#kubernetes cluster tutorial
Explore tagged Tumblr posts
Text
Microk8s vs k3s: Lightweight Kubernetes distribution showdown
Microk8s vs k3s: Lightweight Kubernetes distribution showdown #homelab #kubernetes #microk8svsk3scomparison #lightweightkubernetesdistributions #k3sinstallationguide #microk8ssnappackagetutorial #highavailabilityinkubernetes #k3s #microk8s #portainer
Especially if you are into running Kubernetes in the home lab, you may look for a lightweight Kubernetes distribution. Two distributions that stand out are Microk8s and k3s. Let’s take a look at Microk8s vs k3s and discover the main differences between these two options, focusing on various aspects like memory usage, high availability, and k3s and microk8s compatibility. Table of contentsWhat is…
View On WordPress
#container runtimes and configurations#edge computing with k3s and microk8s#High Availability in Kubernetes#k3s installation guide#kubernetes cluster resources#Kubernetes on IoT devices#lightweight kubernetes distributions#memory usage optimization#microk8s snap package tutorial#microk8s vs k3s comparison
0 notes
Video
youtube
Session 5 Kubernetes 3 Node Cluster and Dashboard Installation and Confi...
#youtube#In this exciting video tutorial we dive into the world of Kubernetes exploring how to set up a robust 3-node cluster and configure the Kuber
0 notes
Text
Kubernetes Tutorials | Waytoeasylearn
Learn how to become a Certified Kubernetes Administrator (CKA) with this all-in-one Kubernetes course. It is suitable for complete beginners as well as experienced DevOps engineers. This practical, hands-on class will teach you how to understand Kubernetes architecture, deploy and manage applications, scale services, troubleshoot issues, and perform admin tasks. It covers everything you need to confidently pass the CKA exam and run containerized apps in production.
Learn Kubernetes the easy way! 🚀 Best tutorials at Waytoeasylearn for mastering Kubernetes and cloud computing efficiently.➡️ Learn Now

Whether you are studying for the CKA exam or want to become a Kubernetes expert, this course offers step-by-step lessons, real-life examples, and labs focused on exam topics. You will learn from Kubernetes professionals and gain skills that employers are looking for.
Key Learning Outcomes: Understand Kubernetes architecture, components, and key ideas. Deploy, scale, and manage containerized apps on Kubernetes clusters. Learn to use kubectl, YAML files, and troubleshoot clusters. Get familiar with pods, services, deployments, volumes, namespaces, and RBAC. Set up and run production-ready Kubernetes clusters using kubeadm. Explore advanced topics like rolling updates, autoscaling, and networking. Build confidence with real-world labs and practice exams. Prepare for the CKA exam with helpful tips, checklists, and practice scenarios.
Who Should Take This Course: Aspiring CKA candidates. DevOps engineers, cloud engineers, and system admins. Software developers moving into cloud-native work. Anyone who wants to master Kubernetes for real jobs.
1 note
·
View note
Text
Where Can I Find DevOps Training with Placement Near Me?
Introduction: Unlock Your Tech Career with DevOps Training
In today’s digital world, companies are moving faster than ever. Continuous delivery, automation, and rapid deployment have become the new norm. That’s where DevOps comes in a powerful blend of development and operations that fuels speed and reliability in software delivery.
Have you ever wondered how companies like Amazon, Netflix, or Facebook release features so quickly without downtime? The secret lies in DevOps an industry-demanded approach that integrates development and operations to streamline software delivery. Today, DevOps skills are not just desirable they’re essential. If you’re asking, “Where can I find DevOps training with placement near me?”, this guide will walk you through everything you need to know to find the right training and land the job you deserve.
Understanding DevOps: Why It Matters
DevOps is more than a buzzword it’s a cultural and technical shift that transforms how software teams build, test, and deploy applications. It focuses on collaboration, automation, continuous integration (CI), continuous delivery (CD), and feedback loops.
Professionals trained in DevOps can expect roles like:
DevOps Engineer
Site Reliability Engineer
Cloud Infrastructure Engineer
Release Manager
The growing reliance on cloud services and rapid deployment pipelines has placed DevOps engineers in high demand. A recent report by Global Knowledge ranks DevOps as one of the highest-paying tech roles in North America.
Why DevOps Training with Placement Is Crucial
Many learners begin with self-study or unstructured tutorials, but that only scratches the surface. A comprehensive DevOps training and placement program ensures:
Structured learning of core and advanced DevOps concepts
Hands-on experience with DevOps automation tools
Resume building, interview preparation, and career support
Real-world project exposure to simulate a professional environment
Direct pathways to job interviews and job offers
If you’re looking for DevOps training with placement “near me,” remember that “location” today is no longer just geographic—it’s also digital. The right DevOps online training can provide the accessibility and support you need, no matter your zip code.
Core Components of a DevOps Course Online
When choosing a DevOps course online, ensure it covers the following modules in-depth:
1. Introduction to DevOps Culture and Principles
Evolution of DevOps
Agile and Lean practices
Collaboration and communication strategies
2. Version Control with Git and GitHub
Branching and merging strategies
Pull requests and code reviews
Git workflows in real-world projects
3. Continuous Integration (CI) Tools
Jenkins setup and pipelines
GitHub Actions
Code quality checks and automated builds
4. Configuration Management
Tools like Ansible, Chef, or Puppet
Managing infrastructure as code (IaC)
Role-based access control
5. Containerization and Orchestration
Docker fundamentals
Kubernetes (K8s) clusters, deployments, and services
Helm charts and autoscaling strategies
6. Monitoring and Logging
Prometheus and Grafana
ELK Stack (Elasticsearch, Logstash, Kibana)
Incident alerting systems
7. Cloud Infrastructure and DevOps Automation Tools
AWS, Azure, or GCP fundamentals
Terraform for IaC
CI/CD pipelines integrated with cloud services
Real-World Applications: Why Hands-On Learning Matters
A key feature of any top-tier DevOps training online is its practical approach. Without hands-on labs or real projects, theory can only take you so far.
Here’s an example project structure:
Project: Deploying a Multi-Tier Application with Kubernetes
Such projects help learners not only understand tools but also simulate real DevOps scenarios, building confidence and clarity.
DevOps Training and Certification: What You Should Know
Certifications validate your knowledge and can significantly improve your job prospects. A solid DevOps training and certification program should prepare you for globally recognized exams like:
DevOps Foundation Certification
Certified Kubernetes Administrator (CKA)
AWS Certified DevOps Engineer
Docker Certified Associate
While certifications are valuable, employers prioritize candidates who demonstrate both theoretical knowledge and applied skills. This is why combining training with placement offers the best return on investment.
What to Look for in a DevOps Online Course
If you’re on the hunt for the best DevOps training online, here are key features to consider:
Structured Curriculum
It should cover everything from fundamentals to advanced automation practices.
