#Tunable DWDM SFP+
Explore tagged Tumblr posts
gbicshopde-blog · 6 years ago
Link
Tumblr media Tumblr media Tumblr media
1 note · View note
scottmortenson · 2 years ago
Text
White Paper: CWDM + DWDM = Increased Capacity
One way of increasing capacity in fiber optic links is to add DWDM over existing CWDM
April 2023
by Robert Isaac
Ghostwritten by Scott Mortenson
Tumblr media
For years, service providers have been using Coarse Wavelength Division Multiplexing (CWDM) to increase the capacity of fiber optic links. CWDM filters offer up to 18 ITU (International Telecommunication Union) defined wavelengths and has been an ideal way to transport 1Gbps and 10Gbps circuits over a single fiber span.
What we are seeing now seems to be an uphill climb for CWDM applications. There appears to be a bandwidth growth requirement, and decreased support for CWDM from some equipment manufacturers.
With CWDM support from manufacturers dwindling and the need for capacity increasing at an exponential rate, the question becomes “How do we increase the capacity without forklifting the existing CWDM?”
One answer can be using DWDM over the existing CWDM.
Tumblr media
Figure 1
The Concept
Because CWDM is built with channels that are spaced 20nm apart and often have a 10-13nm passband per wavelength (see Figure 1 above), DWDM makes a lot of sense. DWDM filters are built with much smaller channel spacing (.4nm/.8nm/1.6nm), so these wavelengths can be combined and will pass through the ~13nm passband of CWDM channel. For this example, we will focus on standard DWDM filter channels that are in the C-Band (1525nm-1565nm) spectrum and 100Ghz-spaced as this is the most common and supported DWDM application.
If it is warranted this same principle can be applied using DWDM channels in the L-Band (1570nm-1610nm) as well as using channels that are only 50Ghz-spaced to increase channel count and density, and be easily supported with tunable SFP+ optics.
Tumblr media
Figure 2
Figure 2 shows how cascading DWDM filters over an existing CWDM span would connect. In this example we use a standard, off the shelf, DWDM filter that is equipped with 8 channels (ITU Ch 52-59).
Tumblr media
Figure 3
Tumblr media
Figure 4
Figures 3 and 4 show how 20 DWDM channels could be added across the 1530nm CWDM port and 30 DWDM channels can be added using the 1550nm CWDM port using C-band channels. We could apply this same philosophy to the 1570nm, 1590, and 1610nm ports as well but would require L-Band DWDM channels which aren’t widely supported today.
The Challenge
Now that we know a standard 8 Channel CWDM can be expanded to include another 50 channels you may be thinking “What are the potential downsides to using DWDM over CWDM?” and that would be a very good question to ask.
This concept has been available for many years and hasn’t become part of the mainstream deployment strategy for many network operators. Why not? The only limitation to using this concept from a performance standpoint is the added insertion loss of having both the CWDM and DWDM filters between the transceivers.
Tumblr media
Figure 5
Figure 5 shows the logical end-to-end for 8 channels of DWDM over an existing CWDM connecting two sites 30km apart. To keep losses lower, we will limit the new channels being added to 8 DWDM channels. Understanding that 10G DWDM optics have an overall power budget of 23db, we can see that adding the DWDM filters brings the overall link loss to 21.5db which falls just inside the power budget.
Because DWDM optics are built for longer reaches with higher power budgets — and CWDM is often used on shorter fiber spans, say under 30km — the insertion loss should be a non-issue. And if the loss is an issue, DWDM channels can be amplified (unlike CWDM), so placing a low-cost EDFA between the CWDM and DWDM filters could help extend the reach well beyond even 30km.
Reluctance to this concept also seems to come from not fully understanding the simplicity of passive WDM or even how to manage the engineering, installation, records, and inventory for having both technologies within the same span. If those challenges can be overcome, overlaying DWDM onto your existing CWDM can be a very efficient and cost-effective way to respond to the exponential need for bandwidth we are facing in today’s technology.
For network operators and service providers who have made a significant investment in CWDM and facing the need for bandwidth growth, this concept should be considered. Passive DWDM filters can be deployed quickly without impacting existing traffic, are a very low-cost alternative to complex active systems, and can equip your network for the future in very short order. Add the operational efficiency of 10G tunable DWDM optics, and this could be a home run for your network.
Demystifying DWDM for the DCI
If it is so easy and inexpensive, why aren’t all the data centers defaulting to using this on every fiber end? Well, that’s where things get a little tricky.
