#3D modeling with DLP
Explore tagged Tumblr posts
idea-explorer · 6 months ago
Text
Tumblr media
1 note · View note
xxyikesmanxx · 2 months ago
Text
Tumblr media
1 note · View note
practicalsolutions · 1 year ago
Text
I was tagged by @sleightlyoffhand to list 5 topics I can talk on for an hour without preparing any material. You asked for it.
3D printing. This one was too easy. I could talk specifics of FDM machines and materials, or vaguely about other types. These range from SLS to DLP, to more niche high price models I'll never see irl except once. Like anything from Stratasys. Who I used to hecking idolize for having one of the first patents for 3D printing, other than the guy who came up with SLA.
CNC machines. This is probably an extension of 3D printing, as most FDM machines work pretty similar to most CNC mills, engravers etc. The code is the same (gcode). It can be easily written for simple processes like cutting, facing, and drilling. But, just as a slicer program converts 3D models to gcode, there are programs out there for turning 3D information into CNC gcode. It's just a subtractive process instead of an additive one.
The consequences of technology. Especially AI. It may be the best and worst thing to happen to humanity. I could rant about all the wonderful and horrible things that could arise, but it is probably better for both of us if I don't.
Minecraft. Maybe I quit lately, but I could still talk about the history from beta onwards. At least up until whatever update added the chat moderation. I really like pistons (old update) and I really like the bees (is that still considered new?). I love automatic farms, but they are more fun when you have a team that can use them. Don't get me started on redstone, or it will turn into a ramble about electronics and logic gates.
Crash Bandicoot. This place is not a place of honor. No highly esteemed deed is commemorated here. Nothing of value is here. What is here was dangerous and repulsive to us.
Tagging: @wigglerhope @ravenekrops @moth-unit-00
7 notes · View notes
planterfulpieces · 2 years ago
Text
What on earth is 3D printing?
That's... a big one. Sorry in advance. It also gets a little technical. Folx, if you want to chime in in the notes what we forgot or missed, have at it, just be polite. Discussion is great. Being a jerk is not.
So you know that we sell 3D print planters (and some other stuff coming out soon), but we saw a lot of comments in our first post introducing ourselves that were curious about what 3D printing was, if it was resin printing, and how it worked.
We also didn't realize our ask box wasn't turned on until we saw a note after the post was up for several hours. Sorry! It's open now if you have questions or comments or whatever. Just be polite.
Well. We are not experts. We're going to share our own experience and understanding of what 3D printing is, most common methods, and why we do the kind of 3D printing we do.
So.
What is 3D printing?
In its all-encompassing definition, 3D printing (also called additive manufacturing if you want to get STEM-y about it) is basically creating a 3D object using a digital 3D model. The programs engineers use, like Fusion360, AutoCAD, FreeCAD, and others? Yeah. Those. Exactly.
If you're an artist, don't despair, you can create models in Blender (or whatever 3D modeler you use) and work with those for 3D printing.
If you're us, who only started modeling a few months ago, you use the program geared for children and young adults, and that's TinkerCAD. There's nothing wrong with it, it's just limited in what it can do compared to other programs. The massive benefit is it's free and the learning curve is also much more gentle than the sheer cliff we ran face-first into trying to learn the CAD programs or Blender.
If anyone has good sources to learn them (esp with Blender's new updates) we would be happy to try them. Because as much as we love 3D printing, modeling still gives us a headache.
So that's the most basic definition of 3D printing.
So, what's the most COMMON form of 3D printing?
Well, we'd say there are two:
Tumblr media
Resin printing. There's several different methods, but the most common today still is SLA, or stereolithography. Basically, a UV laser marks a cross-section of part of an object on a layer of liquid resin. When it's exposed to the UV light it's cured and solidifies. Another layer of resin is put down, the laser process is repeated, and it continues until an object is made. What's nice about it is it lets you get high detail in very small objects, like minis for Warhammer or other games. There's also Digital Light Processing (DLP), which is like SLA but uses digital projection to expose more parts of resin to light. It can cure an entire layer at once, instead of only part. If you see a Warhammer figurine being sold, or any miniature, especially stuff for DnD or other tabletop games, it's probably resin printed.
FDM (fused deposition modeling). It's also known as FFF, or fused filament fabrication). This is what you probably think of for 3D printers if you ever saw one, where things are printed in one tiny layer at a time where a heated print head is pushing out filament in layers on a build plate. FDM is more common for practical prints, like car parts or manufacturing pieces. To us it reminds us of icing a cake. You can print with stuff like carbon fiber and nylons or flexible material like TPU. FDM is good for prototyping and larger objects, like our planters (last product plug, we swear) to. You know.
Tumblr media
Houses.
Tumblr media
We use FDM printing.
Why?
Most everything we're going to make doesn't need the detail that a resin printer provides. The smallest, jewelry, still isn't to the level where we'd need a resin printer -- FDM printers work in fractions of milimeters, and resin printers can go even smaller. That's not necessary for us.
Everything we make is going to be larger prints, which means more material. Filament (which we'll explain in another post) costs less than resin.
Resin is more toxic than PLA filament, which is what we use. We can handle PLA filament spools without gloves or protective goggles. Resin? Absolutely not. They ARE making plant-based resin which is less irritating, but we have no experience with it. If you do, chime in in the comments.
Resin involves cure time. You also have to wash your print after. That can add to the process time too.
So that's the extreme basics of what 3D printing is, the two most common types, and why we do FDM printing. We hope you found it helpful! We're going to try to make this a series to explain more about 3D printing in general so it's less mysterious for non-printers. What do you want us to talk about next? Let us know! Like...what different materials you can print with? What are they made of? Maybe some example pictures with different finishes? Would that be interesting? We'd love to hear from you. And we look forward to seeing the comments in the notes/tags! We couldn't go as in-depth as we wanted without turning it into a novel, so have at it in the notes. We can't wait to follow the discussion!
We're Planterful Pieces, a small business focused on offering made-to-print products that cater to the planty people of the world, whether that means you OWN plants or simply just LOVE nature. We also want to share with you all cool designs that aren't easily accessible to people who DON'T 3D print, and there's a LOT!
If you're not interested in our planters but ARE interested in future products, like our upcoming art collection, jewelry, and more, subscribe to our email newsletter on our website here (you'll have to scroll down a little). We promise we'll only email you once a month with sneak peeks, product updates, deals, or if there's an upcoming launch. Frankly, we don't have time to spam you with emails, since we'd rather be designing and printing.
Instagram
TikTok (We're bad at this but will be working on it)
Facebook
Thanks for reading!
(PS: We haven't forgotten about those interested in international shipping! If you sign up on the newsletter we can let you know as soon as it's available! We'll make posts here of course and our other socials but that's always hit or miss. This way it goes right in your inbox.)
12 notes · View notes
garybrower · 3 days ago
Text
Exploring 3D Printer Printing Materials: A Comprehensive Guide
3D printing has revolutionized the way we create objects, from prototypes and tools to finished products. Central to the success of any 3d printer printing material, also known as filament or resin, depending on the type of printer. With a wide variety of options available today, choosing the right material can significantly impact the strength, flexibility, cost, and visual appeal of the final print.
1. PLA (Polylactic Acid)
PLA is one of the most popular and beginner-friendly 3D printing materials. Made from renewable resources like corn starch, it is biodegradable and easy to print with due to its low printing temperature (around 180-220°C). PLA does not require a heated bed, making it ideal for hobbyists and entry-level 3D printers.
