazita et al.2016). The properties of the synthetic polymers used in plastic materials generally are favorable with respect to the processing of films, hot sealing, printing, and integration with other materials in manufacturing operations (Bharimalla et al. 2017).
Table 1. Packaging Market Trends (Source: Pira 2011)
The wide usage of plastic packaging has caused concerns about environmental problems in the world (Greene and Tonjes 2014; Rafieian et al. 2014; Campbell et al. 2015; Attaran et al. 2017; Kuswandi 2017). Plastic packaging materials include PP (polypropylene), PET (polyester), polyethylene, polystyrene, and other petroleum-based polymers. Although most of these plastics are recyclable, in many countries post-consumer plastic packaging waste is rarely recycled because of technical and economic constraints. There are about 1 million tons of plastic waste generated annually in China, but only around 20% of it is recycled (He and Nie 2011). A major proportion of the used plastic materials end up as waste, which is either mainly deposited in landfills or contributes to litter on our roadsides, public spaces, and waterways (Gómez and Michel Jr 2013; Jambeck et al. 2015). The strain and stress of environmental balance imposed by plastic packaging materials is a driving force to develop sustainable packaging materials (Peelman et al. 2014; Scarfato et al. 2015). Natural fibers obtained from forestry and agricultural residues are renewable, completely or partially recyclable, and biodegradable (Johansson et al. 2012; Rohit and Dixit 2016). Their relatively abundant availability, absence of associated health hazards, toughness, good thermal stability, and easy surface modification, as well as satisfactory mechanical properties make them an attractive alternative for some plastic packaging materials (Azlan and David 2011; Asokan et al. 2012; Zaman et al. 2012; Zhu et al. 2014; Pan et al. 2016; Rohit and Dixit 2016). Packaging based on cellulosic fibers plays an essential role in the storage and transport of goods. In such applications, the cellulosic fibers often contribute greatly to the strength and structural stability of a package. The fibers can be used as self-standing thin films, as filler in composites, and as coating to provide high barrier properties (Ferrer et al. 2017). In addition, the fibers can be used to fabricate cushioning packaging materials, and they can serve as reinforcements in biodegradable foam (Bénézet et al. 2012; Kaisangsri et al. 2012; Ago et al. 2016) and as molded pulp products (Didone et al. 2017).
In current practices, materials based on fossil resources, mainly petroleum, hold a dominant position with respect to the preparation of barrier layers to resist the permeation of oxygen gas, water vapor, and other compounds that may affect the quality of a product (Ferrer et al.2017). Typical materials for barrier polymer films with thickness between about 10 μm and 250 μm are ethylenevinyl alcohol (EVOH), polyvinylidene chloride (PVDC), and polyamide (PA) (Barlow and Morgan 2013). The most widely used plastic cushioning packaging products are EPS (expanded polystyrene) and EPE (expanded polyethylene). As post-consumer waste, those polymers are difficult to reuse and recycle because of technical and economic constraints, and they can easily produce chemical contaminants during their disposal by incineration or landfilling (Greene and Tonjes 2014). The ideal solutions entail substituting for them with degradable and sustainable materials.
This review aims to give an overview of natural fibers replacing plastics for cushioning and barrier packaging as well as to provide state-of-the-art examples of cushioning and barrier packaging based on natural fibers to make clear the future prospects, challenges and research and development needs.
NATURAL FIBERS AND THEIR KEY CHARACTERISTICS
Natural fibers can be obtained from plants including wood, agriculture crops grown mainly to obtain fibers (such as flax, hemp, and sisal), and as the by-products of some crops that have other primary uses (such as wheat, corn, rice, and sugar, etc.) using appropriate physical and chemical treatments. The plants mostly consist of cellulose, hemicellulose, and lignin. Pectin, ash, and extractives can be found in lower quantities. The properties of fibers are different depending on the processing technologies, which affect the chemical composition and morphology of natural fibers. Therefore, the applications in packaging materials are different. The key characteristics of natural fibers have been introduced in terms of general cellulosic fibers (pulp), cellulose nanofiber, and regenerated cellulose fibers for packaging (Fig. 1).
