#hadoop hive
Explore tagged Tumblr posts
Text
Leveraging Big Data in ColdFusion Using Hadoop and Hive Integrations
#Leveraging Big Data in ColdFusion Using Hadoop and Hive Integrations#Leveraging Big Data in ColdFusion Using HadoopLeveraging Big Data in ColdFusion Using Hive Integrations
0 notes
Text
Greetings from Ashra Technologies
we are hiring
#ashra#ashratechnologies#jobs#hiring#recruiting#recruitingpost#Data#dataengineer#bigdataengineer#spark#scala#python#hadoop#hive#etl#linkedincommunity#linkedinjobs#linkedinjobsearch#linkedinconnections#linkedinnetwork#linkedinnews#linkedingrowth#linkedinlive#linkedincreators#linkedinarticle
0 notes
Link
0 notes
Text
Wait is floorp a real software I thought this was a joke
Install Floorp. You can do it with Floorp. You can use Floorp and browse it. Download Floorp right now. Install Floorp. Dive into Floorp. You can Floorp it. It's on Floorp. Floorp has it for you. Floorp has it for you.
426 notes
·
View notes
Text
Data Engineering Concepts, Tools, and Projects
All the associations in the world have large amounts of data. If not worked upon and anatomized, this data does not amount to anything. Data masterminds are the ones. who make this data pure for consideration. Data Engineering can nominate the process of developing, operating, and maintaining software systems that collect, dissect, and store the association’s data. In modern data analytics, data masterminds produce data channels, which are the structure armature.
How to become a data engineer:
While there is no specific degree requirement for data engineering, a bachelor's or master's degree in computer science, software engineering, information systems, or a related field can provide a solid foundation. Courses in databases, programming, data structures, algorithms, and statistics are particularly beneficial. Data engineers should have strong programming skills. Focus on languages commonly used in data engineering, such as Python, SQL, and Scala. Learn the basics of data manipulation, scripting, and querying databases.
Familiarize yourself with various database systems like MySQL, PostgreSQL, and NoSQL databases such as MongoDB or Apache Cassandra.Knowledge of data warehousing concepts, including schema design, indexing, and optimization techniques.
Data engineering tools recommendations:
Data Engineering makes sure to use a variety of languages and tools to negotiate its objects. These tools allow data masterminds to apply tasks like creating channels and algorithms in a much easier as well as effective manner.
1. Amazon Redshift: A widely used cloud data warehouse built by Amazon, Redshift is the go-to choice for many teams and businesses. It is a comprehensive tool that enables the setup and scaling of data warehouses, making it incredibly easy to use.
One of the most popular tools used for businesses purpose is Amazon Redshift, which provides a powerful platform for managing large amounts of data. It allows users to quickly analyze complex datasets, build models that can be used for predictive analytics, and create visualizations that make it easier to interpret results. With its scalability and flexibility, Amazon Redshift has become one of the go-to solutions when it comes to data engineering tasks.
2. Big Query: Just like Redshift, Big Query is a cloud data warehouse fully managed by Google. It's especially favored by companies that have experience with the Google Cloud Platform. BigQuery not only can scale but also has robust machine learning features that make data analysis much easier. 3. Tableau: A powerful BI tool, Tableau is the second most popular one from our survey. It helps extract and gather data stored in multiple locations and comes with an intuitive drag-and-drop interface. Tableau makes data across departments readily available for data engineers and managers to create useful dashboards. 4. Looker: An essential BI software, Looker helps visualize data more effectively. Unlike traditional BI tools, Looker has developed a LookML layer, which is a language for explaining data, aggregates, calculations, and relationships in a SQL database. A spectacle is a newly-released tool that assists in deploying the LookML layer, ensuring non-technical personnel have a much simpler time when utilizing company data.
5. Apache Spark: An open-source unified analytics engine, Apache Spark is excellent for processing large data sets. It also offers great distribution and runs easily alongside other distributed computing programs, making it essential for data mining and machine learning. 6. Airflow: With Airflow, programming, and scheduling can be done quickly and accurately, and users can keep an eye on it through the built-in UI. It is the most used workflow solution, as 25% of data teams reported using it. 7. Apache Hive: Another data warehouse project on Apache Hadoop, Hive simplifies data queries and analysis with its SQL-like interface. This language enables MapReduce tasks to be executed on Hadoop and is mainly used for data summarization, analysis, and query. 8. Segment: An efficient and comprehensive tool, Segment assists in collecting and using data from digital properties. It transforms, sends, and archives customer data, and also makes the entire process much more manageable. 9. Snowflake: This cloud data warehouse has become very popular lately due to its capabilities in storing and computing data. Snowflake’s unique shared data architecture allows for a wide range of applications, making it an ideal choice for large-scale data storage, data engineering, and data science. 10. DBT: A command-line tool that uses SQL to transform data, DBT is the perfect choice for data engineers and analysts. DBT streamlines the entire transformation process and is highly praised by many data engineers.