Expert Trainers
Trainers should have real industry experience, not just academic knowledge.
Hands-On Projects
Project-based assessments help bridge the gap between theory and application.
Flexible Learning
A good DevOps online course offers recordings, live sessions, and self-paced materials.
Placement Support
Look for programs that offer:
Resume writing and LinkedIn profile optimization
Mock interviews with real-time feedback
Access to a network of hiring partners
Benefits of Enrolling in DevOps Bootcamp Online
A DevOps bootcamp online fast-tracks your learning process. These are intensive, short-duration programs designed for focused outcomes. Key benefits include:
Rapid skill acquisition
Industry-aligned curriculum
Peer collaboration and group projects
Career coaching and mock interviews
Job referrals and hiring events
Such bootcamps are ideal for professionals looking to upskill, switch careers, or secure a DevOps role without spending years in academia.
DevOps Automation Tools You Must Learn
Git & GitHub Git is the backbone of version control in DevOps, allowing teams to track changes, collaborate on code, and manage development history. GitHub enhances this by offering cloud-based repositories, pull requests, and code review tools—making it a must-know for every DevOps professional.
Jenkins Jenkins is the most popular open-source automation server used to build and manage continuous integration and continuous delivery (CI/CD) pipelines. It integrates with almost every DevOps tool and helps automate testing, deployment, and release cycles efficiently.
Docker Docker is a game-changer in DevOps. It enables you to containerize applications, ensuring consistency across environments. With Docker, developers can package software with all its dependencies, leading to faster development and more reliable deployments.
Kubernetes Once applications are containerized, Kubernetes helps manage and orchestrate them at scale. It automates deployment, scaling, and load balancing of containerized applications—making it essential for managing modern cloud-native infrastructures.
Ansible Ansible simplifies configuration management and infrastructure automation. Its agentless architecture and easy-to-write YAML playbooks allow you to automate repetitive tasks across servers and maintain consistency in deployments.
Terraform Terraform enables Infrastructure as Code (IaC), allowing teams to provision and manage cloud resources using simple, declarative code. It supports multi-cloud environments and ensures consistent infrastructure with minimal manual effort.
Prometheus & Grafana For monitoring and alerting, Prometheus collects metrics in real-time, while Grafana visualizes them beautifully. Together, they help track application performance and system health essential for proactive operations.
ELK Stack (Elasticsearch, Logstash, Kibana) The ELK stack is widely used for centralized logging. Elasticsearch stores logs, Logstash processes them, and Kibana provides powerful visualizations, helping teams troubleshoot issues quickly.
Mastering these tools gives you a competitive edge in the DevOps job market and empowers you to build reliable, scalable, and efficient software systems.
Job Market Outlook for DevOps Professionals
According to the U.S. Bureau of Labor Statistics, software development roles are expected to grow 25% by 2032—faster than most other industries. DevOps roles are a large part of this trend. Companies need professionals who can automate pipelines, manage scalable systems, and deliver software efficiently.
Average salaries in the U.S. for DevOps engineers range between $95,000 to $145,000, depending on experience, certifications, and location.
Companies across industries—from banking and healthcare to retail and tech—are hiring DevOps professionals for critical digital transformation roles.
Is DevOps for You?
If you relate to any of the following, a DevOps course online might be the perfect next step:
You're from an IT background looking to transition into automation roles
You enjoy scripting, problem-solving, and system management
You're a software developer interested in faster and reliable deployments
You're a system admin looking to expand into cloud and DevOps roles
You want a structured, placement-supported training program to start your career
How to Get Started with DevOps Training and Placement
Step 1: Enroll in a Comprehensive Program
Choose a program that covers both foundational and advanced concepts and includes real-time projects.
Step 2: Master the Tools
Practice using popular DevOps automation tools like Docker, Jenkins, and Kubernetes.
Step 3: Work on Live Projects
Gain experience working on CI/CD pipelines, cloud deployment, and infrastructure management.
Step 4: Prepare for Interviews
Use mock sessions, Q&A banks, and technical case studies to strengthen your readiness.
Step 5: Land the Job
Leverage placement services, interview support, and resume assistance to get hired.
Key Takeaways
DevOps training provides the automation and deployment skills demanded in modern software environments.
Placement support is crucial to transitioning from learning to earning.
Look for comprehensive online courses that offer hands-on experience and job assistance.
DevOps is not just a skill it’s a mindset of collaboration, speed, and innovation.
Ready to launch your DevOps career? Join H2K Infosys today for hands-on learning and job placement support. Start your transformation into a DevOps professional now.
#devops training#DevOps course#devops training online#devops online training#devops training and certification#devops certification training#devops training with placement#devops online courses#best devops training online#online DevOps course#advanced devops course#devops training and placement#devops course online#devops real time training#DevOps automation tools
0 notes
Text
Kubernetes Dashboard Tutorial: Visualize & Manage Your Cluster Like a Pro! 🔍📊
✔️ Learn how to install and launch the Kubernetes Dashboard ✔️ View real-time CPU & memory usage using Metrics Server 📈 ✔️ Navigate through Workloads, Services, Configs, and Storage ✔️ Create and manage deployments using YAML or the UI 💻 ✔️ Edit live resources and explore namespaces visually 🧭 ✔️ Understand how access methods differ in local vs production clusters 🔐 ✔️ Great for beginners, visual learners, or collaborative teams 🤝
👉 Whether you're debugging, deploying, or just learning Kubernetes, this dashboard gives you a GUI-first approach to mastering clusters!
youtube
0 notes
Text
How to Build a Custom Kubernetes Cluster for Dev & Testing
Okay, so I need to write a comprehensive tutorial on building a custom Kubernetes cluster for development and testing. Let me start by understanding the structure and the sections required. The user has specified seven main sections, each with specific content. First, the Introduction. I’ll need to explain why building a custom cluster is important, what readers will learn, the prerequisites,…
0 notes
Text
Master Kubernetes Basics: The Ultimate Beginner’s Tutorial
Kubernetes has become a buzzword in the world of containerized applications. But what exactly is Kubernetes, and how can beginners start using it? In simple terms, Kubernetes is a powerful open-source platform designed to manage and scale containerized applications effortlessly.
Why Learn Kubernetes? As businesses shift towards modern software development practices, Kubernetes simplifies the deployment, scaling, and management of applications. It ensures your apps run smoothly across multiple environments, whether in the cloud or on-premises.
How Does Kubernetes Work? Kubernetes organizes applications into containers and manages these containers using Pods. Pods are the smallest units in Kubernetes, where one or more containers work together. Kubernetes automates tasks like load balancing, scaling up or down based on traffic, and ensuring applications stay available even during failures.