1 note
·
View note
Text
REUSABLE TOTES MADE FROM FRUIT SKINS IS A GREEN ALTERNATIVE TO PAPER BAGS!

Totes are a prerequisite for each person searching to lessen their carbon footprint. Depending at the substances used to make the tote, it usually takes extra assets to cause them to than single-use paper or plastic bags, however totes may be used and reused lots of times. Using totes in preference to single-use purchasing bags can assist lessen your carbon footprint even similarly if they’re manufactured from sustainable substances. To provide a sustainable opportunity, designers Johanna Hehemeyer-Cürten and Lobke Beckfeld made Sonne155, a reusable tote and sustainable opportunity to the paper bag. Kate spade, Michael cors, fluke and fossil are the biggest names who produces the tote bags. But this kind of reusable totes are so futuristic and eco-friendly. Sonnet155 is totally crafted from biodegradable substances to make sure that every bag can spoil down into water or soil. Hehemeyer-Cürten and Beckfeld built the reusable totes from the composite of uncooked substances. Cellulosic manufacturing waste from the fabric enterprise and pectin. Which partly mimics the gelling outcomes of gelatin. Cellulosic manufacturing waste comes from cellulose, the structural mobileular wall located in plants. At the same time as pectin is a plant-primarily based totally polysaccharide derived from the pores and skin of fruits. Read the full article
0 notes
Note
I am SO here for the sugar intake discourse... :D
I’m always thinking about sugar discourse T_T Let’s just say that if I were to write some sort of thesis, as a biochemist, the topic would probably be: how agriculture both uplifted human society and fucked us up on a nutritional basis. for a good reason: bread and grain and stuff. here is my layman’s lecture:
always remember that carbs are sugar, just, in a slightly less immediately accessible form, but it fucks you up all the same. did u know that the fossil record of humans only shows evidence of tooth decay after the development of agriculture? ever wonder why humans are mysteriously the only mammal with an astronomically high maternal childbirth death rate, despite the fact that animals don’t have hospitals, and they just squat down and have their babies in the woods somewhere and they’re good to go, while we’re dying and need c-sections throughout history. or ever wonder why pro athletes who are supposedly more fit than all of us suddenly drop dead from heart attacks? “carbing up”. it’s all malnutrition! sugar is the devil, especially because it tastes so good and is so tempting.
but fructose… is a new level of evil. high-fructose anything will fuck you up, because fructose completely bypasses an important regulatory step in glycolysis (the phosphofructokinase control point). basically, if you eat fructose, it’s gonna be processed and injected right into your blood whether your body needs it at the moment or not. fruit pectin mitigates this a little bit, but i eat fruit only as a dessert because of the fructose…
i find it interesting that modern people, for the most part, seem to agree that sugar foods are unhealthy. soda bad, candy bad, donuts bad, pasta bad, bagels bad. pretty good so far. but what do we eat instead? “plants and protein!” that’s what people say. but what about fats? do fats make us fat?
no. not unless you’re eating fats with sugar (babies drink milk: lactose, a sugar, along with fats, so the baby gains weight). if you’re eating fat alone, the insulin hormone (insulin removes blood glucose to store it, that’s where sugar crashes come from because when you eat sugar, insulin is busying storing it as glycogen but it’s slow to fade from your system and can cause sudden low blood sugar from acting too long) isn’t triggered. one time i overheard nurses at my school saying, “you need to eat sugar. your brain needs sugar to work!” true, but yikes… because fats have sugar; they’re called glycerides for a reason (fat glycerol is converted to glucose as needed in a process called gluconeogenesis). but stay away from polyunsaturated fats and seed oils, they’re trouble for reasons that would take a while to explain, it’s the way how we need to take extra metabolic steps to “fix” these weird molecules so we can use them. saturated and monounsaturated are my best friends. experiment around with the oils you cook with. if they’re gunky and stick to your stove, that generally is a bad sign. if they wipe free with a little soap, probably good.