Whenever you say “DWDM” to a Data Networking person (and even some Service Provider engineers), their default reaction tends to go straight for large, complex, and expensive DWDM systems. Like Reconfigurable Optical Add Drop Multiplexing (ROADM) arrangements that are completely automated and perform optical switching, sub-signal aggregation, and even some L2 functions.
The truth is, DWDM is simply the combination and separation of circuits by wavelength — and only a small part of those larger systems. It is the basic technology that allows users to put 40+ distinct circuits on a given fiber, then separate them at the far end to connect to the individual switch ports.
As stated in the previously, this is often done passively, requiring no electrical power, software, annual maintenance agreement, etc. — and at a fraction of the cost of those more complex active systems.
So again, I ask: “Why aren’t more data center interconnects using this technology?”
Well, DWDM system design — or transport engineering — is usually not taught during Data Networking education courses. DWDM or transport are often thought of as completing ways of architecting a network, which means there are usually two camps: You are either a Data Network Engineer, or a Transport Engineer. Either way, one typically needs the other at some point in their network.
This is not to say you don’t need complex, software-controlled transport devices in your network. The truth is you likely do. What we are singling out here are a few applications where you can get what you need: Fiber capacity between two places quickly, inexpensively, and without sending anyone to school to get certified.
These applications can be:
• Point-to-Point Data Center Interconnects (DCI) on leased, or owned fiber. • Connections between campus facilities. • Network facilities between rooms or floors.
Using Passive DWDM can:
• Reduce or eliminate leased or new fiber builds. • Maximize the data rate per-fiber of installed fiber plants. • Drastically reduce Capex cost of high-capacity switches, complex DWDM systems, and reliance on service providers to maintain the connections. • Increase capacity of DCI connections in days not months.
How can we do this in a way we can understand?
It really comes down to Optical Link Engineering.
If you take the physical map of your network and zoom in on one span where there is a capacity bottleneck, it becomes a lot easier. For simplicity’s sake, we will focus on connecting 10G switch ports, across a single span between 2km and 50km long, making the math fairly simple.
For these locations, we just need to focus on two primary factors: Link Budget vs Link Loss, and Dispersion.
Link Budget vs. Link Loss
Every optic or transceiver has a minimum transmit power, and a minimum receiver sensitivity. By subtracting these two values, you are left with the link budget — or the total amount of power loss the signal can experience and still be legible by the receiver.
In a standard connection, you would calculate (or measure) the total loss of the fiber, patch panels, cassettes, and splices between the two optics. And if that is less than the link budget, then it should work . . . right?
Passive DWDM only adds a little more math to the Link Engineering. The optics at each end would need to be specific DWDM optics, and the filters will add more insertion loss at each end — but it is still, pretty much the same math.
For 10G DWDM optics, the link budget is typically in the 23db range. If a fiber span, with DWDM filters, has less than 23db of loss, the link should work. It’s simple math.
Or is it?
Dispersion
Another important factor we account for is Chromatic Dispersion (CD). This is a characteristic of single-mode fiber where, as a signal travels along a fiber route, it spreads out and can arrive at the far end slightly ahead or slightly behind schedule, making it difficult to be deciphered by the receiver.
The optics we are using will also establish how much dispersion it can tolerate before the signal becomes undetectable. This value is typically measured in picoseconds per kilometer per nanometer (ps/km/nm) or even simply by the optic’s distance rating. For instance, a DWDM optic-rated for 80km is often limited to 1360 ps/nm/km of dispersion. This is calculated based on traveling 80km on SMF28 type fiber with a CD rating of approximately 17 ps/nm/km.
So, there you have it. If your link falls inside the specifications defined by the optics on each end, you can deploy passive DWDM to maximize the capacity of your fiber plant, and save loads of time and money.
But what if the span exceeds the link budget or dispersion rating? No problem! The addition of Erbium Doped Fiber Amplifiers (EDFA) — to boost the signal power and/or passive Dispersion Compensation Modules (DCM) to account for excess dispersion between the DWDM filters — can help extend the reach and ensure the optics on each end perform to expectation to years to come.
Often when Transport Engineers speak to Data Network Engineers, it can seem like they are speaking different languages. That is to be expected. Specialized jargon or terminology, approaches to problems, and education can be vastly different.
If what your network truly needs is fiber capacity, lower cost of fiber infrastructure, and flexibility of lightning-fast circuit turn-up, passive and even amplified DWDM networks could be the perfect solution.
The 40-channel, two-fiber DWDM solution using 10g SFP+ optics is a great way to get 400G of capacity for links up to about 60km without the need for amplification or dispersion compensation. But what if you want higher data rates on the link? This is where things get a little tricky.
