Tumgik
#Veillonella
mikeo56 · 3 months
Text
Despite their small size, gut bacteria wield large influence over the effectiveness of certain cancer drugs. Researchers have now found that the ratio of specific microbial communities in the gut can help to predict who will respond to next-generation drugs for treating some kinds of cancer1.
The findings will also help to identify healthy volunteers who could donate faecal bacteria to transfer into the intestines of people who do not respond to these drugs, a procedure known as faecal microbiome transplantation, study co-author Laurence Zitvogel, an immunologist and oncologist at the Gustave Roussy Cancer Campus in Villejuif, France, wrote in an e-mail to Nature.
The work “is a breakthrough from a diagnostic point of view”, says Fabio Grassi, an immunologist at the Institute for Research in Biomedicine in Bellinzona, Switzerland. The findings, he says, also highlight how the delicate balance of gut microbial species can affect the success of high-stakes therapies, such as immune checkpoint inhibitors. This treatment helps the immune system to recognize and attack cancer cells and is the focus of the new research. The findings were published today in Cell.
Search for helper bacteria
Over the past decade, Zitvogel and others have investigated how gut microbes interact with these cancer treatments in ways that activate the immune system. “Everyone was looking for that single bug that [could] improve response to immunotherapy across cancer types — and it was elusive,” says Jennifer Wargo, a physician-scientist at the University of Texas MD Anderson Cancer Center in Houston. In 2018, Wargo published a study2 — alongside similar ones by Zitvogel3 and a third team4 — that linked specific gut bacteria to positive clinical outcomes following immunotherapy treatment in mice and people with cancer. But there was little agreement on which microbial species were associated with treatment response.
Wargo says that Zitvogel’s latest research helps to answer why the search for a single gut microbe that could boost responses to cancer immunotherapy was so challenging. Instead of focusing on individual microbial species, the work shows that the overall make-up of microbial communities in the gut influences a person’s response. “It’s all about the community structure,” Wargo says.Why are so many young people getting cancer? What the data say
Zitvogel and her colleagues analysed faecal samples from 245 people with lung cancer and identified two groups of microbial species: group one contained 37 microbes, such as Veillonella species, that are linked to resistance to immune checkpoint inhibitors; group two included 45 bacterial species associated with positive responses. People with lung cancer with response-associated bacteria lived longer than did those with resistance-associated bacteria.
Next, the researchers developed a person-specific score based on the ratio between group one and group two. The score also included quantification of Akkermansia muciniphila, a microbe that has gained attention owing to its potential role in influencing immune responses.
When tested on hundreds of people with various types of cancer, including kidney cancer, the score could predict in most cases who was likely to respond to treatment with immune checkpoint inhibitors. The score will soon be transformed into a diagnostic assay, Zitvogel wrote.
Possible predictive tool
The tool could help to identify people with cancer who might need microbiome-targeting therapies to boost their response to immunotherapy, but it requires further validation before it can be used in the clinic, says Francesca Gazzaniga, a biologist at Massachusetts General Hospital in Boston.
She also notes that the study focused on participants in Canada and France, so the score might not be as predictive in populations living in different areas and eating different diets, Gazzaniga says. “This is a good start, and if we understand more about the underlying mechanisms — why these sets of bacteria are important — we might be able to get better targeted therapies.”
Research on the role of microbiota in the response to immunotherapy began years ago, yet there have been no tangible benefits for patients so far, says Maria Rescigno, an immunologist at Humanitas University in Milan, Italy. All the same, Rescigno anticipates that doctors will integrate the tool developed by Zitvogel and her team into practice. “If clinicians adopt this, it could lead to a significant change for the patients.”
0 notes
Link
Welcome to our exploration of the complex world inside our mouths a universe teeming with bacteria that play critical roles in maintaining dental health. Often misunderstood, these microscopic organisms, including the likes of Streptococcus salivarius, Streptococcus mitis, Veillonella, Lactobacillus, and Streptococcus sanguinis, are not just passive inhabitants but active participants in oral health. This article delves into how these bacteria contribute to oral hygiene, prevent dental diseases, and balance the oral microbiome, shedding light on their indispensable functions and the delicate balance they help maintain. I. Streptococcus salivarius:  Diving into the world of oral microbiota, let's spotlight "Streptococcus salivarius" a critical yet frequently underestimated bacterium that plays a vital role in maintaining oral health. 1. Streptococcus salivarius: A Primer. Streptococcus salivarius thrives in the human mouth and throat, establishing itself as one of the first bacteria to colonize these areas in newborns. Its presence is not by chance but by necessity, offering several protective functions crucial for oral health. 2. The Antimicrobial Shield: A significant action of Streptococcus salivarius is its production of bacteriocins. These antimicrobial peptides directly target and suppress the growth of harmful bacteria, preventing them from causing disease. This natural antibiotic-like function is vital in maintaining a balanced oral microbiome and protecting against infections. 3. Food Residue Decomposition: Beyond its antimicrobial properties, Streptococcus salivarius helps break down leftover food particles in the mouth. This activity is crucial because these particles can otherwise serve as a breeding ground for pathogenic bacteria, leading to tooth decay and gum disease. By metabolizing these residues, Streptococcus salivarius helps keep the oral environment clean and less hospitable to harmful microbes. 4. Immune System Engagement: Furthermore, Streptococcus salivarius has a role in immune modulation. It boosts oral defenses by stimulating the production of salivary antibodies, enhancing the mouth's ability to fight off invaders. This not only keeps the local environment safe but also aids in general immune surveillance within the oral cavity. 5. The Essential Role of Streptococcus salivarius in Oral Health: The role of Streptococcus salivarius in oral health is multifaceted, encompassing protection, cleaning, and immune support. Its actions are essential for preventing disease and maintaining a stable environment in the mouth. Despite its critical roles, it often remains an unsung hero in the backdrop of oral microbiota discussions. By understanding and appreciating the role of Streptococcus salivarius, we can better appreciate the complex interactions that sustain oral health and the intrinsic value of our body's natural protectors. Streptococcus salivarius is not just a resident of our mouth; it's a guardian that helps ensure the health and balance of our oral ecosystem. II. Streptococcus mitis: Streptococcus mitis is an integral part of the oral microbiome, playing a vital role in sustaining oral health. Found naturally in the human mouth, this bacterium resides on the surface of teeth, gums, and oral mucosa, where it contributes to the complex ecosystem of microorganisms that protect and maintain oral tissues. 1. Protective Functions: Streptococcus mitis is known for its protective qualities in the oral cavity. It produces natural antibiotics called bacteriocins, which help control the population of harmful bacteria. By inhibiting the growth of pathogens that can cause oral diseases such as tooth decay and gingivitis, Streptococcus mitis acts as a natural safeguard for oral health. 2. Biofilm Formation: A key aspect of Streptococcus mitis' role is its ability to form biofilms on the surfaces of teeth. These biofilms are communities of bacteria that provide a protective barrier against external pathogens. While biofilms can sometimes contribute to dental plaque and disease, the biofilm formed by Streptococcus mitis is generally beneficial, helping to stabilize the oral microbiome and prevent the colonization of harmful bacteria. 3. Immune Response and Healing: Streptococcus mitis also plays a role in modulating the immune response within the oral cavity. It interacts with immune cells, promoting responses that can prevent inflammation. Additionally, it is involved in the healing processes of oral tissues, aiding in the recovery from injuries and preventing infections. 