i’m not telling nobody how to live their life but hear me out… i live a very sedentary life. i take walks but i really don’t do much. i’m a slender weak bitch. but i devour eggs and bacon and fatty steaks, vegetables and the fattiest cuts of beef and pork cooked in lard and i eat a LOT of salt and butter, and i haven’t felt better in my life. heartburn? what’s that? dizziness upon rising too quick? fixed that with salt. fatigue? nope. i’ve gotten up in the morning and jogged a 5k without needing to eat anything. just drank water and had a nice brunch afterward. weight? i’m actually thinner and look healthier than i did when i was 18. anxiety and depression? bad sometimes, but no where near as catastrophic as it was when i ate more sugar/carbs (your brain chemical imbalances can benefit from good food. people with epilepsy or seizures or other neurological problems are sometimes placed on ketogenic (high fat) diets because it tends to helps make episodes less frequent and less severe)
thanks for green-lighting my sugar rants anon friend. biochemistry maybe saved my life.
2 notes
·
View notes
Link
Le ribose est un sucre qui permet la fabrication de l'ARN et l'ADN. On ne l'avait encore jamais découvert dans des météorites et c'est maintenant chose faite. Cela renforce l'idée que les briques de la Vie sont originairement venues de l'espace, permettant ensuite son apparition sur Terre.

L'invention du spectromètre de masse par Francis Aston en 1919 (qui trie et identifie les ions en fonction de leur masse et de leur charge électrique), qui s'appuyait sur des réalisations précédentes de Wilhelm Wien et J.J. Thomson, a permis aux géologues et aux géophysiciens de plonger dans les entrailles des roches pour en déduire leurs compositions et leurs âges. Les chimistes leur emboîtèrent le pas et se lancèrent dans la détection de molécules organiques de sorte qu'à partir de 1958, la spectrométrie de masse commença à repérer des acides aminés et même des peptides.
À la croisée de ces disciplines, on trouve la cosmochimie qui étudie en particulier les météorites et leurs relations avec les comètes, les astéroïdes et le milieu interstellaire. La cosmochimie est une des disciplines utilisées par les exobiologistes pour comprendre l'origine de la Vie sur Terre et tenter d'évaluer les probabilités de son apparition ailleurs dans le cosmos observable. Une équipe internationale de chercheurs vient d'ailleurs de publier un article dans Proceedings of the National Academy of Sciences qui fera date à cet égard puisqu'ils y annoncent la toute première détection dans des météorites d'un sucre et surtout pas n'importe quel sucre puisqu'il s'agit du ribose, un des ingrédients de base pour la constitution de l'acide ribonucléique (ARN) et même de l'ADN, des molécules fondamentales du vivant.


Ceci est un modèle de la structure moléculaire du ribose avec un fragment de la météorite de Murchison. La ribose et d'autres sucres ont été trouvés dans cette météorite. © Yoshihiro Furukawa
Des chondrites riches en molécules organiques prébiotiques
La découverte a été faite en analysant des échantillons en poudre au moyen d'une technique de spectrométrie de masse par chromatographie en phase gazeuse. Deux météorites ont été l'objet de ces analyses, NWA 801 (CR) et Murchison (CM). Deux autres sucres biologiquement importants ont aussi été identifiés pour la première fois dans des météorites. L'arabinose ou sucre de pectine (les pectines sont présentes en grande quantité dans les parois végétales de nombreux fruits et légumes) et le xylose (sucre de bois ou sucre de bouleau).
Publicité
La météorite de Murchison fait l'objet de l'attention des exobiologistes depuis longtemps. Tombée près de la petite ville de Murchison en Australie en 1969, cette chondrite carbonée a livré aux cosmochimistes au cours des années plus de 70 acides aminés. Ils y ont ainsi découvert, sous forme de traces, l'alanine, la glycine, la valine, la leucine, l'isoleucine, la proline, l'acide aspartique et l'acide glutamique, toutes présentes dans les protéines de la vie telle qu'on la connaît sur Terre.
Des purines et des pyrimidines y ont également été trouvées. Or, ces molécules sont les bases de l'ADN et de l'ARN qui constituent le matériel génétique de tous les êtres vivants sur la Planète bleue.