Getting Started with Kubernetes
Understand the Basics: Learn about containers (like Docker), clusters, and nodes. These are the building blocks of Kubernetes.
Set Up a Kubernetes Environment: Use platforms like Minikube or Kubernetes on cloud providers like AWS or Google Cloud for practice.
Explore Key Concepts: Focus on terms like Pods, Deployments, Services, and ConfigMaps.
Experiment and Learn: Deploy sample applications to understand how Kubernetes works in action.
Kubernetes might seem complex initially, but with consistent practice, you'll master it. Ready to dive deeper into Kubernetes? Check out this detailed guide in the Kubernetes Tutorial.
0 notes
Video
youtube
Introduction to Linux for DevOps: Why It’s Essential
Linux serves as the backbone of most DevOps workflows and cloud infrastructures. Its open-source nature, robust performance, and extensive compatibility make it the go-to operating system for modern IT environments. Whether you're deploying applications, managing containers, or orchestrating large-scale systems, mastering Linux is non-negotiable for every DevOps professional.
Why Linux is Critical in DevOps
1. Ubiquity in Cloud Environments - Most cloud platforms, such as AWS, Azure, and Google Cloud, use Linux-based environments for their services. - Tools like Kubernetes and Docker are designed to run seamlessly on Linux systems.
2. Command-Line Mastery - Linux empowers DevOps professionals with powerful command-line tools to manage servers, automate processes, and troubleshoot issues efficiently.
3. Flexibility and Automation - The ability to script and automate tasks in Linux reduces manual effort, enabling faster and more reliable deployments.
4. Open-Source Ecosystem - Linux integrates with numerous open-source DevOps tools like Jenkins, Ansible, and Terraform, making it an essential skill for streamlined workflows.
Key Topics for Beginners
- Linux Basics - What is Linux? - Understanding Linux file structures and permissions. - Common Linux distributions (Ubuntu, CentOS, Red Hat Enterprise Linux).
- Core Linux Commands - File and directory management: `ls`, `cd`, `cp`, `mv`. - System monitoring: `top`, `df`, `free`. - Networking basics: `ping`, `ifconfig`, `netstat`.
- Scripting and Automation - Writing basic shell scripts. - Automating tasks with `cron` and `at`.
- Linux Security - Managing user permissions and roles. - Introduction to firewalls and secure file transfers.
Why You Should Learn Linux for DevOps
- Cost-Efficiency: Linux is free and open-source, making it a cost-effective solution for both enterprises and individual learners. - Career Opportunities: Proficiency in Linux is a must-have skill for DevOps roles, enhancing your employability. - Scalability: Whether managing a single server or a complex cluster, Linux provides the tools and stability to scale effortlessly.
Hands-On Learning - Set up a Linux virtual machine or cloud instance. - Practice essential commands and file operations. - Write and execute your first shell script.
Who Should Learn Linux for DevOps? - Aspiring DevOps engineers starting their career journey. - System administrators transitioning into cloud and DevOps roles. - Developers aiming to improve their understanding of server environments.
***************************** *Follow Me* https://www.facebook.com/cloudolus/ | https://www.facebook.com/groups/cloudolus | https://www.linkedin.com/groups/14347089/ | https://www.instagram.com/cloudolus/ | https://twitter.com/cloudolus | https://www.pinterest.com/cloudolus/ | https://www.youtube.com/@cloudolus | https://www.youtube.com/@ClouDolusPro | https://discord.gg/GBMt4PDK | https://www.tumblr.com/cloudolus | https://cloudolus.blogspot.com/ | https://t.me/cloudolus | https://www.whatsapp.com/channel/0029VadSJdv9hXFAu3acAu0r | https://chat.whatsapp.com/D6I4JafCUVhGihV7wpryP2 *****************************
*🔔Subscribe & Stay Updated:* Don't forget to subscribe and hit the bell icon to receive notifications and stay updated on our latest videos, tutorials & playlists! *ClouDolus:* https://www.youtube.com/@cloudolus *ClouDolus AWS DevOps:* https://www.youtube.com/@ClouDolusPro *THANKS FOR BEING A PART OF ClouDolus! 🙌✨*
#youtube#Linux Linux for DevOps Linux basics Linux commands DevOps basics DevOps skills cloud computing Linux for beginners Linux tutorial Linux for#LinuxLinux for DevOpsLinux basicslinux commandsDevOps basicsDevOps skillscloud computingLinux for beginnersLinux tutorialLinux scriptingLinu#aws course#aws devops#aws#devpos#linux
1 note
·
View note
Text
Hyperdisk ML: Integration To Speed Up Loading AI/ML Data

Hyperdisk ML can speed up the loading of AI/ML data. This tutorial explains how to use it to streamline and speed up the loading of AI/ML model weights on Google Kubernetes Engine (GKE). The main method for accessing Hyperdisk ML storage with GKE clusters is through the Compute Engine Persistent Disk CSI driver.
What is Hyperdisk ML?
You can scale up your applications with Hyperdisk ML, a high-performance storage solution. It is perfect for running AI/ML tasks that require access to a lot of data since it offers high aggregate throughput to several virtual machines at once.
Overview
It can speed up model weight loading by up to 11.9X when activated in read-only-many mode, as opposed to loading straight from a model registry. The Google Cloud Hyperdisk design, which enables scalability to 2,500 concurrent nodes at 1.2 TB/s, is responsible for this acceleration. This enables you to decrease pod over-provisioning and improve load times for your AI/ML inference workloads.
The following are the high-level procedures for creating and utilizing Hyperdisk ML:
Pre-cache or hydrate data in a disk image that is persistent: Fill Hyperdisk ML volumes with serving-ready data from an external data source (e.g., Gemma weights fetched from Cloud Storage). The disk image’s persistent disk needs to work with Google Cloud Hyperdisk.
Using an existing Google Cloud Hyperdisk, create a Hyperdisk ML volume: Make a Kubernetes volume that points to the data-loaded Hyperdisk ML volume. To make sure your data is accessible in every zone where your pods will operate, you can optionally establish multi-zone storage classes.
To use it volume, create a Kubernetes deployment: For your applications to use, refer to the Hyperdisk ML volume with rapid data loading.
Multi-zone Hyperdisk ML volumes
There is just one zone where hyperdisk ML disks are accessible. Alternatively, you may dynamically join many zonal disks with identical content under a single logical PersistentVolumeClaim and PersistentVolume by using the Hyperdisk ML multi-zone capability. The multi-zone feature’s referenced zonal disks have to be in the same area. For instance, the multi-zone disks (such as us-central1-a and us-central1-b) must be situated in the same area if your regional cluster is established in us-central1.