Pros:
Environmentally friendly
Low warping
Available in various colors and finishes
Cons:
Brittle compared to other plastics
Not suitable for high-temperature environments
2. ABS (Acrylonitrile Butadiene Styrene)
ABS is another widely used material, especially in industrial and engineering applications. It’s tougher and more durable than PLA, making it suitable for parts that need to withstand wear and tear. However, it requires a heated bed and emits fumes during printing, so proper ventilation is essential.
Pros:
High strength and durability
Better heat resistance than PLA
Cons:
Warps easily without proper bed temperature
Emits strong fumes when printing
3. PETG (Polyethylene Terephthalate Glycol)
PETG is a hybrid of PLA and ABS, offering the best of both worlds. It is durable, slightly flexible, and has excellent chemical resistance. PETG is ideal for printing mechanical parts, water bottles, and enclosures.
Pros:
Strong and impact-resistant
Water and chemical resistant
Easy to print with minimal warping
Cons:
Slightly more difficult to print than PLA
Can be stringy during extrusion
4. TPU (Thermoplastic Polyurethane)
TPU is a flexible filament that’s great for applications requiring elasticity, such as phone cases, gaskets, and wearable items. While it can be tricky to print, especially for beginners, the results are rewarding for functional prototypes and end-use parts.
Pros:
Flexible and elastic
Durable under stress
Resistant to abrasion
Cons:
Requires slow printing speeds
Not compatible with all extruders
5. Nylon
Nylon is a high-performance synthetic polymer known for its strength, flexibility, and abrasion resistance. It’s widely used in industrial-grade 3D printing for gears, hinges, and mechanical parts. Nylon is hygroscopic, meaning it absorbs moisture from the air, which can affect print quality.
Pros:
Excellent mechanical properties
Good impact and chemical resistance
Cons:
Requires high printing temperatures
Must be stored in a dry environment
6. Resin (for SLA/DLP printers)
Unlike the filaments used in FDM printers, SLA and DLP 3D printers use liquid resin. There are different types of resins available, including standard, tough, flexible, and biocompatible. Resin printing offers unmatched detail and surface finish, making it popular for miniatures, dental models, and jewelry prototypes.
Pros:
Extremely high resolution
Smooth surface finish
Cons:
Requires post-processing (cleaning and curing)
Resin is toxic and needs careful handling
Choosing the Right 3D Printing Material
The ideal material depends on your specific needs—whether it’s strength, flexibility, aesthetic appeal, or environmental sustainability. Beginners may prefer starting with PLA due to its ease of use, while more advanced users might explore ABS, PETG, or Nylon for functional parts. For high-detail models, resin is the preferred choice.
Conclusion
The world of 3D printer printing materials is vast and continually evolving. Whether you’re printing prototypes, tools, or finished products, understanding the properties and applications of each material ensures better results. As technology advances, new materials are emerging that combine strength, flexibility, and environmental friendliness, making 3D printing more versatile than ever before.
0 notes
rushikesh-d · 6 days ago
Text
Automotive 3D Printing Market Size, Analyzing Trends and Projected Outlook for 2025-2032
Tumblr media
Fortune Business Insights released the Global Automotive 3D Printing Market Trends Study, a comprehensive analysis of the market that spans more than 150+ pages and describes the product and industry scope as well as the market prognosis and status for 2025-2032. The marketization process is being accelerated by the market study's segmentation by important regions. The market is currently expanding its reach.
The Automotive 3D Printing Market is experiencing robust growth driven by the expanding globally. The Automotive 3D Printing Market is poised for substantial growth as manufacturers across various industries embrace automation to enhance productivity, quality, and agility in their production processes. Automotive 3D Printing Market leverage robotics, machine vision, and advanced control technologies to streamline assembly tasks, reduce labor costs, and minimize errors. With increasing demand for customized products, shorter product lifecycles, and labor shortages, there is a growing need for flexible and scalable automation solutions. As technology advances and automation becomes more accessible, the adoption of automated assembly systems is expected to accelerate, driving market growth and innovation in manufacturing. Automotive 3D Printing Market Size, Share & Industry Analysis, By Technology Type (Electronic Beam Melting (EBM), Selective Laser Sintering (SLS), Digital Light Processing (DLP), Fused Disposition Modelling (FDP)), By Material Type (Ceramic, Metal, Polymer), By Application Type (Production, Innovation and R&D, Prototyping) and Regional Forecast 2021-2028
Get Sample PDF Report: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/103613
Dominating Region:
North America
Fastest-Growing Region:
Asia-Pacific
Major Automotive 3D Printing Market Manufacturers covered in the market report include:
The major companies in the global 3D printing market include 3D Systems Corporation, Stratasys Ltd., Arcam AB, EnvisionTEC, Ponoko Limited, The ExOne Company, Autodesk Inc., Hoganas AB, Optomec, Inc., Voxeljet AG among others.
Globally, the rise in urbanization, high standard of living, and increased demand of customers are leading to an increase in the automotive industry. Furthermore, the adoption of advanced technology, less time required to manufacture intricate designs, low cost of raw materials, innovation in printing methods an also investment of government to develop new technology is driving the growth of the market. However, the lack of skilled laborers and high printing costs may hamper the growth of the market.
Geographically, the detailed analysis of consumption, revenue, market share, and growth rate of the following regions:
The Middle East and Africa (South Africa, Saudi Arabia, UAE, Israel, Egypt, etc.)
North America (United States, Mexico & Canada)
South America (Brazil, Venezuela, Argentina, Ecuador, Peru, Colombia, etc.)
Europe (Turkey, Spain, Turkey, Netherlands Denmark, Belgium, Switzerland, Germany, Russia UK, Italy, France, etc.)
Asia-Pacific (Taiwan, Hong Kong, Singapore, Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia).
Automotive 3D Printing Market Research Objectives:
- Focuses on the key manufacturers, to define, pronounce and examine the value, sales volume, market share, market competition landscape, SWOT analysis, and development plans in the next few years.
- To share comprehensive information about the key factors influencing the growth of the market (opportunities, drivers, growth potential, industry-specific challenges and risks).
- To analyze the with respect to individual future prospects, growth trends and their involvement to the total market.
- To analyze reasonable developments such as agreements, expansions new product launches, and acquisitions in the market.
- To deliberately profile the key players and systematically examine their growth strategies.
Frequently Asked Questions (FAQs):
► What is the current market scenario?
► What was the historical demand scenario, and forecast outlook from 2025 to 2032?
► What are the key market dynamics influencing growth in the Global Automotive 3D Printing Market?
► Who are the prominent players in the Global Automotive 3D Printing Market?
► What is the consumer perspective in the Global Automotive 3D Printing Market?
► What are the key demand-side and supply-side trends in the Global Automotive 3D Printing Market?
► What are the largest and the fastest-growing geographies?
► Which segment dominated and which segment is expected to grow fastest?
► What was the COVID-19 impact on the Global Automotive 3D Printing Market?
FIVE FORCES & PESTLE ANALYSIS:
In order to better understand market conditions five forces analysis is conducted that includes the Bargaining power of buyers, Bargaining power of suppliers, Threat of new entrants, Threat of substitutes, and Threat of rivalry.