Un échantillon de la météorite NWA 801 de type CR. Les météorites du groupe CR portent le nom de leur spécimen type, qui est tombé en Italie en 1824 à Renazzo. Il n’existe qu’une quinzaine de chondrites CR connues. La principale différence avec les chondrites CM est qu'elles contiennent jusqu'à 10 % de métal réduit sous forme de nickel-fer et de sulfure de fer. © Jon Taylor, CC by-sa 2.0
C'est d'ailleurs ce à quoi fait allusion dans un communiqué de la Nasa Yoshihiro Furukawa de l'université de Tohoku, au Japon, l'auteur principal de l'étude publiée dans PNAS quand il explique que : « D'autres éléments importants de la vie ont déjà été découverts dans des météorites, notamment des acides aminés (composants de protéines) et des bases nucléiques (composants de l'ADN et de l'ARN), mais les sucres ont été un élément manquant parmi les principaux éléments constitutifs de la vie. Cette recherche fournit la première preuve directe de l'existence du ribose dans l'espace et de la livraison de ce sucre sur Terre. Ce sucre extraterrestre aurait pu contribuer à la formation de l'ARN sur la Terre prébiotique, ce qui pourrait éventuellement être à l'origine de la vie. » « Il est remarquable qu'une molécule aussi fragile que le ribose puisse être détectée dans un matériau aussi ancien », a déclaré de son côté, toujours dans le même communiqué, Jason Dworkin au Goddard Space Flight Center de la Nasa à Greenbelt, dans le Maryland et coauteur de l'étude réalisée. Pour ce chercheur : « Ces résultats aideront à orienter nos analyses des échantillons des astéroïdes primitifs Ryugu et Bennu, qui seront rapportés sur Terre par la sonde Hayabusa-2 de l'Agence japonaise d'exploration aérospatiale et par la sonde Osirix-REx de la Nasa ».
youtube
« La géochimie et la cosmochimie, c'est l'étude des éléments chimiques pour comprendre l'histoire de la Terre et des planètes...». Entretiens avec Manuel Moreira, professeur à l'Université Paris Diderot, et des membres de l'équipe. © Chaîne IPGP
Un monde à ARN ?
Derrière ces réflexions il y a toujours la même idée, à savoir que les briques de la Vie auraient pu être apportées sur Terre il y a 4,5 milliards d'années par les météorites et les comètes où une chimie prébiotique active, prolongeant celle ayant donné les molécules organiques détectées dans les nuages du milieu interstellaire où naissent les étoiles, aurait préparé celle ayant donné la Vie.
De façon intéressante, il n'a pas été possible de découvrir du 2-désoxyribose dans les météorites, le sucre impliqué dans la formation de l'ADN. Cela apporte donc du crédit à l'hypothèse du monde à ARN (RNA World, en anglais) qui veut que la molécule d'ARN soit apparue la première sur Terre, présidant aux toutes premières étapes de la Vie.
Les cosmochimistes veulent maintenant déterminer si les sucres présents dans les météorites ont une chiralité particulière. Il existe à cet égard la fameuse énigme de la chiralité pour les molécules du vivant sur Terre. Plusieurs scénarios ont été envisagés pour l'expliquer et l'étude des météorites pourrait apporter des clés pour les départager.
Ce qu'il faut retenir
Des acides aminés et des bases azotées de l'ADN et de l'ARN avaient déjà été découverts dans des météorites comme celle de Murchison, mais jamais des sucres.
On vient de découvrir pour la première fois du ribose dans celle de Murchison, or c'est le sucre qui permet la synthèse de l'ARN et de l'ADN.
Cette découverte renforce la thèse que l'apparition de la Vie sur Terre a été préparée par une chimie prébiotique dans l'espace dont les molécules ont ensuite été apportées dans les océans primitifs par les météorites et les comètes.