If we remove coherent optics from consideration due to the expense and complexity of deploying them, we see a pattern emerge. Here is a quick snapshot of the specifications of DWDM optics (non-coherent) we could consider:
Tumblr media
Figure 6
That table attempts to remove a bunch of “noise” or complexity in determining if a simple point-to-point two-fiber solution will work. What we see when we review those specs is that as data rate increases, the unmodified reach and power budget both decrease.
Tumblr media
Figure 7
Given these values, we can use the optical reach and power budget — along with the logical diagram shown in Figure 7 — to determine how long of a cross-connect we can achieve.
If we assume the 40-channel filter has a high-performance loss of 3db each, the patch panels have a loss of 0.5db each and the fiber loss is 0.25db per km (ITU-T G.657.A1 and G.652.D or better), then we can work backwards to see what the total span distance is per optic/data rate.
Tumblr media
Figure 8
Reviewing the numbers in Figure 8, we can see that once you go beyond the 10G data rate, the unmodified reach becomes the limiting factor. For this illustration, we can expect to be able to establish some versatile, yet high-capacity, cross-connects.
We had already reviewed the capacity of a passive 40-channel system using 10Gbps optics and know that it can support 400Ghz worth of capacity. Using the same methodology, we can create links with a total line capacity of 1Tbps @ 25Gbps per channel up to ~15km, 1.6Tbps @ 40Gbps per channel up to ~8.8km, and a 4Tbps total capacity up to ~1.5km in fiber length. Knowing this can help reduce the total number cross-connects needed between any two points.
Also, worth noting: Not all channels need to be the same data rate. If the link distance is designed to work with 100Gbps links (or approximately 1.7km), that same link will be able to support 10G, 25G and 40G channels as well.
Summary
Earlier we mentioned we were “removing a lot of noise” — and then continued to make a great deal of assumptions to come up with these numbers. For instance, Forward Error Correction (FEC) is required and must be available on the host device for the links 25Gbps and higher. We made assumptions about fiber type, used calculated losses for the fiber spans, and assumed the total SFP+, SFP28, QSFP+, and QSFP28 ports were available at each end.
What this proved is that by combining passive filters and DWDM optics, we can increase the capacity as much as 40x per cross-connect pair. All this needs no power (except the switches), can be turned up very quickly, requires only 1RU of rack space (not counting the switches or patch panels), and adds zero latency.
As should be clear by now, this is not meant to be taken as gospel, and every effort should be made to know the optic specifications you are considering, the fiber type of the cross-connect, and have measured fiber loss and dispersion values before deploying.
When planned correctly, your CWDM plus DWDM can mean increased capacity without a big financial outlay. And your network can perform better as well.
0 notes
optical-sintai · 4 years ago
Text
100G OTN Muxponder
https://www.optical-sintai.com/products/100g-otn-muxponder.html
OTNS8600 100G OTN is a 10x10G service convergence platform launched by Sintai Communication Co., Ltd.  It uses industry-leading chip technology, supports OTN related standards and can converge any 10-channel 10G services into 1-channel 100G services.
 100G OTN Muxponder Features
l Muxponder Mode for Aggregation Services 10x8/10G into 100G OTU4 DWDM Lineside
 l 100G Transponder and Regenerator Mode Optional
 l Client-side supports 10G LAN/WAN, 8G/10G FC, STM64/OC192, OTU2, OTU2e, 100GbE
 l Standards-based ITU-T G709 RSFEC, I.4, I.7
 l Supports full C-band DWDM and Coherent CFP for line side
 l Performance Monitoring
 l Remote management with 2x OSCs and 1x1000Base- T port
 l Automatic Laser Shutdown(ALS) for all ports
 100G OTN Muxponder Applications
The 100G pluggable card in OTNS8600 chassis is Sintai 100G Multi-protocol Muxponder/Transponder/Regenerator for high capacity transport solutions, it allows migration exist various and future services without replacement.