Data Engineering Projects:
Data engineering is an important process for businesses to understand and utilize to gain insights from their data. It involves designing, constructing, maintaining, and troubleshooting databases to ensure they are running optimally. There are many tools available for data engineers to use in their work such as My SQL, SQL server, oracle RDBMS, Open Refine, TRIFACTA, Data Ladder, Keras, Watson, TensorFlow, etc. Each tool has its strengths and weaknesses so it’s important to research each one thoroughly before making recommendations about which ones should be used for specific tasks or projects.
Smart IoT Infrastructure:
As the IoT continues to develop, the measure of data consumed with high haste is growing at an intimidating rate. It creates challenges for companies regarding storehouses, analysis, and visualization.
Data Ingestion:
Data ingestion is moving data from one or further sources to a target point for further preparation and analysis. This target point is generally a data storehouse, a unique database designed for effective reporting.
Data Quality and Testing:
Understand the importance of data quality and testing in data engineering projects. Learn about techniques and tools to ensure data accuracy and consistency.
Streaming Data:
Familiarize yourself with real-time data processing and streaming frameworks like Apache Kafka and Apache Flink. Develop your problem-solving skills through practical exercises and challenges.
Conclusion:
Data engineers are using these tools for building data systems. My SQL, SQL server and Oracle RDBMS involve collecting, storing, managing, transforming, and analyzing large amounts of data to gain insights. Data engineers are responsible for designing efficient solutions that can handle high volumes of data while ensuring accuracy and reliability. They use a variety of technologies including databases, programming languages, machine learning algorithms, and more to create powerful applications that help businesses make better decisions based on their collected data.
2 notes
·
View notes
Text
What are the benefits of Amazon EMR? Drawbacks of AWS EMR

Benefits of Amazon EMR
Amazon EMR has many benefits. These include AWS's flexibility and cost savings over on-premises resource development.
Cost-saving
Amazon EMR costs depend on instance type, number of Amazon EC2 instances, and cluster launch area. On-demand pricing is low, but Reserved or Spot Instances save much more. Spot instances can save up to a tenth of on-demand costs.
Note
Using Amazon S3, Kinesis, or DynamoDB with your EMR cluster incurs expenses irrespective of Amazon EMR usage.
Note
Set up Amazon S3 VPC endpoints when creating an Amazon EMR cluster in a private subnet. If your EMR cluster is on a private subnet without Amazon S3 VPC endpoints, you will be charged extra for S3 traffic NAT gates.
AWS integration
Amazon EMR integrates with other AWS services for cluster networking, storage, security, and more. The following list shows many examples of this integration:
Use Amazon EC2 for cluster nodes.
Amazon VPC creates the virtual network where your instances start.
Amazon S3 input/output data storage
Set alarms and monitor cluster performance with Amazon CloudWatch.
AWS IAM permissions setting
Audit service requests with AWS CloudTrail.
Cluster scheduling and launch with AWS Data Pipeline
AWS Lake Formation searches, categorises, and secures Amazon S3 data lakes.
Its deployment
The EC2 instances in your EMR cluster do the tasks you designate. When you launch your cluster, Amazon EMR configures instances using Spark or Apache Hadoop. Choose the instance size and type that best suits your cluster's processing needs: streaming data, low-latency queries, batch processing, or big data storage.
Amazon EMR cluster software setup has many options. For example, an Amazon EMR version can be loaded with Hive, Pig, Spark, and flexible frameworks like Hadoop. Installing a MapR distribution is another alternative. Since Amazon EMR runs on Amazon Linux, you can manually install software on your cluster using yum or the source code.
Flexibility and scalability
Amazon EMR lets you scale your cluster as your computing needs vary. Resizing your cluster lets you add instances during peak workloads and remove them to cut costs.
Amazon EMR supports multiple instance groups. This lets you employ Spot Instances in one group to perform jobs faster and cheaper and On-Demand Instances in another for guaranteed processing power. Multiple Spot Instance types might be mixed to take advantage of a better price.