4. Impact on Overall Oral Health: The presence of Streptococcus mitis in the mouth correlates with a balanced microbial environment, which is essential for maintaining oral health. Its ability to compete with and suppress pathogenic bacteria, its contribution to biofilm stability, and its role in immune modulation collectively help to prevent oral diseases and maintain the health of oral tissues. 5. The Integral Role of Streptococcus mitis in Oral Health Maintenance: Streptococcus mitis is more than just a simple inhabitant of the oral cavity; it is a crucial player in the prevention of disease and the promotion of health within the mouth. Its diverse functions underscore the complexity and importance of maintaining a balanced oral microbiome for overall health and well-being. III. Veillonella:  Veillonella is a genus of bacteria that are anaerobic and naturally inhabit the human oral cavity. These bacteria are significant contributors to the oral ecosystem, interacting with other microorganisms and influencing overall oral health. 1. Symbiotic Relationships: Veillonella bacteria are known for their symbiotic relationships with other oral microbes, particularly those that produce lactic acid, such as Streptococcus species. Veillonella species metabolize l lactic acid produced by these bacteria, converting it into weaker acids and carbon dioxide. This process not only helps to regulate the pH level within the oral cavity but also reduces the potential for acid-induced enamel erosion, which can lead to cavities. 2. Role in Oral Biofilms: Veillonella are crucial in the formation and maintenance of dental biofilms, or plaque. While plaque formation is often associated with negative outcomes like tooth decay and gum disease, the presence of Veillonella can be beneficial in stabilizing the microbial community. These bacteria contribute to the complexity and resilience of biofilms, which can protect against more harmful pathogens that might otherwise dominate the environment. 3. Impact on Gum Health: Furthermore, Veillonella has been studied for its potential role in gum health. While its exact role is complex and context-dependent, research indicates that Veillonella can be involved in both the promotion of gum health and the progression of periodontal diseases, depending on the overall balance of the oral microbiome and environmental factors. 4. Overall Influence on Oral Health: The impact of Veillonella on oral health is multifaceted. By metabolizing acids, these bacteria help maintain a neutral pH in the mouth, which is crucial for preventing demineralization of teeth and promoting remineralization. Additionally, their role in biofilm formation can either protect against or contribute to oral diseases, highlighting the importance of a balanced microbial ecosystem for optimal oral health. 5. The Pivotal Role of Veillonella in Oral Ecosystem Balance: Veillonella species are more than just passive residents of the oral cavity; they are active participants in oral health maintenance. Their ability to interact with other bacteria, influence biofilm dynamics and regulate the oral environment's pH makes them essential players in the oral microbiome. Understanding and managing these bacteria could be key to enhancing oral health strategies and interventions. IV. Lactobacillus: Lactobacillus is a genus of bacteria well recognized for its role in the digestive system but also plays a significant part in maintaining oral health. These bacteria are considered probiotics, beneficial microbes that provide health benefits when present in appropriate amounts. 1. Probiotic Benefits in the Oral Cavity: Lactobacilli are naturally present in the oral cavity and contribute to its health by competing with harmful bacteria for space and nutrients. They produce lactic acid, which, although potentially erosive in excess, in controlled amounts can inhibit the growth of pathogenic organisms. This protective function is crucial in preventing the onset of oral diseases such as dental caries and periodontal disease. 2. Impact on Dental Caries: One of the most notable impacts of Lactobacillus in the oral environment is its role in preventing dental caries. Through the production of bacteriocins antimicrobial peptides Lactobacillus can suppress the growth of cariogenic bacteria like Streptococcus mutans. Studies have shown that higher levels of Lactobacillus are associated with a lower incidence of cavities, especially when the bacterial balance is properly maintained. 3. Role in Gum Health: Lactobacillus also positively affects gum health by modulating the local immune response. Its presence helps in reducing inflammation, a key factor in the development of periodontal diseases. By stimulating an anti-inflammatory response, Lactobacillus helps maintain healthy gums and prevents the progression of gum disease. 4. Overall Contribution to Oral Health: Lactobacillus’s impact on oral health extends beyond simple microbial antagonism. It helps maintain a balanced pH in the mouth, enhances the immune response, and competes with pathogens, thereby promoting a healthier oral microbiome. This holistic contribution is crucial for long-term oral health, emphasizing the importance of a balanced diet and possibly the inclusion of probiotic supplements specifically designed for oral health. 5. The Multifaceted Benefits of Lactobacillus in Oral Health: Lactobacillus species are indispensable allies in the fight against oral diseases. Their probiotic properties not only help in directly combating pathogens but also enhance overall oral health through various mechanisms. Effective management of these beneficial bacteria could lead to improved strategies for preventing and treating oral health issues. V. Streptococcus sanguinis: Streptococcus sanguinis" is a prominent member of the oral microbiota, playing a crucial role in maintaining oral health. This bacterium is part of the streptococci family, which are early colonizers of the oral cavity, particularly on the surface of teeth. 1. Role in Oral Colonization: Streptococcus sanguinis is one of the first bacteria to colonize the dental surface after tooth eruption. Its ability to adhere to tooth enamel allows it to form a part of the dental plaque that, in moderation, is essential for a stable oral microbial community. By establishing itself early, it sets the stage for other beneficial oral bacteria and helps prevent colonization by more harmful microbial species. 2. Antagonistic Effects on Pathogens: A key function of Streptococcus sanguinis is its antagonistic relationship with pathogenic bacteria, particularly the notorious Streptococcus mutans, a major contributor to tooth decay. Streptococcus sanguinis produces hydrogen peroxide as a metabolic byproduct, which is toxic to many other bacteria, including S. mutans. This inhibitory effect helps to protect the teeth from decay by limiting the growth of cariogenic bacteria. 3. Contribution to Oral Health Balance: The presence of Streptococcus sanguinis in the oral ecosystem is a marker of health and balance. It is associated with healthy oral conditions and its abundance can be an indicator of a well-maintained oral microbiome. The bacterium's activities help maintain an ecological balance by competing with and controlling the populations of harmful bacteria. 4. Impact on Overall Oral Wellbeing: The activity of Streptococcus sanguinis in the mouth has broader implications for oral health. It plays a part in the complex interactions within the biofilm, influencing the overall health dynamics of the mouth. Its competitive exclusion of harmful bacteria and its role in biofilm formation contribute significantly to dental health and the prevention of oral diseases. 5. Strengthening Oral Health with Streptococcus sanguinis: Streptococcus sanguinis is more than just a passive inhabitant of the oral cavity; it actively contributes to oral health through its competitive and inhibitory actions against pathogens. Understanding and promoting the growth of such beneficial bacteria could be key to natural and effective oral health strategies. Conclusion: In this detailed examination of key oral bacteria, we've uncovered the multifaceted roles these microorganisms play in sustaining oral health. From protecting against pathogens to promoting immune responses and maintaining the stability of the oral ecosystem, each bacterium has a unique contribution that is vital for our well-being. Understanding the impact and management of these bacteria not only enlightens us about our oral health but also underscores the potential for future dental treatments and preventive measures. Embracing the complexity of our oral microbiota offers exciting opportunities to enhance our overall health and paves the way for innovative approaches in dental care.