Running Pods across zones for increased accelerator availability and cost effectiveness with Spot VMs is a popular use case for AI/ML inference. Because it is zonal, GKE will automatically clone the disks across zones if your inference server runs several pods across zones to make sure your data follows your application.Image Credit To Google Cloud
The limitations of multi-zone Hyperdisk ML volumes are as follows:
There is no support for volume resizing or volume snapshots.
Only read-only mode is available for multi-zone Hyperdisk ML volumes.
GKE does not verify that the disk content is consistent across zones when utilizing pre-existing disks with a multi-zone Hyperdisk ML volume. Make sure your program considers the possibility of inconsistencies between zones if any of the disks have divergent material.
Requirements
The following Requirements must be met by your clusters in order to use it volumes in GKE:
Use Linux clusters with GKE 1.30.2-gke.1394000 or above installed. Make sure the release channel contains the GKE version or above that is necessary for this driver if you want to use one.
A driver for the Compute Engine Persistent Disk (CSI) must be installed. On new Autopilot and Standard clusters, the Compute Engine Persistent Disc driver is on by default and cannot be turned off or changed while Autopilot is in use. See Enabling the Compute Engine Persistent Disk CSI Driver on an Existing Cluster if you need to enable the Cluster’s Compute Engine Persistent Disk CSI driver.
You should use GKE version 1.29.2-gke.1217000 or later if you wish to adjust the readahead value.
You must use GKE version 1.30.2-gke.1394000 or later in order to utilize the multi-zone dynamically provisioned capability.
Only specific node types and zones allow hyperdisk ML.
Conclusion
This source offers a thorough tutorial on how to use Hyperdisk ML to speed up AI/ML data loading on Google Kubernetes Engine (GKE). It explains how to pre-cache data in a disk image, create a it volume that your workload in GKE can read, and create a deployment to use this volume. The article also discusses how to fix problems such a low it throughput quota and provides advice on how to adjust readahead numbers for best results.
Read more on Govindhtech.com
#AI#ML#HyperdiskML#GoogleKubernetesEngine#GKE#VMs#Kubernetes#News#Technews#Technology#Technologynews#Technologytrends#Govindhtech
0 notes
Text
What is Cloud Native Security ?
BY: Pankaj Bansal , Founder at NewsPatrolling.com
Cloud Native Security refers to a set of practices, tools, and technologies designed to secure applications and infrastructure that are built, deployed, and operated using cloud-native principles. Cloud-native environments often leverage microservices, containers, Kubernetes, serverless functions, and other cloud-native technologies, which require a different approach to security compared to traditional monolithic applications.
Ad : Read chandrayaan 3 quotes , class 10th cbse tutorial and download movies online
Key Concepts of Cloud Native Security
Microservices Security: Each microservice has its own security boundaries, requiring strong authentication and authorization mechanisms, secure APIs, and encrypted communications.
Container Security: Containers, which package application code along with its dependencies, require secure images, container runtime protection, and regular vulnerability scanning.
Kubernetes Security: As an orchestration platform, Kubernetes manages containers across multiple environments, making it critical to secure the cluster, control access, and ensure secure configurations.
Infrastructure as Code (IaC) Security: IaC tools, such as Terraform or AWS CloudFormation, automate the provisioning of infrastructure, and securing IaC involves scanning configurations for vulnerabilities and ensuring best practices are followed.
CI/CD Pipeline Security: Continuous Integration and Continuous Deployment (CI/CD) pipelines automate application development and deployment, so securing these pipelines is essential to prevent the introduction of vulnerabilities into production.
Runtime Security: This involves monitoring applications and environments in real-time to detect and respond to threats, such as unusual behavior, unauthorized access, or container breakout attempts.
Zero Trust Security Model: This approach assumes that threats could be inside or outside the network, and therefore every request should be verified before granting access, using principles like least privilege and strong identity verification.
API Security: APIs are crucial in cloud-native applications, making them a primary target for attacks. Securing APIs includes authentication, rate limiting, and protection against common threats such as SQL injection or cross-site scripting (XSS).
Benefits of Cloud Native Security
Scalability and Flexibility: Security measures can automatically scale with the application as it grows or changes.
Automation and Speed: Security can be integrated directly into the CI/CD pipeline, allowing faster and more secure deployments.
Reduced Attack Surface: Microservices and containerization help isolate components, reducing the overall attack surface of an application.
Enhanced Monitoring and Response: Cloud-native environments provide better visibility and the ability to quickly detect and respond to security incidents.
Cloud Native Security is crucial for modern, agile development practices that prioritize speed, scalability, and resilience.
0 notes
Video
youtube
Session 5 Kubernetes 3 Node Cluster and Dashboard Installation and Confi...
#youtube#Kubernetes 3 Node Cluster and Dashboard Installation and Configuration with Podman 🚀 In this exciting video tutorial we dive into the worl
1 note
·
View note
Text
Mastering OpenShift Clusters: A Comprehensive Guide for Streamlined Containerized Application Management
As organizations increasingly adopt containerization to enhance their application development and deployment processes, mastering tools like OpenShift becomes crucial. OpenShift, a Kubernetes-based platform, provides powerful capabilities for managing containerized applications. In this blog, we'll walk you through essential steps and best practices to effectively manage OpenShift clusters.
Introduction to OpenShift
OpenShift is a robust container application platform developed by Red Hat. It leverages Kubernetes for orchestration and adds developer-centric and enterprise-ready features. Understanding OpenShift’s architecture, including its components like the master node, worker nodes, and its integrated CI/CD pipeline, is foundational to mastering this platform.
Step-by-Step Tutorial
1. Setting Up Your OpenShift Cluster
Step 1: Prerequisites
Ensure you have a Red Hat OpenShift subscription.
Install oc, the OpenShift CLI tool.
Prepare your infrastructure (on-premise servers, cloud instances, etc.).