Amazon EMR lets you use several file systems for input, output, and intermediate data. HDFS on your cluster's primary and core nodes can handle data you don't need to store beyond its lifecycle.
Amazon S3 can be used as a data layer for EMR File System applications to decouple computation and storage and store data outside of your cluster's lifespan. EMRFS lets you scale up or down to meet storage and processing needs independently. Amazon S3 lets you adjust storage and cluster size to meet growing processing needs.
Reliability
Amazon EMR monitors cluster nodes and shuts down and replaces instances as needed.
Amazon EMR lets you configure automated or manual cluster termination. Automatic cluster termination occurs after all procedures are complete. Transitory cluster. After processing, you can set up the cluster to continue running so you can manually stop it. You can also construct a cluster, use the installed apps, and manually terminate it. These clusters are “long-running clusters.”
Termination prevention can prevent processing errors from terminating cluster instances. With termination protection, you can retrieve data from instances before termination. Whether you activate your cluster by console, CLI, or API changes these features' default settings.
Security
Amazon EMR uses Amazon EC2 key pairs, IAM, and VPC to safeguard data and clusters.
IAM
Amazon EMR uses IAM for permissions. Person or group permissions are set by IAM policies. Users and groups can access resources and activities through policies.
The Amazon EMR service uses IAM roles, while instances use the EC2 instance profile. These roles allow the service and instances to access other AWS services for you. Amazon EMR and EC2 instance profiles have default roles. By default, roles use AWS managed policies generated when you launch an EMR cluster from the console and select default permissions. Additionally, the AWS CLI may construct default IAM roles. Custom service and instance profile roles can be created to govern rights outside of AWS.
Security groups
Amazon EMR employs security groups to control EC2 instance traffic. Amazon EMR shares a security group for your primary instance and core/task instances when your cluster is deployed. Amazon EMR creates security group rules to ensure cluster instance communication. Extra security groups can be added to your primary and core/task instances for more advanced restrictions.
Encryption
Amazon EMR enables optional server-side and client-side encryption using EMRFS to protect Amazon S3 data. After submission, Amazon S3 encrypts data server-side.
The EMRFS client on your EMR cluster encrypts and decrypts client-side encryption. AWS KMS or your key management system can handle client-side encryption root keys.
Amazon VPC
Amazon EMR launches clusters in Amazon VPCs. VPCs in AWS allow you to manage sophisticated network settings and access functionalities.
AWS CloudTrail
Amazon EMR and CloudTrail record AWS account requests. This data shows who accesses your cluster, when, and from what IP.
Amazon EC2 key pairs
A secure link between the primary node and your remote computer lets you monitor and communicate with your cluster. SSH or Kerberos can authenticate this connection. SSH requires an Amazon EC2 key pair.
Monitoring
Debug cluster issues like faults or failures utilising log files and Amazon EMR management interfaces. Amazon EMR can archive log files on Amazon S3 to save records and solve problems after your cluster ends. The Amazon EMR UI also has a task, job, and step-specific debugging tool for log files.
Amazon EMR connects to CloudWatch for cluster and job performance monitoring. Alarms can be set based on cluster idle state and storage use %.
Management interfaces
There are numerous Amazon EMR access methods:
The console provides a graphical interface for cluster launch and management. You may examine, debug, terminate, and describe clusters to launch via online forms. Amazon EMR is easiest to use via the console, requiring no scripting.
Installing the AWS Command Line Interface (AWS CLI) on your computer lets you connect to Amazon EMR and manage clusters. The broad AWS CLI includes Amazon EMR-specific commands. You can automate cluster administration and initialisation with scripts. If you prefer command line operations, utilise the AWS CLI.
SDK allows cluster creation and management for Amazon EMR calls. They enable cluster formation and management automation systems. This SDK is best for customising Amazon EMR. Amazon EMR supports Go, Java,.NET (C# and VB.NET), Node.js, PHP, Python, and Ruby SDKs.
A Web Service API lets you call a web service using JSON. A custom SDK that calls Amazon EMR is best done utilising the API.
Complexity:
EMR cluster setup and maintenance are more involved than with AWS Glue and require framework knowledge.
Learning curve
Setting up and optimising EMR clusters may require adjusting settings and parameters.
Possible Performance Issues:
Incorrect instance types or under-provisioned clusters might slow task execution and other performance.
Depends on AWS:
Due to its deep interaction with AWS infrastructure, EMR is less portable than on-premise solutions despite cloud flexibility.