0 notes
rnomics · 6 months
Text
Microorganisms, Vol. 12, Pages 610: Identification of the Microbiome Associated with Prognosis in Patients with Chronic Liver Disease
We investigated the prognostic role of the gut microbiome and clinical factors in chronic liver disease (hepatitis, cirrhosis, and hepatocellular carcinoma [HCC]). Utilizing data from 227 patients whose stool samples were collected over the prior 3 years and a Cox proportional hazards model, we integrated clinical attributes and microbiome composition based on 16S ribosomal #RNA sequencing. HCC was the primary cause of mortality, with the Barcelona Clinic Liver #cancer staging system-derived B/C significantly increasing the mortality risk (hazard ratio [HR] = 8.060; 95% confidence interval [CI]: 3.6509–17.793; p < 0.001). Cholesterol levels < 140 mg/dL were associated with higher mortality rates (HR = 4.411; 95% CI: 2.0151–9.6555; p < 0.001). Incertae sedis from Ruminococcaceae showed a protective effect, reducing mortality risk (HR = 0.289; 95% CI: 0.1282 to 0.6538; p = 0.002), whereas increased Veillonella presence was associated with a higher risk (HR = 2.733; 95% CI: 1.1922–6.2664; p = 0.017). The potential of specific bacterial taxa as independent prognostic factors suggests that integrating microbiome data could improve the prognosis and treatment of chronic liver disease. These microbiome-derived markers have prognostic significance independently and in conjunction with clinical factors, suggesting their utility in improving a patient’s prognosis. https://www.mdpi.com/2076-2607/12/3/610?utm_source=dlvr.it&utm_medium=tumblr
0 notes
futureofscience-vn · 1 year
Text
“FIRST SIGHT” VỀ HỆ VI SINH ĐƯỜNG RUỘT
Tumblr media
Định nghĩa: phần lớn vi khuẩn đường ruột không gây bệnh và sống chung với các tế bào ruột trong mối quan hệ cộng sinh. Nói cách khác, hệ thống miễn dịch đã cùng tiến hóa để cùng sống “hợp tác” với hệ vi sinh vật có lợi, đồng thời thực hiện chức năng chống lại các vi sinh vật gây bệnh xâm lấn
Đặc điểm chung:
Hệ vi sinh vật đường ruột ở trẻ sơ sinh có vẻ “lộn xộn”, nhưng nó bắt đầu giống với hệ vi sinh vật của người trưởng thành khi được 3 tuổi
Vẫn có những biến đổi về thời gian và không gian trong sự phân bố của vi sinh vật từ thực quản đến trực tràng trong suốt cuộc đời
Tương tác giữa vi khuẩn và vật chủ rất phức tạp
Vi sinh vật đường ruột có vai trò chức năng quan trọng trong việc duy trì đường ruột ở người bình thường
Yếu tố đóng vai trò hình thành hệ vi sinh đường ruột của một người:
Phương thức sinh nở của người mẹ sẽ ảnh hưởng đến hệ vi sinh đường ruột của trẻ (đường âm đạo hoặc sinh mổ) 
Chế độ ăn uống khi còn sơ sinh (sữa mẹ hoặc sữa bột cho trẻ sơ sinh) và khi trưởng thành (ăn thuần chay hay thịt, cá)
Sử dụng kháng sinh hoặc các phân tử giống như kháng sinh. Do kháng sinh sẽ làm thay đổi lâu dài của hệ vi sinh vật đường ruột khỏe mạnh bình thường và sự chuyển giao ngang của các gen kháng thuốc có thể dẫn đến ổ chứa các sinh vật có nguồn gen đa kháng thuốc
Hệ vi sinh vật đường ruột khi một người từ thực quản xa đến đại tràng
Streptococcus dường như là chi thống trị ở thực quản xa, tá tràng và hỗng tràng
Helicobacter là chi chiếm ưu thế hiện diện trong dạ dày và xác định toàn bộ cảnh quan vi khuẩn của hệ thực vật dạ dày. Khi Helicobacter pylori (H. pylori) cư trú trong dạ dày như một cộng sinh, thì có một sự đa dạng phong phú được tạo thành bởi các chi chiếm ưu thế khác như Streptococcus (chiếm ưu thế nhất), Prevotella , Veillonella và Rothia. Sự đa dạng này giảm đi khi H. pylori có kiểu hình gây bệnh.
Firmicutes và Bacteroidetes chiếm ưu thế sống trong ruột già và tỉ lệ của chúng liên quan đến tình trạng bệnh tật.
Bên cạnh các chi từ ngành Firmicutes và Bacteroidetes, ruột già của con người cũng chứa mầm bệnh chính, ví dụ: các loài như Campylobacter jejuni, Salmonella enterica, Vibrio cholera và Escherichia coli (E. coli) và Bacteroides fragilis, nhưng với số lượng thấp (0,1% hoặc ít hơn toàn bộ hệ vi sinh vật đường ruột)
Thành phần của hệ vi sinh đường ruột
Một nghiên cứu quy mô lớn gần đây của Frank và cộng sự đã ước tính rằng hệ vi sinh vật đường ruột của con người bao gồm hơn 35000 loài vi khuẩn
Nếu định nghĩa từ góc độ tổng số gen của vi khuẩn, thì các nghiên cứu của Dự án Hệ vi sinh vật ở người và Hệ gen của đường ruột ở người (MetaHIT) cho thấy rằng có thể có hơn 10 triệu gen không dư thừa trong hệ vi sinh vật ở người
Các loài vi sinh vật có số lượng gen cao bao gồm: bao gồm Anaerotruncus colihominis, Butyrivibrio crossotus, Akkermansia sp., và Fecalibacterium sp. Chúng có lợi cho sức khỏe bởi giúp tăng tỷ lệ sinh vật sản xuất butyrate, tăng xu hướng sản xuất hydro, phát triển hệ sinh thái metanogen/acetogen và giảm sản xuất hydro sulfide
Các loài vi sinh vật có số lượng gen thấp bao gồm: Parabacteroides, Campylobacter, Dialister, Porphyromonas, Staphylococcus và Anaerostipes. Một số chất chuyển hóa quan trọng của chúng là phân hủy-glucuronide, phân hủy axit amin thơm và khử nitrit hòa tan, tất cả đều được biết là có tác dụng có hại.
Nhìn chung, hệ vi sinh vật đường ruột khỏe mạnh chủ yếu được cấu thành bởi phyla Firmicutes và Bacteroidetes. Tiếp theo là ngành Actinobacteria và Verrucomicrobia. 
Vai trò cơ bản của hệ vi sinh vật tích cực
Đóng vai trò quan trọng trong con đường chuyển hóa trong cơ thể: lên men phân giải đường oligosacchardes; thủ phân lipid;vchuyển hóa protein thông qua các proteinase và peptidase; tăng cường trao đổi chất, tổng hợp vitamin (K, B5, B12).
Hệ vi sinh vật đường ruột góp phần điều hòa miễn dịch.
Duy trì cấu trúc và chức năng của đường tiêu hóa.
(CÒN...)
1 note · View note
cfsremission · 2 years
Text
Bacteria are very very rarely bad or good
A reader messaged me this hello I do not want to bother, I have a question in the laboratories of my country, in the microbiota tests they put veillonella as virulent, but in a recent publication of microbiome prescription I saw that it could be a solution, why do the laboratories attribute virulence to it? My Answer That is equivalent to saying “Italians are criminals”. Why would someone say…
View On WordPress
0 notes
violetsystems · 5 years
Link
The researchers found the bacteria after examining the poop of 10 Boston Marathon runners. To generate energy for itself, Veillonella breaks down lactic acid, which is produced at a higher level when athletes perform particularly strenuous activities. To determine if the bacteria was making a difference, the researchers isolated a strain of it and inserted it into 16 mice, then placed them on a treadmill. The mice with the bacteria in their stomachs were able to run for 13 percent longer than mice who didn't get the benefit of Veillonella -- a small difference, but one that could make a huge difference in an athletic competition in which every little advantage counts.
While Veillonella shows promise as a potential performance enhancer, it's still early on in the stages of research. The test shows a possible positive feedback loop between the bacteria and a host, but it's not clear if it will translate to humans in the same way or if it will prove safe for consumption. Plus, there are plenty of questions that still need answers, including why the bacteria appears to be more prevalent in some people if using it would count as a performance enhancer, which could be considered cheating.
1 note · View note
edianasalazar · 4 years
Text
Microorganismos encontrados en conductos radiculares infectados
Tumblr media
Es de gran importancia para los Odontólogos saber reconocer de manera clara y definida los diferentes microorganismos que se encuentran en el sistema de los conductos radiculares infectados, para realizar con éxito los tratamientos de Endodoncia y de esta manera reducir los fracasos de éstos que son de alguna forma muy frecuentes por la complejidad y biodiversidad del universo bacteriano.