Step 2: Install OpenShift
Use the OpenShift Installer to deploy the cluster:openshift-install create cluster --dir=mycluster
Step 3: Configure Access
Log in to your cluster using the oc CLI:oc login -u kubeadmin -p $(cat mycluster/auth/kubeadmin-password) https://api.mycluster.example.com:6443
2. Deploying Applications on OpenShift
Step 1: Create a New Project
A project in OpenShift is similar to a namespace in Kubernetes:oc new-project myproject
Step 2: Deploy an Application
Deploy a sample application, such as an Nginx server:oc new-app nginx
Step 3: Expose the Application
Create a route to expose the application to external traffic:oc expose svc/nginx
3. Managing Resources and Scaling
Step 1: Resource Quotas and Limits
Define resource quotas to control the resource consumption within a project:apiVersion: v1 kind: ResourceQuota metadata: name: mem-cpu-quota spec: hard: requests.cpu: "4" requests.memory: 8Gi Apply the quota:oc create -f quota.yaml
Step 2: Scaling Applications
Scale your deployment to handle increased load:oc scale deployment/nginx --replicas=3
Expert Best Practices
1. Security and Compliance
Role-Based Access Control (RBAC): Define roles and bind them to users or groups to enforce the principle of least privilege.apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: namespace: myproject name: developer rules: - apiGroups: [""] resources: ["pods", "services"] verbs: ["get", "list", "watch", "create", "update", "delete"]oc create -f role.yaml oc create rolebinding developer-binding --role=developer [email protected] -n myproject
Network Policies: Implement network policies to control traffic flow between pods.apiVersion: networking.k8s.io/v1 kind: NetworkPolicy metadata: name: allow-same-namespace namespace: myproject spec: podSelector: matchLabels: {} policyTypes: - Ingress - Egress ingress: - from: - podSelector: {} oc create -f networkpolicy.yaml
2. Monitoring and Logging
Prometheus and Grafana: Use Prometheus for monitoring and Grafana for visualizing metrics.oc new-project monitoring oc adm policy add-cluster-role-to-user cluster-monitoring-view -z default -n monitoring oc apply -f https://raw.githubusercontent.com/coreos/kube-prometheus/main/manifests/setup oc apply -f https://raw.githubusercontent.com/coreos/kube-prometheus/main/manifests/
ELK Stack: Deploy Elasticsearch, Logstash, and Kibana for centralized logging.oc new-project logging oc new-app elasticsearch oc new-app logstash oc new-app kibana
3. Automation and CI/CD
Jenkins Pipeline: Integrate Jenkins for CI/CD to automate the build, test, and deployment processes.oc new-app jenkins-ephemeral oc create -f jenkins-pipeline.yaml
OpenShift Pipelines: Use OpenShift Pipelines, which is based on Tekton, for advanced CI/CD capabilities.oc apply -f https://raw.githubusercontent.com/tektoncd/pipeline/main/release.yaml
Conclusion
Mastering OpenShift clusters involves understanding the platform's architecture, deploying and managing applications, and implementing best practices for security, monitoring, and automation. By following this comprehensive guide, you'll be well on your way to efficiently managing containerized applications with OpenShift.
For more details click www.qcsdclabs.com
#redhatcourses#information technology#docker#container#linux#kubernetes#containerorchestration#containersecurity#dockerswarm#aws
0 notes
Text
16 lutego 2024
◢ #unknownews ◣
Zapraszam do lektury dzisiejszego wydania.
Jeśli szukasz krótkich podsumowań newsów z Polski i ze świata, bez zbytecznego komentarza, to rzuć okiem na Infopigułę. Newsy są dostępne jako newsletter oraz aplikacje na Androida i iOS. To nie jest reklama, a polecenie zaprzyjaźnionego projektu, w którym niegdyś uczestniczyłem.
1) Twoje hasło może już nie być modne! - sprawdź, co jest na topie ;) https://labs.lares.com/password-analysis/ INFO: Ciekawa analiza wycieków haseł pod względem ich długości, powtarzalnych wzorców, użytych słów itp. Badacze poświęcili 6 miesięcy na łamanie haseł z wycieków z ostatnich 2 lat, aby wyciągnąć obecne trendy dotyczące tego, jak ludzie tworzą hasła. Interesujące.
2) Analiza trendów ruchu internetowego podczas Super Bowl - od CloudFlare https://blog.cloudflare.com/super-bowl-lviii INFO: Reklamy Super Bowl rzekomo generują największe zainteresowanie produktami w sieci, ale jak to wygląda z punktu widzenia firmy obsługującej sporą część tak wygenerowanego ruchu? Cloudflare przeprowadził nie tylko analizę ruchu wywołanego przez reklamy, ale także na przykład zainteresowanie usługami dostawy jedzenia, mediami społecznościowymi czy zakładami sportowymi. Zobacz, które marki i kategorie zanotowały największe wzrosty. Interesująca analiza.
3) Ciekawostki o strefach czasowych - z punktu widzenia programisty https://www.zainrizvi.io/blog/falsehoods-programmers-believe-about-time-zones/ INFO: Jest wiele "prawd", w które wierzą programiści. Jedną z tych króliczych nor, w której można zabłądzić, jest temat konwersji czasu między wieloma strefami czasowymi. Coś, co z pozoru wydaje się niezwykle proste, w praktyce okazuje się koszmarem.
4) Błędy w infrastrukturze? - przemyślenia po 4 latach prowadzenia startupu https://cep.dev/posts/every-infrastructure-decision-i-endorse-or-regret-after-4-years-running-infrastructure-at-a-startup/ INFO: Autor podejmował decyzje związane z infrastrukturą budowaną dla projektu. Wahał się między GCP a AWS i po drodze wdrożył mnóstwo 'modnych' rozwiązań. Których decyzji żałuje, a które z doświadczenia poleciłby innym?
5) Jak przesyłano zdjęcia linią telefoniczną w 1937 roku? (film, 9 minut) https://thekidshouldseethis.com/post/wired-photo-transmission-news-1937 INFO: Przesyłanie zdjęć w erze cyfrowej to nie problem, ale jak to zrobić, mając do dyspozycji tylko telefon analogowy? Okazuje się, że jest na to sposób - i to nawet sprytny!
6) AI, które odpalisz na swoim komputerze (film, 18 minut) https://youtu.be/QC-urBDE4lQ INFO: Poradnik wyjaśnia, jak bez konieczności instalacji Pythona, GIT-a, licznych zależności itp., postawić na swoim komputerze coś na wzór ChatGPT, który potrafi pracować nie tylko z tekstem. Co ważne, rozwiązanie nie wymaga super mocnego sprzętu, aby z niego korzystać.
7) Lekcje z 8 lat korzystania z Kubernetes na produkcji https://medium.com/@.anders/learnings-from-our-8-years-of-kubernetes-in-production-two-major-cluster-crashes-ditching-self-0257c09d36cd INFO: Dwie duże awarie klastra, walka ze złożonością, skalowanie, wejście w Helm. Migracja z samodzielnego zarządzania na AWS do zarządzanej infrastruktury AKS i wiele więcej. To dobra lektura dla wszystkich, którzy chcą rozbudować firmowy stack technologiczny o Kubernetes.
8) Wprowadzenie do SQL dla osób pracujących z danymi https://gvwilson.github.io/sql-tutorial/ INFO: Ogarniasz duże ilości danych, ale do tej pory Twoim narzędziem pracy był co najwyżej Excel? Ten poradnik, przeprowadzając Cię krok po kroku przez 100 przykładowych zapytań, stara się wyjaśnić, jak wykorzystywać język SQL do pracy z danymi. Poradnik rozpoczyna się od prostego SELECT-a, później przechodzi przez sortowanie, grupowanie, aż dochodzimy do rzeczy bardziej zaawansowanych.