Political (Political policy and stability as well as trade, fiscal, and taxation policies)
Economical (Interest rates, employment or unemployment rates, raw material costs, and foreign exchange rates)
Social (Changing family demographics, education levels, cultural trends, attitude changes, and changes in lifestyles)
Technological (Changes in digital or mobile technology, automation, research, and development)
Legal (Employment legislation, consumer law, health, and safety, international as well as trade regulation and restrictions)
Environmental (Climate, recycling procedures, carbon footprint, waste disposal, and sustainability)
Points Covered in Table of Content of Global Automotive 3D Printing Market:
Chapter 01 - Automotive 3D Printing Market for Automotive Executive Summary
Chapter 02 - Market Overview
Chapter 03 - Key Success Factors
Chapter 04 - Global Automotive 3D Printing Market - Pricing Analysis
Chapter 05 - Global Automotive 3D Printing Market Background or History
Chapter 06 - Global Automotive 3D Printing Market Segmentation (e.g. Type, Application)
Chapter 07 - Key and Emerging Countries Analysis Worldwide Automotive 3D Printing Market.
Chapter 08 - Global Automotive 3D Printing Market Structure & worth Analysis
Chapter 09 - Global Automotive 3D Printing Market Competitive Analysis & Challenges
Chapter 10 - Assumptions and Acronyms
Chapter 11 - Automotive 3D Printing Market Research Methodology
About Us:
Fortune Business Insights™ delivers accurate data and innovative corporate analysis, helping organizations of all sizes make appropriate decisions. We tailor novel solutions for our clients, assisting them to address various challenges distinct to their businesses. Our aim is to empower them with holistic market intelligence, providing a granular overview of the market they are operating in.
Contact Us:
Fortune Business Insights™ Pvt. Ltd.
US:+18339092966
UK: +448085020280
APAC: +91 744 740 1245
0 notes
jyoticeramic · 10 days ago
Text
Jyocure UV RESIN  for 3D Printing and Dental Resin Applications
Explore Jyocure UV Resin for superior 3D printing and dental resinapplications. Experience unmatched quality and performance for all your resin needs.
Jyocure by Jyoti Ceramic – The Future of UV Resin for 3D Printing and Dental Applications
In the ever-evolving world of 3D printing, finding the right material is key to achieving precision, durability, and efficiency. Jyoti Ceramic introduces Jyocure, a next-generation UV Resin designed for professional use across industries. Whether you're developing intricate prototypes, manufacturing detailed dental models, or creating high-end industrial components, Jyocure is the ultimate choice for all your 3D Printing resin needs.
What Makes Jyocure UV Resin Stand Out?
Jyocure is a specially formulated UV Resin that delivers outstanding results for high-resolution 3D printing. Developed using advanced ceramic technology, Jyocure offers a unique combination of strength, flexibility, and aesthetic finish. It is fast-curing, with low shrinkage and excellent mechanical properties, making it ideal for a variety of applications, including Dental resin modeling and industrial 3D Resin projects.
Tumblr media
Key Features of Jyocure UV Resin:
High accuracy and fine detailing for intricate designs
Excellent surface smoothness and finish
Strong mechanical properties with long-lasting durability
Quick curing under UV light with minimal odor
Superior resistance to deformation and cracking
With Jyocure, you can produce parts that not only look great but also stand up to real-world use.
Perfect for 3D Printing Resin Applications
3D printing resin demands materials that can deliver precision, consistency, and durability. Jyocure UV Resin is engineered to meet these expectations. Its balanced formulation ensures smooth layering, clean edges, and reliable structural integrity — making it a favorite among professionals across industries such as automotive, electronics, jewelry design, and product prototyping.
Whether you are working with SLA or DLP 3D printers, Jyocure provides excellent compatibility and performance, ensuring that your projects achieve the desired quality every time.
Specialized for Dental Resin Applications
In the field of dentistry, accuracy and material reliability are non-negotiable. Jyocure is also specially formulated as a Dental resin, making it perfect for creating dental models, aligners, surgical guides, crowns, and bridges.
Its high resolution and minimal shrinkage mean that dental professionals can trust Jyocure to deliver precise and durable results that meet clinical standards. The material’s biocompatibility and strong mechanical properties ensure that dental products maintain their shape and strength throughout their use.
Applications of Jyocure 3D Resin
Thanks to its versatile performance, Jyocure UV Resin is used in a wide range of industries, including:
Dental Applications – Models, surgical guides, and restorations
Jewelry Prototyping – Detailed casting patterns and molds
Industrial Prototyping – High-strength functional parts
Consumer Goods – Custom components and accessories
Automotive and Aerospace – Precision parts and tools
Jyocure is the preferred 3D Resin for professionals seeking to push the boundaries of design and manufacturing excellence.
Why Choose Jyoti Ceramic's Jyocure UV Resin?
With decades of innovation in advanced ceramics, Jyoti Ceramic is committed to delivering quality, precision, and reliability. Jyocure UV Resin reflects this legacy by providing 3D printing professionals and dental experts with a product they can trust for consistent, high-quality results.
When you choose Jyocure, you are investing in:
Higher productivity with faster curing times
Superior product quality with fine detail reproduction
Long-term reliability and performance in demanding environments
Visit: https://www.jyoticeramic.com/jyocure.php
Contact: +91 2536918111
0 notes
xinhulian · 20 days ago
Text
Enhance Design Flexibility with 3D Print on Demand Services.
Tumblr media
Understanding 3D Print on Demand
Defining 3D Print on Demand
3D Print on Demand  is a service where users can submit digital models and get them printed using 3D printers. This is a design tool that offers the flexibility to manufacture complex, bespoke products without the use of conventional tooling or molds. It begins with the creation of a digital model using CAD (Computer-Aided Design) software. Then takes this model and slices it into layers that the 3D printer will use to print the object, layer by layer.
Evolution of 3D Print on Demand
3D Print on Demand Services is an evolution to new capabilities driven by developments in additively manufactured technologies. These were primarily utilitarian in prototyping but the domain has quickly extrapolated into many other applications in various industries. Now they are even more attractive with the adoption of AI to provide quotes on delivery and even the ability to get better quotes for procurement of the material. Today, hundreds of industrial-grade printers, SLA, SLS, MJF, SLM, DLP, and more help us to produce a wide range of prototypes, from single models to small batch productions quickly and accurately.
Applications of 3D Print on Demand
Industrial Applications
3D Print on Demand services are often machine shops that use 3D modeling and printing knowledge, based on data from October 2023 for most. In industrial settings, that means rapid prototyping and manufacturing of complex components. It enables lightweight, high-strength parts in industries like automotive and aerospace that just are not possible to make using traditional methods. For instance, components can be made with complex internal structures that minimize weight without sacrificing strength, such as in aerospace.
Consumer Product Applications
3D Print on Demand shines in terms of never-before-seen customization potential for consumer products. Consumers can create and custom-make uniquely shaped things based on their own specs without high pricing on classic manufacturing. This ability includes industries such as fashion, where customized jewelry or accessories can be printed to order. In electronics, these can be custom casings or even components that are produced with the help of this technology. In addition, educational institutions use these services for student projects and as teaching aids, enabling students to take digital designs into the real world.
Finally, 3D Print on Demand services improve design flexibility thanks to a huge variety of materials and processes that are adhered to needs. From intricate parts for industrial machinery to bespoke consumer items, this process is transforming the manufacturing industry, making it faster and cheaper than ever. From highly intricate industrial parts to bespoke consumer goods, this innovative technology goes beyond customization for an efficient and economical manufacturing change.