 El conocimiento de los microorganismos causantes de las enfermedades endodónticas es necesario para desarrollar una compresión básica de los procesos patológicos y un fundamento lógico del tratamiento eficaz de los pacientes con infecciones endodónticas.
Infecciones Endodonticas
 En la boca encontramos microorganismos que son parte de la flora normal donde tienen participación benéfica pero que al mismo tiempo  tienden a ser patógenos oportunistas, que, al tener acceso a zonas estériles, como lo es la pulpa y los tejidos perirradiculares, producen enfermedades.
 Nueva clasificación de M.O. Presentes en los conductos radiculares. (Flora normal)
 *Genero Porphyromonas
1.  P. Gingivalis  
2.  Endodontalis
3.  Asaccharolytica
 *Pigmentados 
1. P. Melaninogenica
2.  P.intermedia
3.   P.loescheii
4.   P. nigrescens 
*No Pigmentados
1.   P. Buccae
2.   P. oralis
3.   P. Oris
Genero Fusubacterium
1.  F. nucleatum
2.  F. naviforme
3.  F. periodonticum
4.   F. alosis
5.   F. sulci
*Genero menos frecuentes
1.      Genero Veillonella
2.      Genero Peptoestreptococcus
3.      Genero Bacteroides
*Pigmentado Variable
1.P. denticola
 Pasos para el desarrollo de Infecciones endodónticas
1.  Invasión Microbiana
2.  Multiplicación
3.  Actividad Patógena
Vías de la Bacteria hacia la Pulpa
1.  Evolución natural de Caries
2.  Enfermedad Periodontal
3.   Fractura de tejido dentinario
4.  Túbulos de dentina descubiertos por cemento
            Los túbulos dentinarios tienen un tamaño que fluctúa entre 1-4 um de diámetro, tanto en la mayor parte de las bacterias son menores de 1um de diámetro.vSi falta esmalte o cemento, los m.o. invaden la pulpa a través de los túbulos expuestos. Un diente con una pulpa vital es resistente a la invasión microbiana.
Anacoresis
Es un procedimiento mediante el cual los m.o pueden ser transportado en la sangre a una zona de inflamación como un diente con pulpitis, donde puede establecer una infección.
Infección pulpar
Al inicio de la colonización predominaron las bacterias facultativas, sin embargo, a medida que avanzó el tiempo, las bacterias facultativas fueron desplazadas por anaerobias, por lo tanto, en la actualidad la mayor parte de bacterias en una infección endodónticas son anaerobios estrictos.
Microorganismos aislados en conductos radiculares
*Bacterias GRAM + C O C O S
*Bacterias Aerobias y Facultativas
 STREPTOCOCCUS
1.  S.milleri
2.  S.mitior
3.  S. mutans
5.  S sanguis
6.  S.faecalis
Bacteria Anaerobia
 STREPTOCOCCUS
1.  S. constellatus
2.  S. intermedius
3.  S. morbiliorum
Bacteria Anaerobia
PEPTOESTREPTOC OCCUS
1.  P. anaerobius
2.  P. magnus
3.  P. micros
4.  P. prevoti
Bacterias GRAM
Bacterias Aerobias y Facultativas.
No se encuentran presentes.
 VEILLONELLA
1.      V. párvula
Microorganismos aislados en conductos radiculares
1. Bacterias GRAM + (Bacilos). 
2. Bacterias Aerobias y Facultativas
ACTINOMICETOS
1.  A. naeslundii
2.  A. viscosus
Bacterias Anaerobias
ACTINOMICETOS
1.  A. israelii
2.  A. meyen
3.   A. odontolytivus
4.   A. racnia
5.   A. propionica
Bacterias GRAM – Bacterias Aerobias y facultativas
1.  Capnocytophaga
2.  C. ocharcea
Bacterias Anaerobias
Prevotella
1.  P. Buccae
2.  P. denticola
3.  P. Intermedia
PORPHYROMONAS
1.  P. endodontalis
2.  P. gingivalis.
Codeína Oxicodona Hidrocodona Tramadol Mepirina
Las infecciones de origen endodóntico son de carácter polimicrobiano y mixtas. Esto obliga a planificar el tratamiento antibiótico para cubrir estos posibles y múltiples agentes etiológicos. Para planificar la terapéutica antibiótica se deben conocer el mayor y el más común número de patógenos implicados, así como su susceptibilidad in vitro.
Clasificación de los antibióticos
1.  Antibióticos bactericidas rápidos
2.  Antibióticos que reducen la rapidez de síntesis de proteína
3. Penicilinas y cefalosporinas
4.  Metronidazol
5.  Fluoroquinolona
6.  Eritromicina
7.  Clindamicina
8.  Tetraciclinas
 Penicilinas
Tumblr media
*Vida media: breve, limitada alrededor de 1 h. Excreción: riñones
Utilidad: Para tratar infecciones de las vías urinarias, donde se acumulan en niveles de destrucción eficaces.
Las penicilinas son únicas por su falta de toxicidad. Esto es, si el paciente no es alérgico, no hay una dosis máxima de penicilina y su sobredosificación no conlleva efectos colaterales. La amoxicilina en general se considera la penicilina de primera opción debido a que se absorbe un poco mejor por vía intestinal.
Penicilinas Naturales
Indicaciones:
1. Primera elección en la mayoría de las infecciones ontogénicas y profilaxis de endocarditis bacteriana. Actinomicosis y parotiditis aguda supurativa.
2. Penicilinas resistentes a
3. Betalactamasas – Antiestafilococo
Indicaciones: Infecciones por Staphylococus aureus productores de betalactamasas, osteomielitis.
Cefalosporinas
Tumblr media
as cefalosporinas de primera generación son las de mayor utilidad en odontología, ya que destruyen la mayor parte de los patógenos orales y deberán considerarse para utilizarse en casi todas las infecciones.
Clasificación y espectro antimicrobiano
*Cefalosporinas 1ra Generación Cocos gram + y Streptococcus Bacilos gram + y  Cefalosporinas 2da Generación
* Igual que los de la 1ra generación y lo amplían sobre las erterobacterias como E.aergenes,  P. indogenes,  H.influenzae.
Cefalosporinas 4ra Generación Bacterias Gram + y – Cefalosporinas 4ta Generación 
Tiene un espectro similar a las de 3ra generación.
Metronidazol
Tumblr media
           El metronidazol también se considera un medicamento bactericida debido a su tiempo de destrucción rápido. Ataca el DNA de las bacterias y tiene actividad contra anaerobios obligados, pero no contra bacterias facultativas o aerobios. El Metronidazol suele utilizarse en combinación con otro antibiótico, por lo general Amoxicilina, para combatir Helicobacter pylori.
*Fluoroquinolonas
Las fluoroquinolonas interfieren en la replicación del DNA, por lo que se clasifican como bactericidas. Sin embargo, no son eficaces contra los microorganismos que comúnmente causan las infecciones endodónticas.
*Macrolidos
Las eritromicinas destruyen bacterias al reducir la rapidez de elaboración de proteína bacteriana sin alterar la tasa de síntesis de proteína humana.  Los nuevos macrolidos de espectro más amplio, azitromicina y claritromicina, son más útiles para las infecciones dentales si el odontólogo tiene la precaución de considerar las posibles interacciones con otros fármacos.
Los macrolidos más nuevos también alcanzan concentraciones más altas en los tejidos.
Vida media: Macrolidos: 1 a 2 h, las más nuevas permanecen activas por más tiempo. Claritromicina: 6 horas
Azitromicina
Tumblr media
*40 horas Indicaciones
*Tratamiento y prevención de infecciones
*Causadas por gram + como alternativa en pacientes alérgicos a penicilinas.
*Debe administrarse una hora antes o dos horas después de las comidas.