9) Przewodnik po LinkedIn dla programistów - używaj portalu efektywnie https://hybridhacker.email/p/engineers-guide-to-linkedin INFO: W artykule znajdziesz praktyczne porady, jak optymalizować swój profil zawodowy, by skuteczniej nawiązywać nowe kontakty, zdobywać nowe możliwości kariery i rozwijać swoje kompetencje. Autor dzieli się swoimi doświadczeniami i strategiami, które pomogły mu znacząco zwiększyć widoczność na tej platformie. Część porad wymaga jednak aktywnego udziału w życiu na LinkedIn, a nie tylko ustawienia pewnych opcji i zapomnienia o posiadaniu tam konta.
10) Jak się uczyć efektywnie - poradnik dla studnetów i nie tylko https://cse.buffalo.edu/~rapaport/howtostudy.html INFO: Profesor informatyki z Uniwersytetu w Buffalo dzieli się swoimi poradami na temat efektywnego studiowania, robienia notatek i przygotowań do egzaminów. Nie są to wskazówki skierowane tylko do studentów kierunków technicznych, mogą być zastosowane przez każdego.
11) MERA-400 - asynchroniczne CPU (film, 41 minut) https://www.youtube.com/watch?v=Y59hgZ5_7sk INFO: Film dla wielbicieli archaicznych rozwiązań technologicznych i starych komputerów. Tutaj przedstawiam analizę komputera MERA-400 i wyjaśniam zagadkę: jak to możliwe, że "nie ma on megaherców"?
12) Git Bisect - szybsze debugowanie commitów (film, 9 minut + tekst) https://debugagent.com/unleashing-the-power-of-git-bisect INFO: Musisz dojść do tego, który commit w repozytorium wprowadził błędy w aplikacji. Problem polega na tym, że tych commitów było setki. Możesz więc zaznaczyć tego, w którym bug nie występuje, i tego, gdzie już się pojawił, a następnie bisect pomoże Ci namierzyć, w którym momencie wprowadzono buga. Wydaje się to proste, ale jeśli nigdy nie miałeś z tym styczności, ten artykuł (lub jego wersja wideo, jeśli preferujesz taką formę) pomoże Ci zrozumieć to zagadnienie.
13) Zmniejszenie rozmiaru obrazu Dockera o 40% - case study https://bhupesh.me/publishing-my-first-ever-dockerfile-optimization-ugit/ INFO: Autor postanowił zdokeryzować swój projekt, który był skryptem shellowym z licznymi zależnościami. Co ciekawe, była to pierwsza aplikacja, którą optymalizował pod względem rozmiarów obrazu na potrzeby Docker Huba. Ciekawie opisane są eksperymenty, które wykonywał, oraz wnioski, jakie wyciągnął z tego zadania.
14) Praca w GitLab - jak to wygląda oczami byłego pracownika? https://yorickpeterse.com/articles/what-it-was-like-working-for-gitlab/ INFO: Ciekawi Cię, jak to jest pracować dla firmy takiej jak GitLab? Artykuł prowadzi nas przez sześcioletnią karierę autora w tej firmie - od jego początków jako pracownika nr 28, aż do wyzwań związanych ze skalowaniem i kulturą pracy zdalnej. Fajnie opisane mechanizmy wewnętrzne GitLaba, a także lekcje, które można wyciągnąć z doświadczeń bycia częścią szybko rosnącego startupu technologicznego.
15) Jak obsłużyć duży ruch na stronie za grosze? - case study https://typefully.com/uwteam/kKtvEx3 INFO: Analiza przypadku serwisu, który jednego dnia wylądował na stronie głównej Wykopu, na stronie Interii, wspomniano o nim w RMF FM, a na koniec dobił go rekomendacją Make Life Harder. Nie jest to poradnik optymalizacji aplikacji, lecz krótka lista zmian, które admin może wprowadzić bez konieczności wprowadzania zmian w hostowanej aplikacji.
16) Jak przeglądarka Arc zdobywa użytkowników? - analiza startupu https://www.howtheygrow.co/p/how-arc-grows INFO: Czy przeglądarka internetowa może być czymś więcej niż tylko narzędziem do wyświetlania stron? Okazuje się, że twórcy Arc postanowili podejść w innowacyjny sposób do tego, jak przeglądamy internet. Złą wiadomość jest tylko tę, że obecnie aplikacja działa jedynie na MacOS, ale wersja na Windows ma pojawić się niebawem. Linkuję do pojedynczego wydania pewnego newslettera, ale jeżeli temat wzrostu startupów Cię interesuje, to warto przeklikać się przez archiwum wydań, bo jest tego sporo.
17) Speculative navigation w Chrome - co to jest i dlaczego przyspieszy Twoją stronę? (film, 6 minut) https://www.youtube.com/watch?v=BIpz9Hdjm_A INFO: Ciekawa metoda zaproponowana przez Chrome do przyspieszania ładowania podstron w ramach Twojej aplikacji webowej. Powiedzmy, że przeglądarka stara się przewidzieć kolejny ruch użytkownika i załadować miejsce docelowe, do którego może zmierzać. Nie dzieje się to jednak w pełni automatycznie, lecz wymaga mocnej współpracy z programistą danej aplikacji.
18) Porównanie technik animacji webowych na przykładzie odbijającej się piłki https://sparkbox.github.io/bouncy-ball/#vanilla-js INFO: Autor zaprogramował prosty efekt odbijającej się piłeczki za pomocą 23 różnych metod animacji. Od czystego JS, przez wykorzystanie CSS, po rozwiązania z Canvasem czy Web Animation API. Warto rzucić okiem, jakie możliwości dają współczesne technologie webowe.
19) GitHub Copilot - problemy z dostępnością i jakością kodu? https://joshcollinsworth.com/blog/copilot INFO: Artykuł przedstawia realne obawy dotyczące wpływu Copilota na jakość i dostępność kodu w Internecie. Poznaj przykłady, w których AI, niby poprawnie realizując zamierzone zadanie, generuje kod daleki od optymalnego. Niekiedy powoduje nawet problemy z dostępnością aplikacji webowych.
20) Przydatne jednostki w CSS, oparte o... fonty https://techhub.iodigital.com/articles/going-beyond-pixels-and-rems-in-css/relative-length-units-based-on-font INFO: W CSS istnieje wiele jednostek, zapewne większość z nich już znasz. Istnieją jednak pewne nietypowe jednostki, których używa się niezbyt często, a które mogą mieć ogromne znaczenie, gdy w grę wchodzi praca z tekstem.
21) Debouncing w JavaScript - co to jest i dlaczego tego potrzebujesz? https://www.freecodecamp.org/news/deboucing-in-react-autocomplete-example/ INFO: Autor na przykładzie pola z autouzupełnianiem w React pokazuje, jak wyeliminować efekt nakładania się wywołań funkcji uruchamianych z opóźnieniem czasowym. Jest to bardzo użyteczne i proste zarazem rozwiązanie, często stosowane w aplikacjach webowych.