Impact of 3D Print on Demand on Manufacturing
Streamlining Production Processes
3D Print on Demand removes a lot of the bottlenecks of production since you don't even need tooling or molds. It also allows manufacturers to go from design to production in a matter of days, instead of months. This allows businesses to iterate designs much more quickly, so that the final product can be as close to your perfect spec as you can get without purchasing an (often expensive) mass production run. This ultimately increases efficiency and reduces waste because minor adjustments can be made without wasting large amounts of material.
Sustainability and Environmental Impact
3D Print on Demand is something that has been extremely impacted by modern manufacturing, and sustainability is based on that. And while traditional manufacturing is a subtractive process that creates a lot of waste, 3D printing is additive and uses exactly the right amount of material — no extra. By cutting down on waste material this leads to more sustainable practices. It also decreases transportation emissions and carbon footprints related to shipping final products out of centralized production facilities by enabling local production of goods on demand.
Tumblr media
Influence of 3D Print on Demand on Design Flexibility
Enhancing Design Versatility
3D Print on Demand has recognized one of its most remarkable effects, which is the increasing potential for design flexibility. Geometries and details that were once impossible to produce or limited by cost can now be reached cost-effectively. This is also a particularly inventive and creative field that will enable functional and attractive products across different industries.
Multiple Machining Techniques
A key advantage of 3D Print on Demand services is the availability of multiple machining techniques, each offering distinct characteristics:
· SLA (Stereolithography): Utilizes resin materials to produce high-resolution parts with smooth surfaces, ideal for detailed prototypes.
· SLS (Selective Laser Sintering): Employs white nylon materials to create durable parts suitable for functional testing.
· MJF (Multi Jet Fusion): Uses black nylon materials for producing robust components with fine details.
· SLM (Selective Laser Melting): Works with metal materials to manufacture strong and complex metal parts.
· DLP (Digital Light Processing): Engages red wax materials for precise casting patterns and models.
These techniques provide manufacturers with a wide array of options tailored to specific project requirements.
Material Diversity
Another important aspect of improved design flexibility offered by 3D Print on Demand services is material diversity. A wide range of material types from plastics and resins to metals and ceramics provides a variety of physical characteristics appropriate for various applications. Such diversity allows designers to choose materials to meet performance: resistance to high temperatures, strength, or sustainable/durable characteristics they require, thus resulting in the right material for the right job.
Inventory Optimization
Being able to produce items on demand can provide companies with an efficient way to optimize their inventory management methods. Operating digital inventories and producing goods as needed does away with the need for carrying huge finished product inventory in different warehouse spaces. It lowers the costs for storage and it also minimizes the chances of overproduction or obsolescence which eventually results in an agile supply chain process.
Time Efficiency in Design Iterations
These 3D Print on Demand services significantly reduce the time required for design iterations. The ability for rapid prototyping allows designers to test several iterations of a product in a fast manner, receiving feedback and iterating on changes rather quickly. It encourages innovation at every step, with a reduced time taken to make new products ready for the market from conception to the table.
To sum up, 3D Print on Demand services have changed the course of traditional manufacturing paradigms by providing unparalleled design flexibility and efficiency. Momaking innovative services drive industries forward with advanced machining processes and sustainable material choices, optimizing production processes and reducing environmental impact. In addition, we also provide CNC Machining Services and Sheet Metal Processing Services. With rapid evolution and developments, these smart applications will undoubtedly continue to grow, strengthening thttps://www.momaking.com/en/article/enhance-design-flexibility-with-3d-print-on-demand-servicesheir place within modern manufacturing strategies, well into the future.
0 notes
wganme · 1 month ago
Link
This Full HD 120 Inch Smart laser projection TV, part of the new EpiqVision Ultra range, comes with Android TV and sound by YAMAHA. Open up the possibilities to bigger and more exciting home entertainment while keeping your home stylish, without a black screen permanently on the wall. Epson's Full HD ultra-short-throw laser projection TV is sleek in design with Android TV and sound by YAMAHA, and is designed for projecting up to 120 Inch with 3LCD technology, a high contrast ratio and sharp images. THE BIG SCREEN EXPERIENCE Feel immersed in everything you watch or play with this stylish and affordable Full HD projector which can produce up to a 120 Inch image. Smart home entertainment Android TV offers thousands of movies, shows, and games from Google Play, You Tube and other favourite apps. Enjoy dynamic audio and 3D surround sound with sound by YAMAHA, which can be used with or without a visual display by simply selecting the the visual display to mute and can also connect to a smart device with Bluetooth audio. LONG-LASTING SOLUTION Looking for a long-term, hassle-free and affordable solution to replace your TV? With this model's long-lasting lamp light source, you'll be able to enjoy entertainment for up to 10 years. SUPERIOR PICTURE QUALITY With a high brightness of 3,600 lumens and contrast ratio of 2,500,000:1, this projector delivers lifelike content and defined shadow detail. Epson's 3LCD technology means its projectors have up to three times brighter colours, than comparable 1-chip DLP projectors. Full HD Smart laser projection TV - supersize your favourite films, games and sporting events at home Smart entertainment - part of the EpiqVision Ultra range with Android TV and sound by YAMAHA Long-lasting solution - enjoy entertainment for up to 10 years Affordable, high-tech equipment - display close to projected image, up to 120" Impressive, bright display - equally high White and Colour Light Output of 3,600 lumens
0 notes
priteshwemarketresearch · 2 months ago
Text
Advancements in Composite Materials for 3D Printing
Tumblr media
Exploring the Dynamic World of 3D Printing Materials Market
The world of 3D Printing Materials Market has come a long way since its inception, evolving from a niche technology to a mainstream manufacturing process. At the heart of this transformation is the ever-expanding universe of 3D printing materials. These materials are not just a means to an end; they are pivotal in defining what can be created, how it can be produced, and what industries can benefit from this cutting-edge technology. In this blog, we will delve into the key aspects of the 3D printing materials market, exploring the types, applications, and future trends shaping this exciting field.
Sample copy report:
https://wemarketresearch.com/reports/request-free-sample-pdf/3d-printing-materials-market/1338
Types of 3D Printing Materials
Thermoplastics: Thermoplastics are among the most widely used materials in 3D printing. They are known for their ease of use, affordability, and versatility. Popular thermoplastics include:
PLA (Polylactic Acid): Known for its eco-friendly nature and ease of printing, PLA is a favorite among hobbyists and beginners.
ABS (Acrylonitrile Butadiene Styrene): This material offers greater strength and durability, making it ideal for functional prototypes and end-use parts.
PETG (Polyethylene Terephthalate Glycol): Combining the ease of printing with durability, PETG is commonly used in applications requiring resistance to impact and moisture.
Resins: Resins are liquid materials that solidify under UV light and are used primarily in SLA (Stereolithography) and DLP (Digital Light Processing) printers. They offer high resolution and detail, making them suitable for applications such as jewelry and dental products. Key types include:
Standard Resins: Ideal for detailed models and prototypes.
Tough Resins: Engineered for increased durability and impact resistance.
Flexible Resins: Designed to produce parts with rubber-like properties.
Metals: Metal 3D printing is used for high-performance applications in industries such as aerospace, automotive, and medical. Metal powders, such as titanium, aluminum, and stainless steel, are used in processes like SLM (Selective Laser Melting) and EBM (Electron Beam Melting). Metal 3D printing offers:
High Strength-to-Weight Ratio: Essential for aerospace and automotive components.