 100G OTN Muxponder Application Scenarios
l Data Center interconnection(DCI)
 l Metro Network Application
 l High Capacity and Long Haul Solution
 l Enterprise Line
 100G OTN Muxponder Technical Specifications
Operation Mode
 Muxponder Mode
10x 8/10G client and 1x 100G CFP line side
10G Ports
 Number of port
10
Interface
10xSFP+
Transceiver
The wavelength, Protocol, Distance depend on SFP+
 Protocol
Ethernet 10GbE-LAN/WAN SDH/SONET STM64/OC192
Storage 8G/10G FC G.709 OTN OTU2, OTU2e
100G Ports
 Number of port
1
Interface
CFP
Transceiver
DWDM CFP or Coherent CFP, Tunable wavelength
Protocol
100GbE
100G OTN OTU4
FEC Feature(Optional)
  FEC function
10G FEC: RSFEC(G.709 FEC), I.4, I.7
100G FEC: RSFEC(G.709 FEC)
100G Coherent CFP: SD-FEC
FEC gain(dB)
10.8 Max with Coherent CFP
Performance Monitoring
 Optical module
TX/RX power level,  wavelength, temperature
  Ports
OTU Section OTU Far Section ODU Path
ODU Far Path OTN FEC Correct error
OTN FEC uncorrected error
Diagnostic test
 Loopback
Facility loopback: local loopback, remote loopback
PRBS test
Supports
 Protection
 Line Protection
Work with OTNS8600 OLP additional
Management
 OSC out of band
2xOSCs, 1000BaseFx SFP
Ethernet port
1x10/100/1000Base-T, RJ45
Local craft
1xRS232, USB
Management protocol
SNMPv2, CLI(Telnet/SSH), web-based GUI
Environmental
 Operating Temperature
-5 to 50℃
Operating Humidity
5 to 95% (non-condensing)
Storage Temperature
-20 to +85℃
Mechanics
 Card type
Pluggable
Platform
OTNS8600, 1-slot 2RU 19" chassis with pluggable fan card
Dimensions (H x W x D mm)
88 x 437 x 230
Power Supply
 Card type
pluggable power supply
Power feed
Dual Redundant -48V DC
Power Consumption
240W MAX
Tumblr media
1 note · View note
monicaliuliublog · 6 years ago
Text
Why Use Tunable DWDM SFP+ Transceivers?
Why Use Tunable DWDM SFP+ Transceivers?
Tumblr media
The tunable DWDM SFP+ is one kind of DWDM SFP+ transceivers. They both can be used in the DWDM system. In the market, tunable DWDM SFP+ transceivers are often between two and four times more expensive than DWDM SFP+ transceivers. Thus, many may think DWDM SFP+ transceivers are enough in the DWDM system and wonder why tunable DWDM SFP+ transceivers are also needed. This post will introduce what is…
View On WordPress
0 notes
lanmexxoptical · 6 years ago
Photo
Tumblr media
DWDM-SFP+-ZR-Tu 10Gbps DWDM SFP+ Tunable Optical Transceiver, 80KM Reach For more details.http://www.szlanmexx.com/tunable-sfp80km-dwdm-optical-transceiver/ https://www.instagram.com/p/B400y34gwd6/?igshid=1sgby9chuzyv1
0 notes
megastephanieli-blog · 8 years ago
Text
Unveil 10G DWDM Tunable SFP+
Optical transceivers play a key role in handling all storage, data, voice and video traffic whether linking rack to rack, bottom to top of rack, data center to data center or enterprise networks to network. A range of flexible fiber optic transceiver modules cover all of network needs, such as SFP, SFP+, QSFP, QSFP28, CFP, etc. But for 10G DWDM tunable SFP+, many people might find themselves in the mire. When I first heard about this tunable transceiver, I thought that it would definitely bring revolutionary change to future metro Ethernet and optical transport networks with its important practical value for flexibly selecting working wavelength. So this article will unveil all of the things about tunable SFP+ optical transceiver.
About 10G DWDM Tunable SFP+
As the demand for great traffic capacity keeps growing, more optical transceivers of different wavelengths are needed. So tunable transceivers are recent innovations in DWDM transport systems. DWDM tunable transceivers are within the scope of DWDM transceivers, through which different DWDM wavelengths can be configured and output in the same optical module. But compare with conventional fixed-wavelength DWDM SFP+, the tunable SFP+ uses tunable laser as light sources in DWDM systems, which is tunable across the entire C-band with 96 channels on the ITU-T 50-GHz grid.
The tunable laser technology is firstly introduced by Oclaro, a leading supplier and and innovator of tunable laser and transceiver solutions. In 2013, it announced a standards-compliant, multi-rate tunable SFP+, which supports rates between 9.95 and 11.3 Gbps. But the first-generation tunable SFP+ optical transceivers were not widely adopted, because they did not meet the critical requirement of less than 1.5 W of power consumption at high operating temperatures. So in 2014, Oclaro demonstrated a new tunable SFP+ module based on a new Oclaro InP tunable laser platform. With the innovative new chip design and the use of next generation materials, the new module is fully compliant to the SFP MSA form factor and can operate at 1.5W at 70 degrees C with excellent OSNR tolerance. With the breakthrough of technology, the 10G tunable SFP+ transceivers become an important component for next generation data center, metro and regional optical network equipment. They meet the world’s growing bandwidth demands while reducing the size and power consumption for 10G connections.