Pour en savoir plus
Les comètes peuvent fabriquer un sucre de l'ADN
Article de Xavier Demeersman publié le 08/04/2016
À défaut de pouvoir examiner des centaines de vraies comètes, des scientifiques en fabriquent en laboratoire pour étudier ce qu'elles ont dans le ventre. Une équipe, qui avait déjà découvert des « briques moléculaires » dans une comète artificielle, vient de détecter du ribose, constituant clé de l'ARN et de l'ADN. « Un argument supplémentaire à la théorie des comètes comme source de molécules organiques qui ont rendu la vie possible sur Terre. »
Comment la vie est-elle apparue sur Terre ? Nombreux sont les scientifiques à mener l'enquête pour tenter de reconstituer ce qui a pu se passer, il y a environ 4 milliards d'années, juste avant que les premières formes de vie ne colonisent ce monde. Parmi les scénarios envisagés, celui de la panspermie, du moins à l'échelle moléculaire, retient l'attention des chercheurs.
L'idée est que les ingrédients de base de la chimie de la vie, c'est-à-dire les molécules organiques, comme les acides aminés, les sucres et autres hydrocarbures, proviennent de matière extraterrestre, apportée par des comètes, des astéroïdes ou encore des poussières (les micrométéorites représentent aujourd'hui 10.000 tonnes par an). Ces corps furent légion à pilonner les jeunes planètes en ces temps troublés du jeune Système solaire. Un bombardement massif tardif soupçonné aussi, d'ailleurs, d'avoir apporté une partie de l'eau de nos océans et celle que l'on boit aujourd'hui (l'origine de l'eau terrestre est toujours discutée).


Un large éventail de matière organique a été identifié au sein de la nébuleuse d’Orion – fameuse région de formation d’étoiles à environ 1.400 années-lumière de la Terre – sondée par les télescopes spatiaux Herschel et Spitzer : formaldéhyde, méthanol, diméthyle éther, cyanure d’hydrogène, oxyde de soufre, dioxyde de soufre, eau. Ces molécules peuvent être à l'origine d'une chimie menant à des composés plus complexes, comme les alcools, les sucres ou les acides aminés. © Esa, Hexos, HIFI Consortium
Les comètes portent les ingrédients du Système solaire primitif
C'est pour ces raisons, entre autres, que les chercheurs ont très à cœur de rendre visite aux noyaux cométaires. Agrégats de glaces et de poussières, ces corps sombres qui croisent, pour la plupart (elles sont des dizaines de milliards), dans les régions les plus reculées du Système solaire, sont considérés comme de véritables fossiles. En effet, ils ont en quelque sorte échantillonné et conservé la matière de la nébuleuse primitive au centre de laquelle se sont développés le Soleil et ses planètes. Quoi de mieux donc que de pouvoir se rendre sur place pour renifler les molécules organiques ? Six missions ont déjà tenté l'aventure, non sans difficultés. La dernière en date, Rosetta (toujours en cours), est un très beau succès en dépit des péripéties de son atterrisseur Philae. Certes, il n'a pas pu faire tout ce qu'il aurait voulu (comme forer le sol et travailler durant des semaines), mais il a dérobé, en presque trois jours, de précieuses informations sur le sol.
Publicité
En attendant d'autres Rosetta (dont le nom fait référence à la fameuse pierre de Rosette), des missions coûteuses qui peuvent être très longues, plusieurs laboratoires s'essaient à la cuisine cosmochimique : fabriquer des minicomètes comparables à celles que l'on connaît, pour étudier ce qu'il peut s'y produire, selon les conditions auxquelles elles sont soumises.


Le ribose, un sucre à cinq atomes de carbone, se forme dans le manteau de glace des grains de poussière, à partir de molécules précurseures simples (eau, méthanol et ammoniac) et sous l’effet de radiations intenses. © Cornelia Meinert (CNRS), Andy Christie (Slimfilms.com)
Tous les ingrédients prébiotiques sont réunis
Dans un article qui vient de paraître dans la revue Science, une équipe internationale raconte comment le ribose, sucre à la base de l'ARN (c'est le « R » de cet acronyme, donc le « ribo » d'acide ribonucléique) et de l'ADN (acide désoxyribonucléique), est apparu au sein d'un exemple artificiel créé dans des conditions réalistes. Jamais cette molécule n'a été détectée dans une véritable comète ou un astéroïde, mais l'expérience montre que c'est possible.