Complex Geometries: Allows for the creation of intricate designs that are difficult to achieve with traditional manufacturing methods.
Composites: Composite materials combine thermoplastics with reinforcing fibers, such as carbon fiber or glass fiber, to enhance strength and rigidity. These materials are used in applications where lightweight and high strength are critical, including in the automotive and sports equipment industries.
Innovations Driving the 3D Printing Materials Market
The 3D printing materials market is experiencing rapid innovation, driven by advancements in technology and changing industry needs. Here’s a closer look at some of the latest innovations that are transforming the landscape of 3D printing materials:
Nanomaterials: Nanotechnology is making waves in the 3D printing industry by enabling the creation of materials with enhanced properties at the nanoscale. Nanomaterials can improve strength, durability, and thermal resistance, making them ideal for high-performance applications. For example, incorporating nanoparticles into polymers can enhance their mechanical properties, leading to more robust and reliable printed parts.
Bio-inks and Bioprinting: Bioprinting is revolutionizing the medical and research fields by enabling the creation of living tissues and organs. Bio-inks, which are made from natural and synthetic biopolymers, are used in this process to print cellular structures. These materials can be tailored to support cell growth and tissue development, opening up new possibilities for regenerative medicine and personalized healthcare.
Applications of 3D Printing Materials Market
The versatility of 3D printing materials market has led to their adoption across various sectors:
Aerospace: Lightweight and durable materials are used to manufacture complex parts and components, reducing overall weight and fuel consumption.
Healthcare: Custom prosthetics, implants, and dental products are tailored to individual patients using biocompatible materials.
Automotive: 3D printing enables rapid prototyping and production of lightweight parts, enhancing vehicle performance and reducing time-to-market.
Consumer Goods: Customized products, from eyewear to home decor, benefit from the flexibility and personalization offered by 3D printing.
Future Trends in 3D Printing Materials Market
As the 3D printing industry continues to evolve, several trends are likely to shape the future of 3D printing materials:
Biodegradable and Sustainable Materials: There is a growing focus on developing eco-friendly materials that reduce environmental impact. Innovations in biodegradable plastics and recycling processes are set to make 3D printing more sustainable.
Advanced Metal Alloys: The development of new metal alloys with enhanced properties will open up new possibilities for high-performance applications in industries such as aerospace and defense.
Multi-Material Printing: Advances in multi-material printing technologies will allow for the creation of complex objects with varying properties in a single print, expanding the range of applications and functionalities.
Smart Materials: The integration of materials that respond to environmental changes (such as temperature or pressure) will lead to the development of "smart" products with adaptive capabilities.
Related Reports:
Global Nanocomposites Market
Green Solvent Market
Aliphatic Polyester Polyols Market
Self-Healing Coatings Market
Benefits of 3D Printing Materials Market Report:
Analyst Support: Get your query resolved by our expert analysts before and after purchasing the report.
Customer Satisfaction: Our expert team will assist with all your research needs and customize the report.
Inimitable Expertise: Analysts will provide deep insights into the reports.
Assured Quality: We focus on the quality and accuracy of the report.
Conclusion
The 3D printing materials market is a dynamic and rapidly evolving field, driven by continuous innovation and technological advancements. From thermoplastics and resins to metals and composites, the variety of materials available today provides limitless possibilities for creators and manufacturers alike. As we look to the future, emerging trends and new material developments promise to further revolutionize the industry, offering exciting opportunities for growth and transformation across various sectors. Whether you're a hobbyist, a designer, or an industry professional, staying informed about these advancements will be key to leveraging the full potential of 3D printing technology.
0 notes
dranjanakalia · 2 months ago
Text
Tumblr media
Looking for the Best Resin for Dental 3D Printing? Protosculpt offers high-precision dental resins designed for superior accuracy, durability, and biocompatibility. Ideal for crowns, bridges, aligners, models, and prosthetics, our 3D printing dental resins deliver exceptional detail and strength.
At Protosculpt, we ensure that our resins meet industry standards for safety, precision, and wear resistance. Whether you are a dental lab, orthodontist, or prosthodontist, our high-performance resin guarantees smooth surface finishes and excellent dimensional stability for every print.
Compatible with DLP, SLA, and LCD 3D printers, our dental resin ensures minimal shrinkage, high detail reproduction, and long-lasting results. Choose Protosculpt for reliable, biocompatible, and professional-grade dental 3D printing resins.
https://3dpresin.com/product/dental-model-plus-resin/
0 notes
idea-explorer · 6 months ago
Text
Visualizing the Future: DLP in Architectural Design
Tumblr media
This article examines how DLP technology is visualizing the future of architectural design. Discover its role in creating immersive experiences and facilitating design reviews. We'll explore case studies where DLP has enhanced collaboration and innovation. Learn about its integration with virtual reality for more engaging presentations. See how DLP is paving the way for the next generation of architectural visualization. Click the link and visit website for the more information!
1 note · View note
wintechdgital · 3 months ago
Text
From Imagination to Reality: The Power of Professional 3D Printing Services
In the digital age, innovation is at the forefront of every industry. One of the most transformative technologies making waves across multiple sectors is professional 3D printing services. From rapid prototyping to full-scale production, 3D printing has revolutionized how we bring ideas to life. But what makes professional 3D printing so powerful? Let’s explore its capabilities, advantages, and how it is shaping the future of design and manufacturing.
What is 3D Printing?
Tumblr media
3D printing, also known as additive manufacturing, is a process that creates three-dimensional objects by layering material based on a digital design. Unlike traditional manufacturing, which often requires cutting or molding materials, 3D printing builds objects layer by layer, making it highly efficient and customizable.
Types of 3D Printing Technologies
There are several types of 3D printing technologies, each catering to different applications. Here are the most popular ones:
1. Fused Deposition Modeling (FDM)
The most common type of 3D printing.
Uses thermoplastic filaments to build objects layer by layer.
Ideal for prototypes and consumer products.
2. Stereolithography (SLA)
Uses ultraviolet (UV) lasers to harden liquid resin into solid objects.
Provides high detail and smooth finishes.
Best for detailed models and intricate parts.
3. Selective Laser Sintering (SLS)
Uses a laser to fuse powdered materials, typically nylon or metal.
Excellent for functional prototypes and durable parts.
4. Digital Light Processing (DLP)
Similar to SLA but uses a digital light projector instead of a laser.
Faster than SLA with high accuracy.
5. Multi Jet Fusion (MJF)
Uses fusing and detailing agents along with a heat source to create precise and durable objects.
Often used in industrial applications.
Industries Benefiting from Professional 3D Printing
The adoption of 3D printing services is growing across industries, providing efficiency, cost savings, and limitless creativity.
1. Healthcare and Medical
Custom prosthetics and implants.
3D-printed surgical models for better pre-surgical planning.
Bioprinting for tissue engineering.
2. Aerospace and Automotive
Lightweight yet durable parts.
Rapid prototyping for faster innovation.
Reduction in material waste.
3. Architecture and Construction
Intricate architectural models.
3D-printed homes and structures.
Enhanced visualization for clients.
4. Consumer Goods and Retail
Custom jewelry and fashion accessories.
Personalized products tailored to individual needs.
Rapid production cycles for trendy products.
5. Education and Research
Hands-on learning with 3D-printed models.
Research in material science and engineering.
Educational tools for various disciplines.
Benefits of Professional 3D Printing Services
1. Cost-Effective Production
Traditional manufacturing often involves high setup costs, but 3D printing minimizes waste and reduces material expenses.