22) Nadchodzi Gemini 1.5 - modeli AI nowej generacji od Google https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/ INFO: Według Google, ich nowy model oferuje przełomowe możliwości w zakresie rozumienia długich kontekstów. Gdy konkurenci tworzą modele o kontekście wynoszącym 8, 16, 32, czy nawet 128 tys. tokenów, Gemini wyskakuje z modelem obejmującym milion tokenów. Jeżeli tylko twórcom uda się sprawić, że LLM skutecznie utrzyma uwagę na tak ogromnym kontekście, może to oznaczać niemałą rewolucję na już i tak niemal codziennie rewolucjonizowanym rynku LLM-ów.
23) SSHPASS - zautomatyzuj akcje SSH wymagające hasła? https://thenewstack.io/linux-hide-your-shell-passwords-with-sshpass/ INFO: Jeśli do zdalnego systemu możesz się dostać tylko poprzez podanie hasła SSH, a dodanie klucza do konta nie wchodzi w grę, zazwyczaj będzie to stanowiło problem w automatyzacji zadań na takim serwerze. Istnieją co prawda metody na zahardkodowanie danych dostępowych w skrypcie, jednak z punktu widzenia bezpieczeństwa nie jest to dobre rozwiązanie. Artykuł przedstawia narzędzie SSHPass, które może Ci pomóc w takiej sytuacji.
24) Metoda map() w JavaScript - jak to działa? Przykłady https://www.freecodecamp.org/news/javascript-map-method/ INFO: Metoda map to podstawowe narzędzie do manipulacji i transformacji tablic w JavaScript, które zyskało na popularności wraz z ECMAScript 5. W artykule poznasz składnię metody map i jej praktyczne zastosowania, od prostych operacji na danych po zaawansowane przykłady rodem z programowania funkcjonalnego.
25) Mozilla Monitor Plus - nowe narzędzie do ochrony Twoich danych osobowych https://blog.mozilla.org/en/mozilla/introducing-mozilla-monitor-plus-a-new-tool-to-automatically-remove-your-personal-information-from-data-broker-sites/ INFO: Mozilla zaprezentowała usługę Monitor Plus, abonamentową wersję swojego serwisu, który nie tylko powiadomi Cię o wycieku Twoich danych, ale także automatycznie usunie Twoje dane z baz danych brokerów informacji. Usługa nie jest tania, ale dla osób mocno dbających o swoją prywatność i ceniących swój czas, może się opłacać.
26) AdGuardHome - czyli adblock na poziomie routera https://github.com/AdguardTeam/AdGuardHome INFO: Jeśli interesuje Cię wycinanie reklam globalnie dla wszystkich domowników korzystających z Twojej sieci WiFi, ten projekt może Cię zainteresować. Działa trochę jak Pi-hole, ale oferuje moim zdaniem więcej możliwości.
27) Statusduck - proste narzędzie do monitorowania stron WWW https://statusduck.io/ INFO: Chcesz śledzić dostępność dowolnej publicznej strony WWW? Po prostu wpisz jej adres i gotowe. Aplikacja przechowuje historię dostępności z ostatnich 7 dni. Jeśli chcesz otrzymywać statystyki na maila, musisz założyć konto. Jeśli nie potrzebujesz powiadomień, możesz korzystać z aplikacji anonimowo.
28) Pułapki migracji baz danych MySQL https://devszczepaniak.pl/pulapki-migracji-baz-danych-mysql/ INFO: Niektóre migracje w relacyjnych bazach danych mogą prowadzić do szkód w aplikacjach je wykorzystujących. Tymi szkodami może być tymczasowa niedostępność aplikacji, ograniczone możliwości pracy z danymi, czy nawet utrata danych. Artykuł opisuje, jakie rodzaje migracji danych mogą powodować potencjalne zagrożenie i jak zapobiegać takim wpadkom.
29) Jak wycentrować DIV w CSS? - przegląd metod https://www.joshwcomeau.com/css/center-a-div/ INFO: Tak, to jest odpowiedź na to odwieczne pytanie z rozmów kwalifikacyjnych na stanowisko frontendowca. Tylko teraz czasy się zmieniły i zamiast dwóch rozwiązań, które przeważnie się podawało, obecnie istnieje ich znacznie więcej. Warto poznać wszystkie.
30) SimpleKVM - zarządzaj wieloma komputerami za pomocą jednej myszy i klawiatury https://github.com/fiddyschmitt/SimpleKVM INFO: Urządzenia typu KVM, które pozwalają sterować wieloma komputerami za pomocą jednej myszki i klawiatury, nie należą do najtańszych. Jednak, jeżeli Twoje peryferia podłączane są za pośrednictwem USB, dlaczego by nie wykorzystać zwykłego huba USB jako takiego KVM-a? Bez specjalnego oprogramowania to może być trudne. SimpleKVM to jednak oprogramowanie, którego szukasz. To rozwiązanie działa na systemie Windows.
31) GOODY-2 - najbardziej odpowiedzialny model AI na świecie https://www.goody2.ai/ INFO: Ten model LLM to parodia "bezpiecznego i odpowiedzialnego AI". Jest tak bezpieczny, że uznaje każde zapytanie za niebezpieczne. Jak żartobliwie chwalą się jego twórcy, zalicza on wszystkie testy kompetencji AI na 0%.
32) ChatGPT będzie zapamietywał fakty z rozmów https://openai.com/blog/memory-and-new-controls-for-chatgpt INFO: Jeśli wykorzystujesz ChatGPT w pracy, nowa funkcja pamięci może okazać się dla Ciebie kluczowa. Pozwala ona na dostosowanie odpowiedzi do Twojego stylu i preferencji, wykorzystując przy tym fakty zdobyte w poprzednich rozmowach. Artykuł wyjaśnia, jak działa ta funkcja i jak użytkownicy mogą nią zarządzać, by zachować pełną kontrolę nad danymi organizacji. Obsługa pamięci jest wprowadzana u użytkowników stopniowo. Ja jeszcze nie mam do niej dostępu.
33) Nadchodzi nowy, 'wolny' Nginx? - konflikt w firmie https://forum.nginx.org/read.php?2,299130 INFO: Maxim Dounin, główny deweloper serwera internetowego nginx, opuszcza firmę F5 i zapowiada rozpoczęcie nowego projektu FreeNginx. Jego celem jest rozwój nginx w, jak sam to nazwał, duchu wolności i otwartości. Podaję link do wątku na forum, gdzie dowiesz się więcej o przyczynach tej decyzji. Czy zmiany w 'oryginalnym' serwerze rzeczywiście mogą być tak negatywne, jak przewiduje Maxim?