Clindamicina
Son ideales para infecciones endodónticas, ya que, si no atraviesa la barrera hematoencefálica, penetra en los abscesos y otras zonas de circulación deficiente. Es absorbida con rapidez y por completo, y tiene buen espectro de actividad bactericida contra patógenos orales, entre los que se incluyen muchos anaerobios.
Vida media promedio: Alrededor de 3 h.
Indicaciones
*Bacterias Gram + y Gram-
*Periodontitis Generalizad a Agresiva
*Px alérgicos a penicilinas
*Profilaxis endocarditis
Tienen el espectro bactericida más amplio de todos los antibióticos.
Tetraciclina
Tienen el espectro bactericida más amplio de todos los antibióticos.
*Vida Media:Alrededor de 10 h.
En específico de la Doxiciclina es de 16 horas permitiendo la dosificación dos veces al día.
*Prevención:
Su uso deberá evitarse en niños y en mujeres embarazadas siempre que sean posibles.
Indicaciones
*Infecciones Por gram+ y gram de cabeza y cuello
* spiroquetas y bacterias anaeróbicas y facultativas
* Ulcera aftosa recurrente
* Gingivitis o periodontitis juvenil y generalizada o resistente
* Parotiditis aguda supurada
* Abscesos dentales y tejidos blandos
* Cuando las penicilinas están contraindicadas
Antibiótico
* Penicilina G
Dosis administrada
1000000 UI
Dosis: IM 1 CADA 12 horas por 2 días
* Amoxicilina
Dosis administrativa 500 mg
Dosis: Vía oral 1 cada 8 horas
* Clindamicina
Dosis administrativa150,300mg
Dosis: Vía oral cada 8 horas
* Eritromicina
Dosis administrada 500mg
Dosis: Vía oral cada 8 horas. Ácido Clavulanico más Amoxicilina
Dosis administrada:500mg
Dosis: Via oral 1 cada 8 horas
* Levofloxacina
Dosis administrada: 400 mg
Dosis: Vía oral cada 8 horas
Analgésicos en endodoncia
Predictores del dolor postoperatorio de la endodoncia. El factor que mejor predice la aparición de dolor en el postoperatorio de la endodoncia es la presencia de dolor o alodinia mecánica en el preoperatorio.
Incluyen los AINE y el paracetamol
Resumen de Analgésicos No Opiáceos
* Nombre: Aspirina
* MARCA COMERCIAL: Many
Intervalo de dosis (mg) 325-1000
Dosis/Día (mg) 4000
* Nombre: Diclofenaco potásico
* Marco comercial: Cataflan
Intervalo de dosis (mg):0-100
Dosis/ Día (mg) 150-200
* Nombre: Diflunisal
* Marco comercial: Dolobid
Intervalo de dosis (mg)250-1000
Dosis/Día (mg)1500
* Nombre: Etodolaco
* Marco comercial: Ladine
Intervalo de dosis (mg) 200-400
Dosis/Día (mg)1200
* Nombre:Fenoprofeno
* Marco comercial: Nalfon
Intervalo de dosis (mg) 200
Dosis/Día (mg) 1200
*Nombre: Flurbiprofeno
* Marco comercial: Ansaid
Intervalo de dosis (mg) 50-100
Dosis/Día (mg) 200-300
* Nombre: Ibuprofeno
* Marco comercial: Motrin
Intervalo de dosis (mg) 200-800
Dosis/Día (mg)2400
*Nombre: Ketorolaco
* Marco comercial: Toradol
Intervalo de dosis (mg) 20-60
Dosis /Día (mg)60
*Nombre: Naproxeno sódico
* Marco comercial: Anaproz
Intervalo de Dosis (mg) 220-550
Dosis/Día (mg)1500
*Nombre: Ketoprofeno
* Marco comercial: Orudis
Intervalo de Dosis (mg) 25-75
Dosis/Día (mg) 300
Los aines son más efectivos que las combinaciones tradicionales de paracetamol con opiáceos. Se concluye que los aines combinados con otros fármacos o la administración para el pre y post tratamientos de aine proporcionan un control efectivo del dolor.
Los AINES presenta gastrointestinales diferentes efectos adversos como:
Analgésicos opiodes en Endodoncia
En pacientes que no pueden ser tratados con AINES debido a sus efectos adversos gastrointestinales que producen una alternativa son las combinaciones de paracetamol o opiáceo.  Los opiáceos son potentes analgésicos que en odontología se utilizan combinados con paracetamol.
 Paracetamol
Fármaco más utilizado y más comunes hallados en las combinaciones de productos para aliviar el dolor. Se considera seguro cuando se ingiere a dosis normales (max 4000 mg) ya que si se ingiere a dosis alta causa toxicidad e insuficiencia hepáticas.
1. Formula: PAR  300mg y cadeina 30mg
Marco comercial: Tynelo con cadeina
Prescripción Aconsejada: 2 comprimidos c/4h
 2. Formula: PAR 500mg y hidrocodona 5mg
Marco comercial: Vicodim. Lortad 5/500
Prescripción Aconsejada: 1 o 2 compr c/6h
 3. Formula: PAR 325mg y Oxicodona 5mg
Marco comercial: Percoset
Prescripción Aconsejada: 1 compr c/6h
4. Formula: PAR 500mg y oxicodona 5mg
 Marco comercial: Tylox
 Prescripción Aconsejada: 1 compr c/6h
5. Formula: AAS 325mg y codeína 30mg
Marco comercial: Empiridina con codeína n 3
Prescripción Aconsejada: 2 compr c/4h
6. Formula: AAS 325 y oxicodona 5mg
Marco comercial: Percodan
Prescripción Aconsejada: 1 compr  c/6h
Resumen de los analgésicos más utilizados en endodoncia incluyendo Aines y Opiáceos
* Ibuprofeno 800mg
* Ketorolaco 60mg
* Diclofenaco 50 a 100mg
* Paracetamol 1000mg+
* Codeína 60 mg
* Oxidocona 5mg +Paracetamol 500mg
* Naproxeno 440mg
* Oxidocona15mg
* Ibuprofeno 600mg
* Ibuprofeno 400mg
 Indicados los fármacos tipo AAS
* Dolor leve: 200 a 400 mg de ibuprofeno o 650mg de aspirina
* Dolor moderado: 600 a 800mg de ibuprofeno o 600mg de ibuprofeno + 1000mg de paracetamol
* Dolor intenso 600mg de ibuprofeno +combinación de paracetamol/opiode
* Contraindicados los farmacos tipo aspirina 650 a 1000mg de paracetamol
* 650 a 1000mg de paracetamol + opiode equivalente a 60mg de cadeina.
* 1000mg de paracetamol opiode equivalente a 10mg de oxicodona.
Medicamentos Intraconductos
Las endodoncias requieren un antiséptico entre cada una de de las partes de la preparación de los conductos para poder mantener la pieza dentaria libre de contaminación y para poder alcanzar el éxito en la práctica endodóntica.
Paramonoclorofenol Alcanforado
* Composicion: Paramonoclorofen ol Alcanfor Penentrante
Estable y alivia el dolor.
Sinrgico o potenciador de otros farmacos
Propiedades:
Bactericida
* Mecanismo de acción:
Disminuye la capacidad de adherencia al sustrato de macrófago y modula la acción inflamatoria.