Key Highlights of Tunable SFP+ Module:
(1) Fully compliant with MSA standard size based on SFF-8432 specification for Improved Pluggable Form Factor, rev. 5.1
(2) Tunable across the full C-band with 96 channels on the ITU-T 50GHz grid
(3) Multi-rate operation: 9.95 Gbit/s to 11.3 Gbit/s
(4) Operates at 1.5W at 70 degrees C with excellent OSNR tolerance
Advantages of Tunable SFP+
The tunable SFP+ transceivers are high-performance optics which can be tuned to the appropriate wavelength. The ability to operate on various wavelengths has set these optics apart from fixed-wavelength DWDM SFP+. Besides, These tunable optics will become popular among DWDM systems due to the several advantages.
Flexible network management
A tunable SFP+ transceiver will be remotely configured for a specific wavelength to support bandwidth changes as needed in Enterprise or Metro networks.
Reduced network inventory
One tunable SFP+ transceiver will support more than 80 different wavelengths. It will allow network operators to hold one tunable device code as opposed to 80+ fixed wavelength transceivers.
Reduced power consumption
It will provide a significant reduction in electrical power dissipation compared to other tunable solutions.
Compact and high-density form factor
The new tunable SFP+ transceiver will be about the size of a pack of gum, saving valuable real estate in data centers.
Increased network capacity
The tunable SFP+ will double the number of channels supported in this compact transceiver form factor. Upgrading to 50GHz channel spacing doubles the capacity potential in Enterprise and Metro networks.
Conclusion
The advent of 10G DWDM tunable SFP+ transceivers in the market will accelerate the trend for pace-, power-, and cost-efficient network solutions. Because tunability is critical for minimizing inventory and enabling flexible rapid service provisioning. Although now the market share for DWDM tunable SFP+ transceiver is not big enough, the huge potential will be demonstrated in the near future.
0 notes
qing-chloe-blog · 8 years ago
Text
Getting to Know About DWDM Tunable Transceiver
DWDM (Dense Wavelength Division Multiplexing) technology offers a great way to boost channel capacity and transmission speed for optical systems. And it has been used in many applications, especially in long haul transmissions. In these applications, DWDM optic transceiver plays an important role. This post intends to introduce a special kind of DWDM transceiver—tunable transceiver.
What Is a DWDM Tunable Transceiver?
DWDM tunable transceiver is a unique transceiver that can select the channel or “color” the laser emits. Put it in simple terms, most WDM systems generally use optical transceivers with a fixed wavelength. That means there is a spare for each wavelength in use. But tunable transceiver has the capacity to adjust the wavelength of the transceiver on-site to meet different requirements. That’s the most distinguished point of tunable transceivers. Another characteristic of tunable transceivers is that the tunable function only lies in DWDM system due to the dense wavelength grid of DWDM.
Typically the tunable transceivers are for the C-band 50GHz. Around 88 different channels can be set with intervals of 0.4nm, which is the 50GHz band. These optics usually start from channel 16 up to 61 but this depends on the manufacturer’s router/switch and which channels it supports. And the transmission distance of DWDM tunable transceiver over single mode fibers is up to 80km and data speed is up to 10Gbps.
In addition, the DWDM tunable transceivers are available for a wide range of equipment like routers, switches and servers. With these transceivers, network operators can change wavelengths unlimited within the C-band DWDM ITU grid.
Types of DWDM Tunable Transceiver
In today’s market, there are mainly two kinds of DWDM tunable transceivers.
Tunable XFP transceiver
Tunable XFP transceiver are manufactured with an integrated full C-band tunable transmitter and a high performance receiver. Wavelengths can be set as default in 50GH DWDM ITU grid. The maximum distance of this transceiver on a single mode fiber is up to 80km. In the market, different manufactures may name tunable XFP transceiver in different forms. For example, Cisco may name it as “ONS-XC-10G-C” while Juniper version is “XFP-10G-CBAND-T50-ZR”. Besides, this transceiver be tuned in different ways.
Tunable SFP+ Transceiver
The tunable SFP+ optical transceiver is a full duplex serial electric, serial optical device. Its transmit and receive functions are contained in a single module that provides a high-speed serial link at 9.95 to 11.3Gbps signaling rates. And the transceiver supports the enhanced SFP+ specification. Here is a simple picture showing its working process.