2. Rapid Prototyping
Businesses can develop and test prototypes faster, allowing for quicker iterations and improvements.
3. High Customization
Unlike mass production, 3D printing allows for unique, custom designs tailored to specific needs.
4. Reduced Waste and Sustainability
Since material is used only where needed, there’s less environmental impact compared to traditional manufacturing.
5. Complex Geometries and Enhanced Design Freedom
Objects with intricate details and complex shapes can be produced with ease, pushing the boundaries of creativity.
Choosing the Right 3D Printing Service Provider
Selecting a professional 3D printing service ensures quality, reliability, and efficiency. Here’s what to consider:
1. Expertise and Experience
Look for providers with a proven track record in your industry.
2. Range of Technologies and Materials
Ensure they offer a variety of 3D printing options and materials suited to your project.
3. Quality Assurance and Precision
A reliable provider should offer high-resolution prints with strict quality control.
4. Turnaround Time and Scalability
Choose a service that can meet deadlines and scale production as needed.
5. Customer Support and Consultation
A good service provider offers guidance and support throughout the process.
The Future of 3D Printing
As 3D printing technology advances, we can expect:
More sustainable materials and biodegradable printing options.
Integration with AI for enhanced design optimization.
Faster and larger-scale printing for industries like construction and aerospace.
Advancements in bioprinting, potentially leading to 3D-printed organs.
Conclusion
From concept to creation, professional 3D printing services offer unmatched possibilities for businesses and individuals alike. Whether you’re looking to innovate in healthcare, architecture, or product design, the right 3D printing partner can turn your vision into reality. With cutting-edge technology and expertise, Wintech Digital ensures precision, efficiency, and superior quality for all your 3D printing needs.
0 notes
digitalmore · 3 months ago
Text
0 notes
moko1590m · 4 months ago
Photo
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
3Dプリンターとは3D CADデータを元に3次元の立体造形物を出力(プリント)する装置です。
3Dプリンターには様々な方式があります。
基本的にはどれも1層1層積んでいく仕組みですが、方式によって得意不得意があります。
方式によって、造形物の精度、扱える材料とその物性、造形可能なサイズ、スピード、メンテナンス性など、様々な特徴の差異があります。 また、メーカー各社の独自用語が存在するなど、同じ方式を指していてもそれを表す用語がいくつもあるケースがあり、全体像の把握には、それら表記ゆれに対するケアが必要です。
3Dプリンターの方式はISOで分類が規定されておりますので、その区分を参考にしながら、主要な方式を網羅的にまとめました。
海外では既に3Dプリンターを「実生産」で使うことが当たり前に。 そのノウハウが一足飛びに得られるとしたら?
1つの製品に、何個の部品が使われていますか?会社全体では、何種類の部品がありますか? 多い企業では万単位の部品が存在すると思います。
それらの部品の中から3Dプリンターでの生産に向いている部品を自動で見つけ出し、 続々と生産を効率化していけるシステムがあるとしたら、御社の生産はど���変わるでしょう?
3Dプリンターでの部品実生産ノウハウを御社にインストールするシステム CASTOR 目次 現在主流 FDM方式 最も古い 光造形方式 高精細で表現力が最も高い インクジェット方式 結合剤を噴射する バインダージェット方式 金属3Dプリンターの世界を一変 BMD方式 従来型の金属3Dプリンター パウダーベッド方式 シート積層法 指向性エネルギー堆積法 CIM(Cast in motion)方式 3Dプリンターの仕組み 3Dプリンターは材料を1層1層積み上げていくことで、高さのある造形物を出力します。
様々な方式はありますが、基本的に層を重ねていくことで造形するという点に変わりはありません。 そのように、原理としては非常にシンプルです。
扱える材料も、プラスチック(樹脂)、金属、カーボン等、様々な材料を使って造形することができます。
3Dプリンターとは 3次元造形 現在主流 FDM方式 日本語表記:熱溶解積層方式(Fused Deposition Modeling) ISO分類:材料押出法(Material Extrusion) その他表記:FFF方式(Fused Filament Fabrication) FDM方式の概要 FDM方式とは、3Dプリンター世界シェアNo.1である米国Stratasys社が開発した方式です。 現在3Dプリンターにおいて主流の方式です。
FDM方式による造形 熱で溶かした樹脂をノズルから押し出し、ソフトクリーム製造機のようなイメージで、一筆書きで1層1層積み重ねて造形していきます。 この画期的な方式はストラタシス創設者のスコットクランプがグルーガンを見て想起したという逸話が残っています。
FDM方式 FDM方式の強み 本物の熱可塑性樹脂を使えること、だからこその強度・耐熱が強み 熱可塑性樹脂は射出成形で用いられており、量産する最終製品でよく使われるプラスチック材料です。代表的なものにABS樹脂等があります。
そのため、試作(プロトタイプ)であっても、最終製品に近い物性のリアルで機能的な試験も可能であり、製造業において重宝されています。
他の方式では紫外線硬化樹脂を用いるものが多いため、ABSそのものではなくABSに近い物性を持つ「ABSライク樹脂」が開発されています。
多様な物性の素材が使える FDM方式、特にハイエンド機種では産業界で求められる様々な物性の樹脂に広く対応しています。
エンジニアリングプラスチック、スーパーエンプラまで使えるなら、特殊用途の最終製品まで使えるイメージが沸くのではないでしょうか。
段差も目立ちにくいキメの細かな機種も 初期の頃は層を積み上げた際にできる段差が目立つ傾向がありました。
しかし近年では、材料も装置も進化していることから、��前より段差も目立ちにくくなりました。
FDM方式の弱点 FDM方式は比較的積層痕が目立ちやすいため、物性よりも外観のなめらかさ、プロダクトデザインにおける表現力を重視する用途では、FDM方式よりインクジェット方式の方が適していると言えるでしょう。
また、FDM方式だけでは金属の造形ができません。そのため、金属で造形したい場合は金属専用の3Dプリンターを導入する必要があります。(※FDM方式と組み合わせて金属造形するシステムは存在します。)