#AmazonEMR#AmazonEC2#AmazonS3#AmazonVirtualPrivateCloud#EMRFS#AmazonEMRservice#Technology#technews#NEWS#technologynews#govindhtech
0 notes
Text
Manager, Development - Tax, Finance ((Python /Pyspark))
Job Summary Work as a Senior Developer for a Strategic Tax Reporting application under Finance Technology. Individual will be responsible for end to end Development, Testing and Implementation of Data solutions using Dataiku tool, with Python, Spark, Hadoop and Hive as the core programming languages and frameworks to develop data products, API’s and integrate with other applications within the…
0 notes
Text
Big Data Course in Kochi: Transforming Careers in the Age of Information
In today’s hyper-connected world, data is being generated at an unprecedented rate. Every click on a website, every transaction, every social media interaction — all of it contributes to the vast oceans of information known as Big Data. Organizations across industries now recognize the strategic value of this data and are eager to hire professionals who can analyze and extract meaningful insights from it.
This growing demand has turned big data course in Kochi into one of the most sought-after educational programs for tech enthusiasts, IT professionals, and graduates looking to enter the data-driven future of work.
Understanding Big Data and Its Relevance
Big Data refers to datasets that are too large or complex for traditional data processing applications. It’s commonly defined by the 5 V’s:
Volume – Massive amounts of data generated every second
Velocity – The speed at which data is created and processed
Variety – Data comes in various forms, from structured to unstructured
Veracity – Quality and reliability of the data
Value – The insights and business benefits extracted from data
These characteristics make Big Data a crucial resource for industries ranging from healthcare and finance to retail and logistics. Trained professionals are needed to collect, clean, store, and analyze this data using modern tools and platforms.
Why Enroll in a Big Data Course?
Pursuing a big data course in Kochi can open up diverse opportunities in data analytics, data engineering, business intelligence, and beyond. Here's why it's a smart move:
1. High Demand for Big Data Professionals
There’s a huge gap between the demand for big data professionals and the current supply. Companies are actively seeking individuals who can handle tools like Hadoop, Spark, and NoSQL databases, as well as data visualization platforms.
2. Lucrative Career Opportunities
Big data engineers, analysts, and architects earn some of the highest salaries in the tech sector. Even entry-level roles can offer impressive compensation packages, especially with relevant certifications.
3. Cross-Industry Application
Skills learned in a big data course in Kochi are transferable across sectors such as healthcare, e-commerce, telecommunications, banking, and more.
4. Enhanced Decision-Making Skills
With big data, companies make smarter business decisions based on predictive analytics, customer behavior modeling, and real-time reporting. Learning how to influence those decisions makes you a valuable asset.
What You’ll Learn in a Big Data Course
A top-tier big data course in Kochi covers both the foundational concepts and the technical skills required to thrive in this field.
1. Core Concepts of Big Data
Understanding what makes data “big,” how it's collected, and why it matters is crucial before diving into tools and platforms.
2. Data Storage and Processing
You'll gain hands-on experience with distributed systems such as:
Hadoop Ecosystem: HDFS, MapReduce, Hive, Pig, HBase
Apache Spark: Real-time processing and machine learning capabilities
NoSQL Databases: MongoDB, Cassandra for unstructured data handling
3. Data Integration and ETL
Learn how to extract, transform, and load (ETL) data from multiple sources into big data platforms.
4. Data Analysis and Visualization
Training includes tools for querying large datasets and visualizing insights using:
Tableau
Power BI
Python/R libraries for data visualization
5. Programming Skills
Big data professionals often need to be proficient in:
Java
Python
Scala
SQL
6. Cloud and DevOps Integration
Modern data platforms often operate on cloud infrastructure. You’ll gain familiarity with AWS, Azure, and GCP, along with containerization (Docker) and orchestration (Kubernetes).
7. Project Work
A well-rounded course includes capstone projects simulating real business problems—such as customer segmentation, fraud detection, or recommendation systems.
Kochi: A Thriving Destination for Big Data Learning
Kochi has evolved into a leading IT and educational hub in South India, making it an ideal place to pursue a big data course in Kochi.
1. IT Infrastructure
Home to major IT parks like Infopark and SmartCity, Kochi hosts numerous startups and global IT firms that actively recruit big data professionals.
2. Cost-Effective Learning
Compared to metros like Bangalore or Hyderabad, Kochi offers high-quality education and living at a lower cost.
3. Talent Ecosystem
With a strong base of engineering colleges and tech institutes, Kochi provides a rich talent pool and a thriving tech community for networking.