On the transmit side, the serial data are passed from the electrical connector to a modulator driver. The modulator driver modulates a C-band cooled tunable transmitter, enabling data transmission over up to 80km on single mode fiber through an industry standard LC connector. On the receive side, the 10G optical data stream is recovered from an APD through a transimpedance amplifier to the electrical connector.
Benefits of DWDM Tunable Transceiver
Tunable transceivers have progressed rapidly in recent years. They have become popular in DWDM transmission systems because of their multi-faceted abilities and ease of spare use. Especially when combined with ROADM (reconfigurable optical add-drop multiplexers), DWDM tunable transceivers become a powerful transmission component. In simple terms, DWDM tunable transceivers have benefits below.
A wide tuning range. Compared with common fixed wavelength optical transceivers, DWDM tunable transceivers can save time and money in the long run.
Be more suitable for 100G systems by reducing line-width. The ability to adjust wavelengths provides more convenience to fit different transmitting needs.
Tunable lasers are capable of switching wavelengths in just nanoseconds. Tunable laser is a vital part of tunable transceivers. It is a high-speed and high-performance optics, enabling the needed wavelength to be reprogrammed in seconds.
Summary
DWDM tunable transceivers are able to function on various wavelengths and to adjust wavelengths according to users’ needs, making them prevalent among DWDM systems. This article mainly introduces the basis and two types of DWDM tunable transceivers. If you want to know more about it, please visit FS.COM.
Sources:http://www.chinacablesbuy.com/getting-know-dwdm-tunable-transceiver.html
0 notes
endlesssuppliesnl · 6 years ago
Text
Cisco 10G Tunable DWDM Limiting Interface Transceiver
The Optical Networking and Communication Conference & Exhibition 2019. Learn about the benefits of transceivers that work with any SFP+ port. More details: http://cs.co/9005EeQPR. http://bit.ly/2PtlEfz Cisco April 25, 2019 at 08:14PM https://ift.tt/eA8V8J
0 notes
endlesssuppliesco · 6 years ago
Text
Cisco 10G Tunable DWDM Limiting Interface Transceiver
The Optical Networking and Communication Conference & Exhibition 2019. Learn about the benefits of transceivers that work with any SFP+ port. More details: http://cs.co/9005EeQPR. http://bit.ly/2W2Wk2s Cisco April 25, 2019 at 10:32PM http://bit.ly/2Zzuop0 https://ift.tt/eA8V8J Marcas
0 notes
endlesssuppliesde · 6 years ago
Text
Cisco 10G Tunable DWDM Limiting Interface Transceiver
The Optical Networking and Communication Conference & Exhibition 2019. Learn about the benefits of transceivers that work with any SFP+ port. More details: http://cs.co/9005EeQPR. http://bit.ly/2GHBlNg Cisco April 25, 2019 at 08:08PM http://bit.ly/2VpAGsa https://ift.tt/eA8V8J Marken
0 notes
endlesssuppliesmx · 6 years ago
Text
Cisco 10G Tunable DWDM Limiting Interface Transceiver
The Optical Networking and Communication Conference & Exhibition 2019. Learn about the benefits of transceivers that work with any SFP+ port. More details: http://cs.co/9005EeQPR. http://bit.ly/2Ptxu9n Cisco April 25, 2019 at 08:13PM http://bit.ly/2PwsL6E https://ift.tt/eA8V8J Marcas
0 notes
gbicshop · 5 years ago
Text
The 5 advantages of DWDM technology networks
Optical Networks offer a wide variety of features and possibilities for a stable and high-speed network. One of those features is the Dense Wavelength Division Multiplexing or DWDM technology. This technology converts data that comes from different sources together on the same optical fiber, however each optical signal is carried on its own optical wavelength. Using this technology, today, up to 32 optical wavelengths can be driven on one and only optical fiber.
GBIC-SHOP Blueoptics© offer a range of Optical Transceivers that can support DWDM technology. DWDM SFP transceivers are used for bandwidth up to 3GB/s, DWDM XFP transceivers are used for bandwidth up to 11.3 GB/s, DWDM SFP+ transceivers are used for bandwidth up to 10.3 GB/s. Across all of these there is an option of choosing models with fixed DWDM settings if needed. However, a more flexible solution exists with the introduction of Tunable XFP or Tunable SFP+ transceivers which offer the possibility to set the wavelength range according to the transceiver used. Read More.