どのようなシーンで選ぶべきか? 製造業における試作(ラピッドプロトタイピング)、治具・工具の製作、最終製品の造形をしたい場合で、強度が求められるものはFDM方式を選ぶと良いでしょう。
FDM方式について詳しい解説はこちら
FDM方式の製品一覧はこちら
3Dプリンターで何をしたいですか? 最も古い 光造形方式 ISO分類:液槽光重合法(Vat PhotoPolymerization) その他表記:SLA方式(Stereo Lithography Apparatus) 光造形方式はSLA方式とも呼ばれます。 さらにSLAの中には、レーザー光を用いるレーザー方式と、一括面露光をするDLP方式があります。
光造形方式の概要 光造形方式は、最も古い3Dプリンターの方式です。 液体状の光硬化樹脂のプールに光を照射し、1層1層重ねて造形します。
光造形 レーザー方式 レーザー光を照射し、光に触れた箇所が硬化される仕組みです。光造形方式の中でも古くからある方式です。
DLP方式 プロジェクターのように像を作り、一括面露光する仕組みです。
造形物の面積が広い場合はレーザー方式と比較して高速露光できることが強みですが、像を作る際、ピクセル単位で描画することから、照射する範囲を広げると解像度が落ち寸法精度が出にくく、また造形物の表面は水平・垂直の両方向に積層痕(段差)が出てしまいます。
光造形方式の強み きめの細かな造形物が作りやすいこと、個人向けでは安価なモデルが多数登場していることが挙げられます。 造形速度は比較的速い傾向があります。
光造形方式の一般的な弱点 産業用途の光造形機は高額なものが多く、コストが高くなりがちです。
紫外線硬化樹脂を用いるという性質から、太陽光など光による劣化が起こりやすくなる性質があります。 吊り下げ方式のため大型のモデルの造形に適していなかったり、変形が起こる可能性もあります。 そのため、耐久性を求める用途、最終製品として用いる用途ではベストとは言えません。
また、造形後のアルコールや溶剤での洗浄や二次加工、剥離によるサポート除去など後処理に手間が掛かるものが多いです。
どのようなシーンで選ぶべきか? 歴史的経緯として古くはラピッドプロトタイピングに多く使われてきましたが、3DプリンターのDDM(デジタル・ダイレクト・マニュファクチャリング:最終製品や治工具の製造に3Dプリンターを利用する)が浸透するにつれ、役割は変わりつつあると感じます。
個人向けの3Dプリンターでは良い機種が揃ってきていますので、強度・耐久性を必要としないシーンで小さなサイズのモデルを手軽に��形したい場合にお勧めです。
光造形方式の弱点を克服した機種がStratasysから登場 従来型の光造形方式の3Dプリンターの弱点であった耐久性の弱さや生産性の低さを克服した機種がOrigin Twoです。
Origin Twoは量産でも高精細であり、最終製品のパーツ生産に使用されることを想定しています。
高精細で表現力が最も高い インクジェット方式 ISO分類:材料噴射法(Material Jetting/マテリアルジェッティング) その他表記:PolyJet方式※Stratasys社 インクジェット方式の概要 インクジェット方式という通称もありますが、正式分類では材料噴射法と言います。
その名の通り、材料を噴射し、それに対し光を当てて1層1層積んでいきます。 構造が2Dプリンターでいうインクジェットプリンターに類似していることから、インクジェット方式と呼ばれています。
高精細でリアルな造形物を作ることができる方式です。
インクジェット方式 インクジェット方式の強み 高精細な造形物 第一に、高精細な造形物を作ることができるということが挙げられます。 積層痕の目立たないなめらかな造形物を作りたいなら、まず選択肢にあげると良いでしょう。
機種によってはカラー材料の使用や、フルカラー造形も 紙にカラー印刷できるように、3Dプリンターでもカラー印刷できる機種があります。 その原理は、2Dプリンターが複数カラーのインクを用いてカラー印刷を可能にしているのと同様で、複数のカラー材料を用いることで色を再現します。
後から塗装をする必要がなく、塗装時間の短縮や手間を省く事ができます。
上位機種ではPANTONE®カラー対応のフルカラー造形が可能な機種もあり、色にこだわるプロダクトデザインで、完成物とのイメージ乖離を防ぎます。
透明なクリア材料や、ゴムの質感の再現まで 複数の材料を同時に扱うことができる機種もあります。 アッセンブリ加工が必要なものが、ワンショットで造形できます。
デザイナーが思い浮かべたプロダクトのコンセプトを何もない所から具現化する強力なツールとなるでしょう。
3Dプリンターが描く未来の世界に最も近いものがこのインクジェット方式の3Dプリンターかもしれません。尚、この分野はストラタシス社がかなりリードしています。
布や皮革の生地に対して直接3Dプリントできる機種も 麻やフェルト、スウェードや皮革などの「生地」に3Dプリントする方式がハイブランドや大手メーカーにて採用されはじめています。
硬質素材だけではなく、ゴムのように柔軟性のある素材を含め、60万色フルカラーで3Dプリントできる機種があります(Stratasys J850 Prime FabriX)。
Stratasys J850 Prime FabriX インクジェット方式の弱み 強度・耐久性についてはFDM方式に劣ります。 噴射した材料に光を照射し硬化させるため、太陽光での劣化もあります。その面では光造形方式と同じです。
どのようなシーンで選ぶべきか? 試作におけるデザイン性・外観の再現での用途では群を抜きます。 デザインの価値が高まる中、メーカーにおけるデザイン部門・設計部署での導入に最適です。 構想設計から最終段階まで、リアリティを持った試作品を気軽に何度も出し直しして調整しながら創ることが可能です。
Stratasysのインクジェット(PolyJet)方式について詳しい解説はこちら
PolyJet方式の製品一覧はこちら
3Dプリンターで何をしたいですか? 結合剤を噴射する バインダージェット方式 日本語表記:粉末接着方式 ISO分類:結合材噴射法(Binder jetting) その他表記:バインダージェッティング方式 バインダージェット方式の概要 インクジェット方式(��テリアルジェッティング)は材料自体を噴射する方式でした。 それに対して、バインダージェット方式は、バインダー(=結合剤)の方を噴射することで造形物を固めます。 元々は石膏に結合剤を吹き付けて固める方式でした。 石膏という材質から後加工での着色がしやすく、フィギュアの造形や、簡易なデザインイメージの確認に用いられていました。
その後、金属、樹脂、セラミック等の材料でも造形できるようになり適用できる幅は広がりました。 尚、このバインダージェット方式の生みの親であるMITの研究者は、現在Desktop Metal社で金属3Dプリンターの開発に携わっています。
バインダージェット方式 バインダージェット方式の強み サポート材が不要であること、着色がしやすいこと、造形速度が速いことが挙げられます。
バインダージェット方式の弱点 表面精度が粗いこと、強度が弱いこと、粉末を取り扱い除去する必要���あり、粉末の飛散による危険性や粉じん対策が必要であること、造形後に後処理の手間が掛かることが挙げられます。
どのようなシーンで選ぶべきか? 強度は求めないデザイン確認の用途に適合すると思います。
金属3Dプリンターの世界を一変 BMD方式 英語表記:Bound Metal Deposition方式 ISO分類:- その他表記:ADAM方式(Atomic Diffusion Additive Manufacturing) BMD方式の概要 金属3Dプリンターは金属粉を取り扱うため、取り扱いが容易ではありませんでした。 それを劇的に改善したのがBMD方式です。
BMD方式は、3つの段階を経て金属の造形物を作ります。
BMD方式 1.3Dプリンターでの造形 まず3Dプリンターで造形します。金属とポリマーとワックスでできた素材を熱で溶解し、積層します。 しかしこれだけでは金属部品として求められる物性が得られません。 そこで、次の段階に進みます。
2.専用の脱脂装置でバインダーを除去する 金属とバインダーが混ざった状態から、ワックスを除去します。
溶剤を用いた工程が不要となる新しい方式の装置が登場しています。
3.専用の焼結装置で焼結する ピーク温度1400℃で焼結し、固めます。
これは製造業の世界では歴史があるMIM(Metal Injection Molding)の技術を応用したものです。
製品としてはこの金属3Dプリンターを含む3つの装置を1つのシステムとして提供する形式で販売されています。
BMD方式の強み 従来の金属3Dプリンターと異なり、専用の部屋を用意する必要がありません。
従来方式では、金属粉の粉塵対策、不活性化ガスを用いるための設備投資等、総合して投資規模・総保有コストが大きくなりがちでしたが、それを解決しています。
また、3Dプリンター本体はFDM方式で造形するため、従来工法では実現できなかった複雑な形状も精度高く造形可能です。
金属3Dプリンターの導入をためらっていた企業様にこそ検討いただきたい方式です。
BMD方式の弱点 焼結の際にガスを使います。このガスのランニングコストも導入判断の評価ポイントになるでしょう。 ただし、ガスの使用量は機種によって大きな差があります。