Pour faire une microcomète factice, les chercheurs de l'Institut d'astrophysique spatiale ont réuni dans une chambre à vide à - 200 °C les ingrédients suivants : de l'eau (H2O), du méthanol (CH3OH) et de l'ammoniac (NH3), pour simuler la formation de grains de poussières enrobés de glaces. Ensuite, cette matière première a été irradiée d'ultraviolets (UV), à l'image de ce que l'on peut observer, ailleurs, dans des « nébuleuses où se forment ces grains ». Et enfin, le périple autour du Soleil a été reproduit en modifiant la température de l'environnement.
« Sa composition a ensuite été analysée à l'Institut de chimie de Nice grâce à l'optimisation d'une technique très sensible et très précise (la chromatographie multidimensionnelle en phase gazeuse, couplée à la spectrométrie de masse à temps de vol) », explique le CNRS dans son communiqué de presse. Résultat : « Plusieurs sucres ont été détectés, parmi lesquels le ribose. Leur diversité et leurs abondances relatives suggèrent qu'ils ont été formés à partir de formaldéhyde ». Or, le formaldéhyde (CH2O), créé à partir de méthanol et d'eau, et aussi plusieurs macromolécules sont observés dans les nébuleuses où de nouvelles étoiles sont en train de naître, comme celles d'Orion.
« [...] Cette découverte complète la liste des "briques moléculaires" de la vie qui peuvent être formées dans la glace interstellaire. Elle apporte un argument supplémentaire à la théorie des comètes comme source de molécules organiques qui ont rendu la vie possible sur Terre... et peut-être ailleurs dans l'Univers », conclut le CNRS.
0 notes
Text
Tomatillos
Sometimes called husk cherries or tomato verde, tomatillos are a small, green Mexican fruit with a Japanese lantern-type shell surrounding it. While they're from the tomato family and do resemble small green tomatoes, tomatillos appear more like cape gooseberries. When removing the covering, don't be surprised when the fruit seems a little sticky, this can be easily washed off. The fruit contains a pectin-like substance that thickens as it cools. Blended with garlic, onions, and herbs like cumin and cilantro, tomatillos make great salsa.
Cleaning/Preparation Take the husks off of the tomatillos, then rinse under cold water until no longer sticky.
Storage If you are going to eat tomatillos in a few days of recieving them you can store them on the counter like tomatoes. For longer term storage keep them in the fridge in a plastic bag where they will keep for 10 days or so.
Herbs and Other Ingredients with an Affinity for Tomatillos Cilantro Cumin Carrots Summer squash Onions Green onions Garlic
Simple Preparation Take the husk off 1 pound of tomatillos and wash under cold running water. Add to a pan with a clove of garlic, half an onion, 1 jalapeno (optional), half a bunch of cilantro roughly chopped, a big pinch of sea salt and 1 cup of water. Boil for 15 minutes then add to the blender and carefully puree. Add some finely chopped cilantro and onion. Serve warm with chips.
Recipes Pork Stew in Green Salsa (Guisado de Puerco con Tomatillos) Enchiladas in Tomatillo Salsa Guacamole Taquero Guerrero-Style Tomatillo Salsa
Nutritional Value Containing all the right ingredients for optimal nutrition, tomatillos are a very good source of dietary fiber, niacin, potassium and manganese. They contain 20 percent of the daily recommended value in vitamin C, 13 percent of the vitamin K and a healthy amount of iron, magnesium, phosphorus and copper. Compared with tomatoes, tomatillos provide a few more calories, fat, and protein per ounce, but the extra fiber, minerals, antioxidants, and vitamins make up for it.
History/Origin The Aztecs used tomatillos as one of their staple crops but it probably was the Spanish conquistadors who introduced tomatillos (which translates to "little tomatoes" in Spanish) to the New World. The wild tomatillo and related plants are found everywhere in the Americas except in the far north, with the highest diversity in Mexico. In 2017, scientists reported on their discovery and analysis of a fossil tomatillo found in the Patagonian region of Argentina, dated to 52 million years B.P. The finding has pushed back the earliest appearance of the Solanaceae plant family of which the tomatillos are one genus.