* Formocresol
Propiedades:
Buen desinfectante
Alto poder microbiano
Efecto antiinflamatorio
* Hidróxido de calcio
Funciones:
Reparación de periapice en reabsorción interna y externa
Efecto cicatrizante
 Desinfección de alto nivel
 Formación de dentina reparativa
Reparación de periapice en reabsorción interna y externa
* Hidróxido de calcio
Propiedades:
Induce la Remineralizacion de dentina
Potente bactericida
Antiinflamatorio
Biocompatible
Bibliografia: https://es.slideshare.net/Kale13/farmacologia-en-endodoncia Kale13 Publicado el 14 de oct. de 2013
2 notes · View notes
mcatmemoranda · 5 years
Text
Chlamydia trachomatis is the causative organism of chlamydia, and is the most common bacterial cause of sexually transmitted genital infections. Many affected individuals are asymptomatic, which leads to spread of the infection. Males and females can be affected; in women genital infection presents with purulent vaginal discharge, bleeding, abdominal/pelvic pain and/or dysuria. In severe cases the infection ascends and leads to pelvic inflammatory disease or perihepatitis (Fitz-Hugh-Curtis Syndrome). For mild infection, treatment is either Azithromycin 1g x 1 dose or doxycycline 100mg twice daily for one week. Patients with more severe infection may require hospitalization and intravenous antibiotics. Sexual partners should also be treated.
Trichomoniasis is a sexually transmitted disease that is caused by the protozoan Trichomonas vaginalis. The infection is classically asymptomatic in males, but is often symptomatic in females. Patients present with an erythematous, edematous cervix (“strawberry cervix”) as well as malodorous vaginal discharge, dysuria and pruritus. Vaginal discharge on a wet mount reveals the motile Trichomonas organisms. Treatment is metronidazole 2 grams x 1 dose, and treatment of sexual partners is recommended.
Bacterial vaginosis (BV) is a clinical syndrome caused by a decrease of normal vaginal flora (Lactobacillus) resulting in an overgrowth of Gardnerella vaginalis and anaerobic bacteria. These bacteria are found in women without infection as well, but when overgrown or with a decrease in Lactobacillus, infection ensues. BV is not considered a sexually transmitted disease and can occur in women who are not sexually active. Microscopic findings are “clue cells” which are the most reliable predictor of BV. The clinical criteria used for diagnosing BV are called the Amsel’s criteria. To make the diagnosis, a patient needs to have three out of the four criteria listed below.
Amsel’s criteria are as follows:
Homogenous vaginal discharge
Discharge has a pH greater than or equal to 4.5
Positive whiff test: an amine-like odor when discharge is mixed with 10% KOH
A wet mount demonstrating 20% more clue cells than vaginal epithelial cells
Bottom Line: Bacterial vaginosis is diagnosed in women with 3 out of 4 of Amsel’s criteria. Causes include Gardnerella vaginalis (most common), Prevotella, Mobiluncus, Bacteroides, Peptostreptococcus, Fusobacterium, Veillonella, Eubacterium, Mycoplasma hominis, Ureaplasma urealyticum, Streptococcus viridans, and Atopobium vaginae. Treatment is with metronidazole.
1 note · View note
mi6-rogue · 2 years
Text
Variability in mRNA SARS-CoV-2 BNT162b2 vaccine immunogenicity is associated with differences in the gut microbiome and habitual dietary fibre intake
Preliminary report; Objective: Little is known about the interplay between gut microbiome and SARS-CoV-2 vaccine immunogenicity. In this prospective observational study, we investigated associations between the gut microbiome, habitual dietary fibre intake, and mRNA vaccine-elicited immune responses, including anti-Spike IgG, avidity, and ACE-2 competition (surrogate neutralization). Design: 16S rRNA sequencing and short-chain fatty acid analyses were undertaken using stool samples collected from 48 healthy individuals at baseline and twelve-weeks after 1st BNT162b2 SARS-CoV-2 vaccine dose. Associations between gut microbiome data and SARS-CoV-2 spike and RBD IgG levels, competitive binding antibodies, and anti-SARS-CoV-2 spike total relative fractional avidity assays were evaluated. A validated dietary fibre intake food frequency questionnaire was also used to correlate habitual dietary fibre intakes with vaccine responses. Results: Our data revealed several baseline bacterial taxa, including Prevotella, Haemophilus and Veillonella (p https://www.medrxiv.org/content/10.1101/2022.08.24.22279143v1?rss=1%22&utm_source=dlvr.it&utm_medium=tumblr Read more ↓
0 notes
mediiolab · 6 years
Link
I love studies like this that examine how antibiotics are affecting our normal bacterial flora. This new microbiome paper in Nature Microbiology [1] examines how broad spectrum antibiotics change the gut microbiome immediately following administration and how it recovers over time.
I think Ars missed it with their headline. I mean, it is notable that it takes around 6 months for the gut microbiome to recover after broad spectrum antibiotics. However, this paper also showed that immediately following administration of broad spectrum antibiotics, they saw blooms of pathogenic bacteria like Escherichia coli, Veillonella spp., Klebsiella spp., E. faecalis and F. nucleatum. This raises the question (at least in my mind): does broad spectrum antibiotic use make us susceptible to serious bacterial infections for a period while our normal gut flora is restored? We know this is true for Clostridium difficile infection (and these researchers also showed it survived their broad spectrum regimen in high numbers). This period of vulnerability may be less important for otherwise healthy people, but seems to be critically important for patients undergoing chemotherapy or bone marrow transplant who get blasted with antibiotics for prolonged periods when they are neutropenic and febrile.
A couple notes on their methodology:
The broad spectrum antibiotic regimen used included vancomycin, meropenem, and gentamicin; indeed very broad! I’m a little surprised two nephrotoxic agents (vanc and gent) were used. Seems a similar “hit” to the gut microbiome could be achieved without the risk of gentamicin (or perhaps a fluoroquinolone could have been included though that raises its own safety issues).
These participants were only given 4 days of antibiotics. It would have been a little more useful if they had only donw 2 days (mimicing a typical 48 hour rule-out). On the flip side, almost all treatment courses of antibiotics are much longer than 4 days so it would be interesting to repeat this methodology with a longer course and examine the same trends.
There’s some great microbiome research going on out there!!
Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, Pyl PT, Coelho LP, Yang H, Wang J, Typas A, Nielsen MF, Nielsen HB, Bork P, Wang J, Vilsbøll T, Hansen T, Knop FK, Arumugam M, Pedersen O. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018 Nov;3(11):1255–1265. doi: 10.1038/s41564–018–0257–9. Epub 2018 Oct 22. PubMed PMID: 30349083.  ↩
2 notes · View notes
Text
Vì sao xảy ra tình trạng trẻ bị mất cân bằng hệ vi khuẩn đường ruột?
Một trong những vấn đề tiêu hóa phổ biến ở trẻ sơ sinh và trẻ nhỏ chính là rôi loạn hệ vi sinh đường ruột. Do hệ tiêu hóa của con chưa hoàn thiện nên rất dễ gặp trạng thái mất cân bằng hệ vi sinh đường ruột. Vậy mất cân bằng hệ vi khuẩn đường ruột ở trẻ do nguyên do nào?
Tumblr media
 TÌM HIỂU NGUYÊN NHÂN GÂY RA MẤT CÂN BẰNG HỆ VI KHUẨN ĐƯỜNG RUỘT Ở TRẺ
Do tình trạng nhiễm trùng và sử dụng kháng sinh
Dùng thuốc kháng sinh khi trẻ gặp vấn đề về nhiễm trùng là nguyên nhân khá phổ biển gây ra tình trạng mất cân bằng hệ vi sinh. Thuốc kháng sinh khi được nạp vào cơ thể ngoài việc tiêu diệt các vi khuẩn, tác nhân gây bệnh thì còn có thể loại bỏ luôn các vi khuẩn có lợi cho đường ruột.
Do chế độ dinh dưỡng và cách chăm sóc trẻ
Thực đơn dinh dưỡng và cách chăm sóc trẻ cũng là yếu tố mang tính quyết định đến sự đa dạng của hệ sinh thái đường ruột của trẻ.
·         Với trẻ bú sữa công thức: Hệ vi sinh đường ruột chủ yếu bao gồm Bacteroides và Coliforms, Bifidobacteria thấp hơn rõ rệt.