34) Picture-in-picture dla wszystkich okien na MacOS https://piphero.app/ INFO: Darmowa aplikacja na MacOS umożliwiająca używanie trybu Picture-in-Picture dla każdej uruchomionej aplikacji. Możesz wrzucić w PIP okno spotkania, film... w zasadzie, cokolwiek.
== LINKI TYLKO DLA PATRONÓW ==
35) Pokaźna kolekcja sztuczek i porad do pracy z GIT-em https://uw7.org/un_b4e7b29ac25e2 INFO: To nie jest zbiór poleceń typu "cheatsheet", ale zbiór artykułów omawiających pracę z tym systemem kontroli wersji. Linkuję do pierwszego tekstu z serii. Pod koniec tekstu znajdziesz linki do pozostałych części.
Jeśli podoba Ci się to, co robię online, możesz zostać patronem lub kupić jeden z oferowanych przeze mnie kursów online.
0 notes
Text
What is Kubeflow and How to Deploy it on Kubernetes

Machine learning (ML) processes on Kubernetes, the top container orchestration technology, may be simplified and streamlined with Kubeflow, an open-source platform. From data pretreatment to model deployment, it's like having your specialised toolbox for managing all your ML and AI operations within the Kubernetes ecosystem. Keep on reading this article to know about Kubeflow deployment in Kubernetes.
Why Kubeflow?
Integrated Approach
Complex ML processes can more easily be managed with Kubeflow because it unifies several tools and components into a unified ecosystem.
Efficiency in scaling
Thanks to its foundation in Kubernetes, Kubeflow can easily grow to manage massive datasets and ML tasks that require a lot of computing power.
Consistent results
The significance of reproducibility is highlighted by Kubeflow, who defines ML workflows as code, allowing for the replication and tracking of experiments.
Maximising the use of available resources
Separating ML workloads inside Kubernetes eliminates resource conflicts and makes sure everything runs well.
Easy Implementation
Kubeflow deployment in Kubernetes makes deploying machine learning models as web services easier, which opens the door to real-time applications.
Integration of Kubeflow with Kubernetes on GCP
For this example, we will utilise Google Cloud Platform (GCP) and their managed K8s GKE. However, there may be subtle variations depending on the provider you choose. The majority of this tutorial is still applicable to you.
Set up the GCP project
Just follow these instructions for Kubeflow deployment in Kubernetes.
You can start a new project or choose one from the GCP Console.
Establish that you are the designated "owner" of the project. The implementation process involves creating various service accounts with adequate permissions to integrate with GCP services without any hitches.
Verify that your project meets all billing requirements. To make changes to a project, refer to the Billing Settings Guide.
Verify that the necessary APIs are allowed on the following GCP Console pages:
o Compute Engine API
o Kubernetes Engine API
o Identity and Access Management (IAM) API
o Deployment Manager API
o Cloud Resource Manager API
o Cloud Filestore API
o AI Platform Training & Prediction API
Remember that the default GCP version of Kubeflow cannot be run on the GCP Free Tier due to space constraints, regardless of whether you are utilising the $300 credit 12-month trial term. A payable account is where you need to be.
Deploy kubeFlow using the CLI
Before running the command line installer for Kubeflow:
Make sure you've got the necessary tools installed:
kubectl
Gcloud
Check the GCP documentation for the bare minimum requirements and ensure your project satisfies them.
Prepare your environment
So far, we've assumed you can connect to and operate a GKE cluster. If not, use one as a starting point:
Container clusters in Gcloud generate cluster-name environment compute-zone
More details regarding the same command can be found in the official documentation.
To get the Kubeflow CLI binary file, follow these instructions:
Go to the kfctl releases page and download the v1.0.2 version.
Unpack the tarball:
tar -xvf kfctl_v1.0.2_<platform>.tar.gz
• Sign in. Executing this command is mandatory just once:
gcloud auth login
• Establish login credentials. Executing this command is mandatory just once:
gcloud auth application-default login
• Set the zone and project default values in Gcloud.
To begin setting up the Kubeflow deployment, enter your GCP project ID and choose the zone:
export PROJECT=<your GCP project ID> export ZONE=<your GCP zone>
gcloud config set project ${PROJECT} gcloud config set compute/zone ${ZONE}
Select the KFDef spec to use for your deployment
Select the KFDef spec to use for your deployment
Export
CONFIG_URI="https://raw.githubusercontent.com/kubeflow/manifests/v1.0-branch/kfdef/kfctl_gcp_iap.v1.0.2.yaml"
Ensure you include the OAuth client ID and secret you generated earlier in your established environment variables.
export CLIENT_ID=<CLIENT_ID from OAuth page> export CLIENT_SECRET=<CLIENT_SECRET from OAuth page>
You can access the CLIENT_ID and CLIENT_SECRET in the Cloud Console by going to APIs & Services -> Credientials.
Assign a directory for your configuration and give your Kubeflow deployment the name KF_NAME.
export KF_NAME=<your choice of name for the Kubeflow deployment> export BASE_DIR=<path to a base directory> export KF_DIR=${BASE_DIR}/${KF_NAME}
When you perform the kfctl apply command, Kubeflow will be deployed with the default settings:
mkdir -p ${KF_DIR} cd ${KF_DIR} kfctl apply -V -f ${CONFIG_URI}
By default, kfctl will attempt to fill the KFDef specification with a number of values.
Conclusion Although you are now familiar with the basics of Kubeflow deployment in Kubernetes, more advanced customisations can make the process more challenging. However, many of the issues brought up by the computational demands of machine learning can be resolved with a containerised, Kubernetes-managed cloud-based machine learning workflow, such as Kubeflow. It allows for scalable access to central processing and graphics processing units, which may be automatically increased to handle spikes in computing demand.
1 note
·
View note
Text
Kubernetes Architecture Tutorial
🔍 In this video, you’ll learn: ✔️ What is a Kubernetes Cluster (with real-life comparison) ✔️ Control Plane vs Worker Nodes — who does what? ✔️ Role of kubelet, kube-proxy, and the container runtime ✔️ What are Pods, Deployments, and Services (and why they matter) ✔️ Kubernetes vs Docker — do you need both? ✔️ Optional vs Mandatory Kubernetes components 🧩
youtube
0 notes
Text
Deploy GraphQL on Kubernetes with Docker Compose
Okay, let’s dive into creating this tutorial. 1. ## Introduction “Hands-On: Deploying a GraphQL Service on Kubernetes with Docker Compose” might sound complex, but it’s a powerful technique for modern application development. This tutorial will guide you through setting up a GraphQL API and deploying it locally on a Kubernetes cluster using the simplicity of Docker Compose. This approach is…
0 notes