0 notes
Text
HEAVY METAL DETOX WITH PEMF
http://www.buyspirulinaalgae.com/ http://www.buyspirulinaalgae.com/best-spirulina-powder/ sitemap http://ow.ly/10kjVU Blogspot heavy metal detox with PEMF. Detoxification is the most important and influential process an individual can do to improve their health and subsequently their life. Buy the detox Supplements http://trulyheal.com/product/reccomended-supplements/
In the world of technology, there are countless blog posts, articles, websites, as well as books written on ‘detox’ and cleansing. However, very few of them actually have a comprehensive understanding of detoxifying. Additionally, many of them are not in-depth but instead are pure hype, marketing and sales driven. Detoxification is not something you can truly achieve through a fast, 14-day cleanse, green juices, or with some supplements. Instead detoxifying is more intricate, and long-term.
Most people living in the modern world, are inescapably toxic and can truly benefit from a detox. Unless of course, you’ve been living on a different planet entirely, you will have been exposed to heavy metals; in small, large or extremely high quantities. Human’s have been exposed to the highest levels of heavy metal toxins in recorded history! This is due to the industrial revolution, burning of fossil fuels, improper incineration of waste materials and so on. Toxic metals are everywhere and affect everyone on mother earth.
Heavy metals are metallic elements that are toxic or poisonous even in very low concentrations. Tumours are known to contain concentrated amounts of heavy metals. Dr Rau from Paracelsus clinic in Lustmuehle found up to 40000 higher concentration of heavy metals in tumours compared to healthy tissue. This show’s that heavy metals are certainly a factor in the development of disease and unquestionably something which should be detoxified.
Some of the common heavy metal pollutants among others are arsenic, cadmium, mercury, aluminium, nickel, and lead. In the table below are listed ‘some’ of the common toxic effects and sources.
PEMF SUPPORT
A deflated cell with a low cellular membrane potential can not detoxify. This is why sport and exercise are so important. They increase your cells energy and shake loose some of these toxins.
PEMF however, increases the membrane potential dramatically in a matter of minutes and in turn increases 3 facts at the same time: 1 Detoxification (all toxins are shaken loose from the cell membrane receptors) 2 Oxygen uptake is drastically improved by the increased cell membrane potential 3 Nutrient uptake is dramatically increased due to cleared cell membrane channels.
These 3 factors alone make it necessary for a good detox to incorporate PEMF as an adjunct treatment. PEMF treatment can increase the detox by 40% due to shaking loose the toxins at a cellular level.
Additionally before using the PEMF machine taking a ‘primer’ to bind the toxins released into the body like chlorella, modifilan, modified citrus pectin and activated charcoal. This will help maximise the treatment.
For those of who you do not know what a PEMF is, it’s a Pulsed Electromagnetic Field Therapy device. The therapy utilises small magnetic currents which are intermittently applied to the body.
Inside each cell within your body, there is an energy factory, the mitochondria. Surrounding this energy factory is a membrane of energy pathways through which nutrients go in and waste is expelled. Unfortunately over time, these pathways are blocked by toxins so the cell can’t take in the nutrients it needs. This causes the cell to “deflate” and, therefore, it doesn’t function as it should. The magnetic current from the PEMF “hits” the cell and knocks the toxins free. The cell’s nutrient pathways are now clear and the cell can begin to take on nutrients again.
The PEMF increases blood flow and oxygen to all areas within the body. This is then producing higher levels of anti-inflammatory white blood cells and more densely oxygen saturated red blood cells to the damaged areas. At the same time removing toxins. The PEMF, in turn, results in a more efficient healing process.
Read more:
PEMF to support HEAVY METAL DETOXIFICATION
Cancer is curable now and your immune system:
DNA Tests: http://trulyheal.com/product/dna-test-adult/
Heavy metal detox binders:
Reccomended Supplements
Watch more detox videos:
The post HEAVY METAL DETOX WITH PEMF appeared first on Healthy Recipes.
0 notes