·         Sau giai đoạn ăn dặm, hệ vi sinh đường ruột ở trẻ giống với người lớn, bao gồm các vi sinh vật như Bacteroides, Veillonella, và Fusobacterium.
·         Với trẻ bú mẹ: Vi sinh vật như Bifidobacteria chiếm từ 80-90% tổng số lượng vi sinh đường ruột, còn Lactobacilli và Bacteroides tăng dần nhưng có số lượng ít hơn, trong khi Enterobacteria giảm mạnh.
Bên cạnh đó, chế độ dinh dưỡng cho trẻ khi bé đã lớn hơn cũng ảnh hưởng tới hệ sinh thái đường ruột. Sử dụng chế độ ăn không phù hợp với lứa tuổi, thức ăn kém đa dạng, thiếu chất, g��m thực phẩm gây khó tiêu.. cũng là nguyên nhân dẫn tới sự mất cân bằng hệ vi khuẩn đường ruột ở trẻ.
Do tác động trong quá trình sinh nở của mẹ
Các nghiên cứu khoa học cho thấy hệ vi sinh đường ruột của trẻ sinh mổ và sinh thường qua âm đạo khác nhau hoàn toàn. Những trẻ sinh thường qua âm đạo của mẹ có hệ vi sinh đường ruột đa dạng và phong phú hơn so với trẻ sinh mổ.
Ban đầu, mọi đứa trẻ đều được sinh ra với cơ thể hoàn toàn vô khuẩn, chỉ khi trẻ sinh thường đi qua đường âm đạo của mẹ trong quá trình đẻ tự nhiên mới nhận được các lợi khuẩn từ hệ vi sinh vật đường ruột của người mẹ, hình thành nên hệ sinh thái đường ruột của riêng mình. Trẻ sinh mổ không có cơ hội tiếp xúc với các vi khuẩn trong hệ vi sinh vật của mẹ, dẫn tới việc mất cân bằng hệ vi sinh đường ruột ở trẻ.
Do các bệnh lý khác 
Tình trạng mất cân bằng hệ vi khuẩn đường ruột ở trẻ cũng xảy ra với các bé bị viêm loét dạ dày tá tràng, hoặc với những trẻ phẫu thuật ống tiêu hóa, xạ trị..
BIẾN PHÁP GIÚP TRẺ CẢI THIỆN TÌNH TRẠNG MẤT CÂN BẰNG HỆ VI SINH
Cải thiện tình trạng mất cân bằng hệ vi sinh là điều cần làm ngay để nâng cao sức khỏe hệ tiêu hóa, giúp trẻ phát triển toàn diện về thể chất cũng như trí tuệ. Dưới đây là một số cách giải quyết tình trạng mất cân bằng hệ vi khuẩn đường ruột ở trẻ nhanh chóng:
·         Uống nước thường xuyên: Cung cấp đủ nước cho cơ thể không những đề phòng tình trạng mất nước, thiếu nước mà còn có tác động tốt tới đường ruột.
·         Cho trẻ vận động nhiều hơn: Vận động nhiều khiến cơ thể giải phóng endorphin, giảm căng thẳng và thúc đẩy vi khuẩn có lợi hoạt động, tăng cường sức khỏe đường ruột.
·         Bổ sung men vi sinh cho trẻ tiêu hóa kém, rối loạn tiêu hóa do loạn khuẩn đường ruột: Trạng thái mất cân bằng hệ vi khuẩn đường ruột ở trẻ xảy ra khi số lượng lợi khuẩn ít hơn hại khuẩn. Cho trẻ uống men vi sinh bổ sung lợi khuẩn là cách đơn giản giúp nhanh chóng lấy lại sự cân bằng và ổn định hệ vi sinh cho bé. Việc bổ sung lợi khuẩn cho trẻ giúp hỗ trợ tăng cường tiêu hóa và tăng sức đề kháng cho bé. Nhờ đó tạo tiền đề giúp bé tiêu hóa khỏe, thúc đẩy tiêu hóa tốt hơn, kích thích trẻ ăn nhiều hơn, ăn ngon miệng hơn để từ đó phục hồi sức khỏe và phát triển tối ưu.
·         Nạp thực phẩm dồi dào chất xơ: Tăng cường sức khỏe đường ruột với các thực phẩm giàu chất xơ như rau củ, hoa quả tươi, ngũ cốc..
·         Chia nhỏ bữa ăn hàng ngày: Bố mẹ nên chia nhỏ lượng thức ăn thành nhiều bữa trong ngày, không ép con ăn quá nhiều một lúc khiến hệ tiêu hóa quá tải.
0 notes
Text
5 Natural Remedies to Treat High Blood Pressure
Tumblr media
Drug therapy is usually the first line of defense against hypertension. However, before beginning medication, make lifestyle modifications and try several natural treatments for high blood pressure. Medications can be harsh. It’s better to avoid them and be aware that natural cures may interfere with their effectiveness.
There are, of course, things we can take to assist control our high blood pressure. Losing weight, quitting smoking, reducing the quantity of alcohol consumed, and reducing caffeine consumption are all examples of lifestyle modifications. Sushruta Ayurvedic clinic, the Best Ayurvedic Doctor in Delhi also recognizes the importance of making healthy food choices at meals.
1. Watermelon
Be devoted to watermelon every morning. Watermelon is often thought of as a strict summer fruit, good for seed spitting contests and backyard barbecues, but it can also help decrease blood pressure.
2. Nuts
Begin by consuming nuts. Pistachio nuts, in particular, appear to have the strongest effect on lowering blood pressure in adults when compared to other nuts. According to a comprehensive assessment and scientific analysis of 21 clinical trials conducted between 1958 and 2013, this is the case. The American Journal of Clinical Nutrition, a journal of the American Society for Nutrition, published the review online.
3. Onion
Onions are a natural treatment for high blood pressure. Although sobbing while chopping onions can make the job more difficult (hint: soak your onions in cold water before slicing to avoid crying), the taste is well worth it. Onions, like their cousin garlic, have a slew of heart-healthy properties.
Onions contain quercetin, a potent antioxidant. Quercetin not only reduces blood pressure but also relieves chest pain and angina, as well as lowers the risk of stroke and heart attack. Eating raw or gently cooked onions is the key to receiving as much of this enzyme as possible.
4. Vitamin D
High blood pressure can be treated at home with vitamin D. Vitamin-D, also known as the sunshine vitamin, has been shown to lower blood pressure in a study published in “The Lancet Diabetes & Endocrinology.” People are becoming deficient in vitamin D as they spend less time outside.
5. Beetroot juice
High blood pressure can be treated at home with beets. When it comes to decreasing high blood pressure, beetroot juice is a strong treatment. Some of its effects are attributable to minerals like potassium and magnesium, but its main pharmacological impact is owing to a high nitrate content. These nitrates are quickly converted to nitrites by bacteria (Veillonella and Actinomyces species) that dwell on the surface of your tongue and are also present in saliva when you consume beetroot juice.
Precautions
You can always consult us, the Best Ayurveda Clinic in Delhi about how to naturally and safely lower blood pressure. Before making any big dietary or exercise changes, consult your doctor. If you’re taking any prescriptions, check to see if any natural supplements you’re considering have any drug interactions.
0 notes
Text
Los cambios en las bacterias de la boca después de beber jugo de remolacha pueden promover el envejecimiento saludable
Beber jugo de remolacha promueve una mezcla de bacterias bucales asociadas con vasos sanguíneos y funciones cerebrales más saludables, según un nuevo estudio de personas de 70-80 años.
Tumblr media
La remolacha, y otros alimentos como la lechuga, la espinaca y el apio, son ricos en nitrato inorgánico, y muchas bacterias orales desempeñan un papel en la transformación del nitrato en óxido nítrico, que ayuda a regular los vasos sanguíneos y la neurotransmisión (mensajes químicos en el cerebro).