4. Career Opportunities
Kochi’s booming IT industry provides immediate placement potential after course completion, especially for well-trained candidates.
What to Look for in a Big Data Course?
When choosing a big data course in Kochi, consider the following:
Expert Instructors: Trainers with industry experience in data engineering or analytics
Comprehensive Curriculum: Courses should include Hadoop, Spark, data lakes, ETL pipelines, cloud deployment, and visualization tools
Hands-On Projects: Theoretical knowledge is incomplete without practical implementation
Career Support: Resume building, interview preparation, and placement assistance
Flexible Learning Options: Online, weekend, or hybrid courses for working professionals
Zoople Technologies: Leading the Way in Big Data Training
If you’re searching for a reliable and career-oriented big data course in Kochi, look no further than Zoople Technologies—a name synonymous with quality tech education and industry-driven training.
Why Choose Zoople Technologies?
Industry-Relevant Curriculum: Zoople offers a comprehensive, updated big data syllabus designed in collaboration with real-world professionals.
Experienced Trainers: Learn from data scientists and engineers with years of experience in multinational companies.
Hands-On Training: Their learning model emphasizes practical exposure, with real-time projects and live data scenarios.
Placement Assistance: Zoople has a dedicated team to help students with job readiness—mock interviews, resume support, and direct placement opportunities.
Modern Learning Infrastructure: With smart classrooms, cloud labs, and flexible learning modes, students can learn in a professional, tech-enabled environment.
Strong Alumni Network: Zoople’s graduates are placed in top firms across India and abroad, and often return as guest mentors or recruiters.
Zoople Technologies has cemented its position as a go-to institute for aspiring data professionals. By enrolling in their big data course in Kochi, you’re not just learning technology—you’re building a future-proof career.
Final Thoughts
Big data is more than a trend—it's a transformative force shaping the future of business and technology. As organizations continue to invest in data-driven strategies, the demand for skilled professionals will only grow.
By choosing a comprehensive big data course in Kochi, you position yourself at the forefront of this evolution. And with a trusted partner like Zoople Technologies, you can rest assured that your training will be rigorous, relevant, and career-ready.
Whether you're a student, a working professional, or someone looking to switch careers, now is the perfect time to step into the world of big data—and Kochi is the ideal place to begin.
0 notes
Photo

Hive Tutorial | Hive Course For Beginners | Intellipaat - YouTube ☞ http://go.codetrick.net/d68b7e0dba #bigdata #hadoop
0 notes
Photo

Hive Tutorial | Hive Course For Beginners | Intellipaat - YouTube ☞ http://go.codetrick.net/d68b7e0dba #bigdata #hadoop
0 notes
Link
0 notes
Text
Are you looking to build a career in Big Data Analytics? Gain in-depth knowledge of Hadoop and its ecosystem with expert-led training at Sunbeam Institute, Pune – a trusted name in IT education.
Why Choose Our Big Data Hadoop Classes?
🔹 Comprehensive Curriculum: Covering Hadoop, HDFS, MapReduce, Apache Spark, Hive, Pig, HBase, Sqoop, Flume, and more. 🔹 Hands-on Training: Work on real-world projects and industry use cases to gain practical experience. 🔹 Expert Faculty: Learn from experienced professionals with real-time industry exposure. 🔹 Placement Assistance: Get career guidance, resume building support, and interview preparation. 🔹 Flexible Learning Modes: Classroom and online training options available. 🔹 Industry-Recognized Certification: Boost your resume with a professional certification.
Who Should Join?
✔️ Freshers and IT professionals looking to enter the field of Big Data & Analytics ✔️ Software developers, system administrators, and data engineers ✔️ Business intelligence professionals and database administrators ✔️ Anyone passionate about Big Data and Machine Learning
#Big Data Hadoop training in Pune#Hadoop classes Pune#Big Data course Pune#Hadoop certification Pune#learn Hadoop in Pune#Apache Spark training Pune#best Big Data course Pune#Hadoop coaching in Pune#Big Data Analytics training Pune#Hadoop and Spark training Pune
0 notes
Text
CSC 555 and DSC 333 Mining Big Data Assignment 2
Reading: Mining of Massive Datasets: Chapter 2. Hadoop: The Definitive Guide: Chapter 17 (Hive), Appendix A (file also available on D2L). Supplemental document UsingAmazonAWS.doc and Instructions_ReformatHDFS_Hive.doc The reformatting instructions are included in case you have to re-initialize your AWS instance. You would only need it if you need to reformat your Hadoop set up. Part 1 Describe…
0 notes
Text
What is Amazon EMR architecture? And Service Layers

Describe Amazon EMR architecture
The storage layer includes your cluster's numerous file systems. Examples of various storage options.