また、有機溶剤を扱うため、オフィスで使うには局所排気装置が必要になります。 (しかし、総保有コストを考えると圧倒的な���減ができると言って良いでしょう。)
どのようなシーンで選ぶべきか? 金属素材で低コストに造形したい、金属の製品開発を高速化したい、金属パーツの多品種少量生産に使いたいといったシーンでは最適な方式です。
BMD方式の3Dプリンター Desktop Metal特設ページはこちら
3Dプリンターで何をしたいですか? 従来型の金属3Dプリンター パウダーベッド方式 ISO分類:粉末床溶融結合法(Powder Bed Fusion) その他表記:PBF方式 パウダーベッド方式の中には、レーザー熱源方式と、電子ビーム熱源方式があります。
レーザビーム熱源方式(Selective Laser Melting/SLM) 電子ビーム熱源方式(Electron Beam melting/EBM) パウダーベッド方式の概要 パウダーベッド方式は、金属粉末を敷き詰めた床に光線を照射し、その熱で焼結させる方式です。 金属のほかにナイロンや樹脂も用いられるケースがあります。
従来は金属を3Dプリンターで造形する際の主要な方式でした。
パウダーベッド方式 方式1.レーザー熱源方式 ハイパワーなレーザー光を照射することで金属粉末を焼結させます。
方式2.電子ビーム熱源方式 レーザーではなく電子ビームを照射する方式です。 レーザー熱源方式では難しかった銅の造形も可能な方式です。
パウダーベッド方式の強み BMD方式の登場で情勢は変わっていますが、金属を造形できる3Dプリンターとして有力な方式であったと言えます。
パウダーベッド方式の弱点 機器本体が高額であるということに加え、工場において設置する部屋の確保、粉塵対策・不活性化ガスの排出対策の空調設備など、装置外の投資規模が大きくなること。 オペレーターが金属粉末を吸入するリスク、金属粉末が工場内に拡散するリスクがあること。
サポート材の除去に手間が掛かること、表面がざらついた造形物になること、などが挙げられます。
どのようなシーンで選ぶべきか? 現時点では、まずパウダーベッド方式の弱点を克服したBMD方式を検討いただき、BMD方式では適合しない場合にパウダーベッド方式をあわせて検討いただくというのが良いと思います。
シート積層法 ISO分類:シート積層法(Sheet Lamination) シート積層法の概要 シート積層法は、薄いシートを重ね合わせて、接着剤や超音波で結合させる方式です。 結合した素材をレーザーでカットし成形します。
シート積層法の強み PVC、金属、紙等、他の方式ではあまり見られない材料を用いて造形可能です。 また、複数の金属素材を合わせて使うことができること等が挙げられます。
シート積層法の弱点 廃棄材料が多く出る可能性があること、他の方式に比べ造形精度が低いこと、中空構造が作りにくいこと、等が挙げられます。
どのようなシーンで選ぶべきか? 紙やPVCで造形したい場合、異なる金属素材を接合して用いたい場合などのシーンで有効になると思います。
3Dプリンターで何をしたいですか? 指向性エネルギー堆積法 ISO分類:指向性エネルギー堆積法(Directed Energy Deposition) その他表記:レーザーデポジション、レーザーメタルデポジション(LMD) 指向性エネルギー堆積法の概要 指向性エネルギー堆積法は、金属粉末を吹き付けながらレーザー光を照射することで肉盛り溶接する方式です。
指向性エネルギー堆積法の強み 金属の造形物ができること、異種材料を組み合わせて母材とは異なる金属の造形ができること、高熱で溶融するため耐久性が高い造形物ができること。また、大型造形が得意で造形速度も速い。
指向性エネルギー堆積法の弱点 金属粉末を扱うため取り扱いに注意を要すること、表面は粗い仕上がりになること、造形できる形状に制約が大きいこと等が挙げられます。
どのようなシーンで選ぶべきか? こちらも、まず従来型金属3Dプリンターの弱点を克服したBMD方式を検討いただき、BMD方式では適合しない場合に指向性エネルギー堆積法の機種を検討いただくというのが良いと思います。
CIM(Cast in motion)方式 CIMではまず「型を造るための枠」を3Dプリンターで高速造形します。その枠の中にエポキシ樹脂を流し込み、それが型になります。このエポキシ樹脂は熱硬化性樹脂のため、オーブンで��熱し固めることで機械的特性に優れた型が得られます。 型を造形するために用いた枠は、水に浸すとフレーク状に砕けるため容易に除去可能です。造形した型は、表面精度を高めるため切削加工で研磨する等、仕上げ処理を施して完成です。
型を造形するCIM方式 FRP用の成形型などにおいては、型を3Dプリンターで造形する方式が実用化されています。
パウダーベット方式 アルテックがお手伝いできること 3Dプリンターには様々な方式があり、非常に多くのメーカーがあります。
アルテックではお客様のニーズにお応えする上で、実績があり信頼性が高く、時代に適合したベストだと思えるメーカーのみ、厳選して取り扱っております。
(3Dプリンターの方式・仕組み・特徴を解説(2024年最新版) - 3Dプリンターならアルテックから)
0 notes
atplblog · 4 months ago
Text
Price: [price_with_discount] (as of [price_update_date] - Details) [ad_1] Stylish design: Lightweight High elastic PC material frame greatly improved the comfortability of wearing.178° wide viewing angle enables you to watch large screen movies without distortion, providing you a superior 3D visual experience.and also Can be used with myopia glasses Built-in rechargeable battery and micro USB port, the 3D glasses can be recharged with micro USB cable. 3 hours recharging provides 50 hours operation The glasses operate at 96hz, 120hz, and 144hz making them ideal for any and all DLP 3D systems! Quality Transmission Data -is sent seamlessly, in millisecond response time, by the projector in between video frames to create Stereoscopic 3D images with no flickering. High Compatity:Perfect match with Active DLP Link 3D projectors, such as SamSung, Acer, Benq, Viewsonic, Optoma, Sharp, Mitsubishi, Nvdia, Sony, TCL, Panasonic, Vivitek, Dell, Nec and so on... Specification: 3D Glasses Type: Active shutter glasses Synchronous: DLP-Link Display Compatibility: DLP-Link 3D Projector Frequency: 96-144Hz Response Time: 2ms0.5ms Transmission: 38%2 Environment Temperature: 0 °C - 50 °C weight: 32g Resolution: 1080PWide viewing angle: 175 ° Package Includes: 1 Piece 3D Active Glasses for Projector 1 Piece USB Cable 1 Piece Cleaning Cloth 1 Piece Pouch 1 Piece User Manual Product Dimensions ‏ : ‎ 15 x 7 x 10 cm Date First Available ‏ : ‎ 4 December 2024 Manufacturer ‏ : ‎ GUDMART ASIN ‏ : ‎ B0DPKFC4YP Item model number ‏ : ‎ GUDSHOPR-CF5BMT2M Country of Origin ‏ : ‎ China Manufacturer ‏ : ‎ GUDMART, GUDMART Packer ‏ : ‎ GUDMART Item Dimensions LxWxH ‏ : ‎ 15 x 7 x 10 Centimeters Net Quantity ‏ : ‎ 1.0 count Included Components ‏ : ‎ 1 [ad_2]
0 notes