Las personas mayores tienden a tener una menor producción de óxido nítrico, y esto se asocia con una peor salud vascular (vaso sanguíneo) y cognitiva (cerebro).
En el nuevo estudio, realizado por la Universidad de Exeter, 26 personas mayores sanas participaron en dos períodos de suplementación de diez días: uno con jugo de remolacha rico en nitratos y otro con jugo de placebo sin nitratos, que bebieron dos veces al día.
Los resultados mostraron niveles más altos de bacterias asociadas con una buena salud vascular y cognitiva, y niveles más bajos de bacterias relacionadas con enfermedades e inflamación.
La presión arterial sistólica cayó en promedio en cinco puntos (mmHg) después de beber el jugo de remolacha.
"Estamos muy entusiasmados con estos hallazgos, que tienen implicaciones importantes para un envejecimiento saludable", dijo la autora principal, la profesora Anni Vanhatalo, de la Universidad de Exeter.
"Estudios anteriores han comparado las bacterias orales de personas jóvenes y mayores, y las personas sanas en comparación con las que tienen enfermedades, pero el nuestro es el primero en probar la dieta rica en nitratos de esta manera.
"Nuestros hallazgos sugieren que agregar alimentos ricos en nitratos a la dieta-en este caso a través del jugo de remolacha-durante solo diez días puede alterar sustancialmente el microbioma oral (mezcla de bacterias) para mejor.
"Mantener este microbioma oral saludable a largo plazo podría ralentizar los cambios vasculares y cognitivos negativos asociados con el envejecimiento."
Los investigadores realizaron pruebas para identificar grupos (o" módulos") de bacterias orales que tienden a prosperar juntas en condiciones similares.
Un módulo (Prevotella-Veillonella) que se ha asociado con la inflamación se redujo después de la suplementación con nitrato, incluyendo una disminución de Clostridium difficile (que puede infectar el intestino y causar diarrea).
El profesor Vanhatalo hizo hincapié en que se necesita más investigación para confirmar los hallazgos y ver si se encuentran efectos similares en otros grupos.
"Nuestros participantes eran personas mayores sanas y activas con una presión arterial generalmente buena", dijo. "El nitrato dietético redujo su presión arterial en promedio, y estamos ansiosos por averiguar si lo mismo ocurriría en otros grupos de edad y entre las personas con peor salud.
"Estamos trabajando con colegas en la Facultad de Medicina de la Universidad de Exeter para investigar las interacciones entre las bacterias orales y la cognición para comprender mejor cómo la dieta podría usarse para retrasar el deterioro cognitivo en la edad avanzada."
Se han realizado muchas investigaciones sobre los beneficios de un microbioma intestinal saludable, pero se sabe mucho menos sobre la comunidad microbiana oral, que desempeña un papel crucial en "activar" el nitrato de una dieta rica en vegetales.
0 notes
Photo
Tumblr media
Las bacterias de la boca son muy numerosas. De hecho, se calcula que hay alrededor de 100 millones de bacterias por cada milímetro de saliva. Estas corresponden a más de 600 especies de bacterias. En realidad, la cavidad bucal tiene todas las condiciones para que infinidad de microorganismos se refugien allí.  
Pese a todo, muchas de las bacterias de la boca no tienen futuro dentro del organismo humano. Una buena parte de ellas son atacadas por las enzimas de la saliva, mientras que otra parte va a parar al sistema digestivo, en donde son destruidas en poco tiempo.
 Dicho esto, también hay que señalar que otro grupo de bacterias de la boca sí consigue sobrevivir y termina alojándose en la cavidad bucal. Cuando esto sucede, pueden generar problemas como caries u otras enfermedades. La manera de combatirlas es con una buena higiene oral.
 Las bacterias de la boca
 La boca está compuesta por muchas superficies, y cada una de ellas está recubierta por un gran número de bacterias. Algunas de las bacterias de la boca influyen en el desarrollo de enfermedades como la caries y la periodontitis. Ambas son factores de riesgo para desarrollar otras patologías de mayor gravedad, como la diabetes mellitus y las patologías cardiovasculares.
 La composición y concentración de las bacterias de la boca depende de varios factores:
 Disponibilidad de nutrientes
Temperatura
Concentración de oxígeno
Características anatómicas
Exposición a factores inmunológicos
A las bacterias de la boca, junto con otros microorganismos, se les conoce como microbiota oral. Esa población no es fija, sino que está cambiando continuamente, incluso debido a factores tan simples como bostezar, besar o comer ciertos alimentos.
 En general, dentro de la boca predominan las bacterias aerobias y anaerobias, ambas grampositivas y gramnegativas. Dentro de estas, sobresalen los géneros Lactobacillus, Actinobacillus, Staphylococcus o Streptococcus. Veamos esto con mayor detalle.
 En la saliva predominan los cocos grampositivos anaerobios facultativos, los cuales representan alrededor del 44 % de la población bacteriana; le siguen los cocos gramnegativos anaerobios estrictos, que representan alrededor del 15 %. Los bacilos anaerobios facultativos grampositivos tienen un porcentaje similar.
 Factores como la pérdida de piezas dentales, y enfermedades como la gingivitis, alveolitis o periodontitis, pueden producir cambios en la composición de la microbiota de la saliva. También inciden el uso del tabaco y la higiene deficiente.
 Mucosa bucal   En la mucosa bucal predominan los siguientes tipos de bacterias: Firmicutes -principalmente de los géneros Streptococcus y Veillonellas-; proteobacterias -especialmente Neisseria-; bacteroides –Prevotella- y actinobacteria –micrococcineae.  
La buena higiene de la mucosa bucal evita la colonización por Treponema denticola y Fusobacterium Nucleatum. Según algunos estudios, las bacterias de la mucosa bucal podrían estar involucradas en algunos tipos de cáncer.
 Bacterias en las piezas dentales
 Si los dientes no tienen caries, lo habitual es que allí se encuentren las siguientes bacterias: Campylobacter, Granulicatella, Kingella, Leptotrichia y Streptococcus -especialmente Streptococcus sanguinis. Así mismo están presentes, sobre todo en adultos, la Haemophilus parainfluenza, Gemella haemolysans, Slackia exigua, y las especies Rothia.
 Los dientes son superficies que facilitan la formación de biopelículas. Tales biopelículas cambian en función de diferentes factores. Algunas bacterias como Streptococcus mutans, Actinomyces y Lactobacillus inciden en la formación de caries y en la periodontitis.
 Las encías y las bacterias de la boca   En las encías también se puede formar una biopelícula, que incide para producir enfermedades como la gingivitis. Si las encías están sanas,  predominan microorganismos como Proteobacterias, en particular el gammaproteobacteriae de género Acinetobacter, Haemophilus y Moraxella. Cuando hay problemas de salud también se encuentran Streptococcus, Granulicatella y Gemella.   En la parte superficial de la biopelícula de las encías hay Treponema denticola junto con Porphyromona gingivalis y Tannerella forsythia. Así mismo, puede haber virus y, en ocasiones, microorganismos como hongos. Las enfermedades bucales modifican las comunidades bacterianas.
 ;)
Lengua
 La biopelícula que se forma en la lengua también es dinámica y alberga muchas de las bacterias de la boca. Aproximadamente el 45 % son cocos grampositivos anaerobios facultativos, en especial Streptococcus salivarius, seguido de Streptococcus mitis, estreptococos del grupo milleri y Streptococcus mucilaginosus.
 También se encuentran cocos gramnegativos anaerobios estrictos y bacilos grampositivos anaerobios facultativos. En menor porcentaje pueden detectarse diversas especies de los géneros Lactobacillus, Neisseria, Fusobacterium y Haemophilus. En el dorso de la lengua de personas con halitosis se han encontrado Fusobacterium nucleatum, Porphyromona gingivalis y Tannerella forsythi.
0 notes