The Hadoop Distributed File System (HDFS) is scalable and distributed. HDFS keeps several copies of its data on cluster instances to prevent data loss if one instance dies. Shutting down a cluster recovers HDFS, or ephemeral storage. HDFS's capacity to cache interim findings benefits MapReduce and random input/output workloads.
Amazon EMR improves Hadoop with the EMR File System (EMRFS) to enable direct access to Amazon S3 data like HDFS. The file system in your cluster may be HDFS or Amazon S3. Most input and output data are stored on Amazon S3, while intermediate results are stored on HDFS.
A disc that is locally attached is called the local file system. Every Hadoop cluster Amazon EC2 instance includes an instance store, a specified block of disc storage. Amazon EC2 instances only store storage volume data during their lifespan.
Data processing jobs are scheduled and cluster resources are handled via the resource management layer. Amazon EMR defaults to centrally managing cluster resources for multiple data-processing frameworks using Apache Hadoop 2.0's YARN component. Not all Amazon EMR frameworks and apps use YARN for resource management. Amazon EMR has an agent on every node that connects, monitors cluster health, and manages YARN items.
Amazon EMR's built-in YARN job scheduling logic ensures that running tasks don't fail when Spot Instances' task nodes fail due to their frequent use. Amazon EMR limits application master process execution to core nodes. Controlling active jobs requires a continuous application master process.
YARN node labels are incorporated into Amazon EMR 5.19.0 and later. Previous editions used code patches. YARN capacity-scheduler and fair-scheduler use node labels by default, with yarn-site and capacity-scheduler configuration classes. Amazon EMR automatically labels core nodes and schedules application masters on them. This feature can be disabled or changed by manually altering yarn-site and capacity-scheduler configuration class settings or related XML files.
Data processing frameworks power data analysis and processing. Many frameworks use YARN or their own resource management systems. Streaming, in-memory, batch, interactive, and other processing frameworks exist. Use case determines framework. Application layer languages and interfaces that communicate with processed data are affected. Amazon EMR uses Spark and Hadoop MapReduce mostly.
Distributed computing employs open-source Hadoop MapReduce. You provide Map and Reduce functions, and it handles all the logic, making parallel distributed applications easier. Map converts data to intermediate results, which are key-value pairs. The Reduce function combines intermediate results and runs additional algorithms to produce the final output. Hive is one of numerous MapReduce frameworks that can automate Map and Reduce operations.
Apache Spark: Spark is a cluster infrastructure and programming language for big data. Spark stores datasets in memory and executes using directed acyclic networks instead of Hadoop MapReduce. EMRFS helps Spark on Amazon EMR users access S3 data. Interactive query and SparkSQL modules are supported.
Amazon EMR supports Hive, Pig, and Spark Streaming. The programs can build data warehouses, employ machine learning, create stream processing applications, and create processing workloads in higher-level languages. Amazon EMR allows open-source apps with their own cluster management instead of YARN.
Amazon EMR supports many libraries and languages for app connections. Streaming, Spark SQL, MLlib, and GraphX work with Spark, while MapReduce uses Java, Hive, or Pig.
#AmazonEMRarchitecture#EMRFileSystem#HadoopDistributedFileSystem#Localfilesystem#Clusterresource#HadoopMapReduce#Technology#technews#technologynews#NEWS#govindhtech
0 notes
Text
Basic Structure of HiveQL Queries
HiveQL Query Structure: A Complete Guide to Writing Efficient Queries Hello, fellow data enthusiasts! In this blog post, I will introduce you to HiveQL Query Structure – one of the most important concepts in HiveQL: the basic structure of queries. HiveQL is a query language used in Apache Hive to manage and analyze large datasets stored in Hadoop. Understanding its structure is essential for…
0 notes
Text
Data Engineer - Sr. Consultant level-Scala or Python (Hadoop, Spark, Hive, Kafka) 9 yrs experience
Company DescriptionVisa is a world leader in payments and technology, with over 259 billion payments transactions flowing safely between consumers, merchants, financial institutions, and government entities in more than 200 countries and territories each year. Our mission is to connect the world through the most innovative, convenient, reliable, and secure payments network, enabling individuals,…
0 notes