 https://www.gbic-shop.de/blog/en/102-dwdm/298-the-5-advantages-of-dwdm-technology-networks.html
0 notes
monicaliuliublog · 5 years ago
Text
The ABCs of Tunable SFP+ & Tunable XFP DWDM Optics
The ABCs of Tunable SFP+ & Tunable XFP DWDM Optics
Tunable XFP transceiver and tunable SFP+ transceiver are the hot-swap DWDM Tunable optics used in 10Gbps SONET/SDH, Fibre Channel and Gigabit Ethernet applications. Tunable DWDM transceiver is a unique device which allows customers to set the channel that the laser emits. Generally, the tunable optics is for C-Band 50GHz, starting from channel 16 up to 61 (depends on the manufacturer of the…
View On WordPress
0 notes
endlesssuppliesat · 6 years ago
Text
Cisco 10G Tunable DWDM Limiting Interface Transceiver
The Optical Networking and Communication Conference & Exhibition 2019. Learn about the benefits of transceivers that work with any SFP+ port. More details: http://cs.co/9005EeQPR. http://bit.ly/2Pyfyuq Ciscohttp://ifttt.com/images/no_image_card.pngApril 25, 2019 at 09:32PM https://ift.tt/eA8V8J http://bit.ly/2UAzSMs https://ift.tt/eA8V8J Marken
0 notes
loudlyfreewerewolf-blog · 7 years ago
Text
CWDM/DWDM ITU Channel Руководство
CWDM (Грубое Спектральное Мультиплексирование) и DWDM (Плотное Волновое Мультиплексирование) позволяют носителям предоставлять больше услуг по своей существующей волоконной инфраструктуре путем объединения нескольких длин волн на одном волокне. FS предлагает серию решений и товаров CWDM/DWDM, которые помогают снизить выделение волокон надежным и экономичным способом.
CWDM ITU Channel ��бзор
ITU-T G.694.2 определяет длину волны 18 (C1-C18) для CWDM передачи в диапазоне от 1270 до 1610 нм, разнесенных на расстоянии 20 нм. Ниже представлена полная сетка CWDM. Каждый канал CWDM прозрачен для скорости и типа данных, означая, что любое соединение SAN, WAN, голосовых услуг и видеоуслуг может транспортироваться одновременно по одному волокну или паре волокон.
Быстрый Просмотр FS CWDM Оптического Модля
FS CWDM модули доступны со всеми 18 длиной волны CWDM, включая CWDM SFP, CWDM SFP+, CWDM XFP и 3G SDI CWDM SFP модули. Эти транс��веры CWDM могут применяться при передаче данных с 20 до 120 километров.
20KM CWDM Модули
CWDM SFP 20KM
CWDM SFP+ 20KM
CWDM XFP 20KM
3G SDI CWDM SFP 20KM
40KM CWDM Модули
CWDM SFP 40KM
CWDM SFP+ 40KM
CWDM XFP 40KM
3G SDI CWDM SFP 40KM
80KM CWDM Модули
CWDM SFP 80KM
CWDM SFP+ 80KM
CWDM XFP 80KM
120KM CWDM Модули
CWDM SFP 120KM
FS CWDM Mux/Demux Решение
В дополнение к различным модулям CWDM/DWDM, FS также предоставляет широкий спектр модулей CWDM Mux/Demux, который выступает в качестве основного структурного элемента при расширении и обновлении сети. FS CWDM Mux/Demux имеет несколько разных типов в отношении типа линии, номера канала и специальных портов.
DWDM ITU Channel Обзор
ITU G.694.1 стандартный регион DWDM составляет от 1528,77 нм до 1563,86 нм, который находится в основном в диапазоне C. DWDM может иметь интервал длин волн 100 ГГц (0,8 нм) для 40 каналов или интервал 50 ГГц (0,4 нм) для 80 каналов. Ниже показана полная сетка каналов для DWDM 100 ГГц.
Быстрый Просмотр FS DWDM Оптического Модля
FS CWDM модули доступны со всеми 44 длинами волн DWDM, включая DWDM SFP, DWDM SFP+, DWDM XFP и Tunable DWDM модули, которые поддерживают дальность передачи данных макс.до 120 км. Перестраиваемые модули Tunable (DWDM) могут способен поддерживать определенный канал в оптической сети DWDM, позволяя удаленно изменять длины волн в программном обеспечении.
40KM DWDM Модули
DWDM SFP 40KM
DWDM SFP+ 40KM
DWDM XFP 40KM
80KM DWDM Модули
DWDM SFP 80KM
DWDM SFP+ 80KM
Tunable DWDM SFP+ 80KM
DWDM XFP 80KM
Tunable DWDM XFP 80KM
120KM DWDM Модули
DWDM SFP 120KM
FS DWDM Mux/Demux Решение
DWDM Mux/Demux используется в сетях дальнего расстояния, чтобы облегчить истощение волокна и затраты, связанные с запуском нового волокна. Каждый канал DWDM может передать данных макс.до 100G, а расстояния более 1000 километров могут быть достигнуты с использованием оптических усилителей.
CWDM ITU Channel
0 notes
megastephanieli-blog · 8 years ago
Text
10G DWDM Tunable XFP - Up to 80 km Reach
With the spread of cloud computing and mobile broadband service, the volume of communications traffic has rapidly increased. In order to enable high-capacity optical networks, using a single optical fiber for optical signals of several different wavelengths in DWDM system is widely used. For this reason, tunable transceiver that enables ROADM functionality in next-generation networks is becoming more and more popular. In today’s market, there are mainly two kinds of tunable DWDM transceivers: tunable XFP and tunable SFP+. This article will take you to explore the DWDM C-band tunable XFP transceiver with 40 / 80 km transmission distance options.
Tumblr media
Tunable XFP Transceiver
Tunable XFP transceiver is an integrated fiber optic transceiver that provides a high-speed serial link at signaling rates from 9.95 Gbps to 11.35 Gbps. It complies with the ITU-T G.698.1 S-D100S1-2D standard with 50GHz channel spacing for SONET/SDH, IEEE DWDM 10GBASE-ZR for 40 or 80 km reach (Ethernet), and DWDM 10G FC (Fibre Channel) for 40 or 80 km reach applications. Tunable XFP can be tuned from channel C17 (1563.86nm) to C61 (1528.38nm). The maximum distance of this transceiver on a single mode fiber is up to 80 km. As mentioned above, tunable XFP optical transceiver is a full-duplex serial electric, serial optical device with both transmit and receive functions contained in a single module. On the transmit side, the 10 Gbps serial data stream is recovered, retimed, and passed to a modulator driver. The modulator driver biases and modulates a C-band-tunable integrated laser Mach-Zehnder (ILMZ), enabling data transmission over singlemode fiber through an industry-standard LC connector. On the receive side, the 10 Gbps optical data stream is recovered from an APD/transimpedance amplifier, retimed, and passed to an output driver. This module features a hot-pluggable XFI-compliant electrical interface. Here is a simple picture showing its working process.
Tumblr media
Tunable XFP Optics Specifications:
50 GHz ITU channel spacing with intergrated wavelength locker
Available in all C-Band Wavelengths on the DWDM ITU grid
Available distances 40 or 80 km
Supports 9.95Gb/s to 11.35Gb/s
Built-in Digital Diagnostic Functions
Tempereature Range: -5°C to 70°C
Two Transmission Distance Options: 40 km or 80 km
There are two transmission distance options for tunable XFP transceiver: 40 km or 80 km. Tunable XFP DWDM 80 km transceiver is designed for long distance optical communications up to 80 km with signaling rates up to 10Gbps. Obviously, the main difference is transmission distance. On account that 10G tunable DWDM XFP optical transceiver provides digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters: transmitted optical power, received optical power, transceiver temperature, laser bias current and transceiver supply voltage. Therefore, the differences between 40 km tunable XFP and 80 km tunable XFP mainly lie on theses parameters. One thing to note is that 40 km tunable XFP optics is designed with high performance PIN receiver, while the 80 km tunable XFP transceiver is APD receiver. The APD (avalanche photodiode) receiver employed in these extended-reach optical transceivers has an enhanced sensitivity to allow for these extended distance fiber runs. However, it is to be noted that the input power is typically between -7 and -24 dBm. Therefore, the receiver sensitivity between these two distance has a big difference. Generally, the max receive dBm of 40 km tunable XFP transceiver is -15, while the 80 km tunable XFP transceiver is -24. And for power budget, 40 km tunable XFP is 14dB while a distance up to 80 km is up to 22dB power budget. The following table lists the main differences.
Tumblr media
Conclusion
In general, the channel switching of tunable switches can enable the service operators to turn up circuits faster and reduce their sparing costs dramatically in today’s DWDM systems. On the other hand, tunable transceiver is usually two or four times more expensive than the regular static DWDM optical module, because a special tunable laser is applied in it. Tunable XFP transceiver provides a full C-band window covering 1528nm to 1566nm for DWDM optical networks, which meets the need of rapid increase in the volume of communications traffic from telecom carrier and operator. The tunable DWDM XFP module can replace the fixed DWDM channel XFP transceivers that are currently used, while reduce the large stock since all wavelengths can now be covered with one transceiver module.
Tumblr media
0 notes