#CWDM Mux/Demux
Explore tagged Tumblr posts
Text
Compact CWDM Mux/Demux Boosts Fiber Capacity
CWDM Mux/Demux devices enable efficient wavelength multiplexing and demultiplexing, allowing multiple data channels over a single fiber. Ideal for expanding bandwidth without laying new fiber, CWDM Mux/Demux ensures cost-effective, high-capacity optical communication in metro and access networks. Contact DK Photonics who is a leadig company of these products.
To know more:
http://dk-lasercomponents.com/
0 notes
Video
youtube
18CH CWDM DWDM Mux/Demux Module manufactured by SOPO #CWDM #dwdm #wdm ...
0 notes
Text
#omnitron#cwdm#dual band#splitter#1271nm#1451nm#1471 nm 1611nm#uper band#lower band#mux#demux#univold#trump#putin#tesla
0 notes
Link
CWDM items are usually epoxy-free on the optical side, this provides better working conditions. Besides, in CWDM Mux/Demux, there is a high level of channel segregation which prompts better outcomes.
0 notes
Photo

Website:www.10giga.com.cn ,#SoarTelecom Supplying #SFP modules&#CWDM/#DWDM,#mpo,#mtp, products for major telecommunication companies worldwide,what'sapp:(86)13692286535;[email protected]
0 notes
Text
Ways to Distinguish 100G QSFP28 LR4, PSM4 and CWDM4 Components Plainly
100G goes to its complete wing to transportation into the conventional. There are 4 many typical sorts of 100G QSFP28 optical transceivers for information facility application today, i.e. QSFP28 SR4, QSFP28 LR4, QSFP28 PSM4, and QSFP28 CWDM4. Contrasts in between the 3 last will be reviewed in this flow to aid you pick your 100G application setting appropriately.
https://www.fibermall.com/blog/100g-qsfp28-lr4-psm4-and-cwdm4-modules.htm
1. 100G QSFP28 CWDM4 VS QSFP28 LR4 ● Attributes QSFP28 CWDM4 is certified with the conventional specifically developed for the implementation of 100G information web links within 2km of the information facility. The user interface of the QSFP28 CWDM4 optical component adheres to the duplex single-mode 2km 100G optical user interface requirements, and the transmission range can surely get to 2km. It's one of the most extensively utilized 100G QSFP28 collection optical component in information facilities.
Comparative, 100G QSFP28 LR4 has all the attributes of QSFP28 CWDM and is more affordable and affordable in the application of 2km transmission.
● Running Concept 100G QSFP LR4 and CWDM4 are essentially comparable in the means how they operate. Both of them complex 4 identical 25G networks into a 100G fiber web link via optical tools MUX and DEMUX. QSFP LR4 sends 100G Ethernet indicate over 4 facility wavelengths, i.e. 1295.56nm, 1300.05nm, 1304.58nm, and 1309.14nm. Both user interface designs are highlighted as adheres to:
● Set you back Distinctions Although both of them are the conventional 100G QSFP28 optical application for IDC, the set you back in between both components are various, which is shown in the adhering to facets:
◇ The optical MUX/DEMUX tools released by QSFP CWDM4 are more economical compared to that of the QSFP28 LR4.
◇ The laser in the LR4 component is more pricey and eats more power.
◇ LR4 needs extra TEC (semiconductor thermoelectric cooler)
Based upon the over contrast, optical components certified with the QSFP28 LR4 conventional are more pricey, while the 100G QSFP28 CWDM4 conventional suggested by MSA has actually well complemented the space triggered by the high set you back of QSFP28 LR4 within 2km transmission.
2. 100G QSFP28 PSM4 VS QSFP28 CWDM4 ● Attributes for 100G PSM4 & CWDM4 Along with the QSFP28 CWDM4 transceiver, 100G QSFP28 PSM4 is among the option remedies in intermediate transmission range. However what are the benefits and drawbacks of PSM4 compared to CWDM4?
QSFP28 PSM4 optical transceiver is a four-channel 100G adjoin service over a identical SMF and it's generally utilized for 500m web link application. 8-core SMF constructs 4 independent channels(4 for transferring and 4 for receiving)for 100Gbps optical interconnects, and the transmission price of each network is 25 Gbps.
Each indicate instructions makes use of 4 independent networks of the exact same wavelength of 1310nm. As a result, both transceivers normally interact using 8-fiber MTP/MPO single-mode optical fiber wire. The optimal transmission range of PSM4 is 500m.
● Running Concept for 100G PSM4 For 100G QSFP28 PSM4's practical concept, please describe the adhering to number to understand how it sends indicates.
● Set you back & Innovation Distinctions Quickly talking, the 100G QSFP28 CWDM4 optical component is created with an integrated wavelength department multiplexer, production it more pricey compared to QSFP28 PSM4 optical components. Nonetheless, CWDM4 transceivers call for just 2 single-mode fibers for bidirectional transmission, which is much much less compared to the 8 single-mode fibers of PSM4. And QSFP28 CWDM4 sends 100G Ethernet indicate over 4 wavelengths of 1271nm, 1291nm, 1311nm, and 1331nm specifically.
As the web link range boosts, the complete set you back of the PSM4 service climbs quickly. As a result, whether to pick a PSM4 or CWDM4 interconnection service must be selected your real require in the application. The adhering to graph programs several of the technical distinctions in between both components.
Verdict For optical component providers, broadband, reduced power usage, and affordable are the major requirements for future information facility optical component demands. There are various remedies in regards to transmission range, inflection setting, running temperature level, and create element, which should be picked based upon variables such as application circumstances and set you back.
1 note
·
View note
Text
How to Add CWDM MUX/DEMUX System to Your Network?
How to Add CWDM MUX/DEMUX System to Your Network?
by http://www.fiber-mart.com
Coarse wavelength division multiplexing (CWDM) technology is developed to expand the capacity of a fiber optic network without requiring additional fiber. In a CWDM system, CWDM Mux/Demux (multiplexer/demultiplexer) is the most important component. Usually, a CWDM Mux/Demux is used to increase the current fiber cable capacity by transmitting multiple wavelengths,…
View On WordPress
0 notes
Text
How to Add CWDM MUX/DEMUX System to Your Network?
How to Add CWDM MUX/DEMUX System to Your Network?
by http://www.fiber-mart.com
Coarse wavelength division multiplexing (CWDM) technology is developed to expand the capacity of a fiber optic network without requiring additional fiber. In a CWDM system, CWDM Mux/Demux (multiplexer/demultiplexer) is the most important component. Usually, a CWDM Mux/Demux is used to increase the current fiber cable capacity by transmitting multiple wavelengths,…
View On WordPress
0 notes
Text
CWDM/DWDM ITU Channel Руководство
CWDM (Грубое Спектральное Мультиплексирование) и DWDM (Плотное Волновое Мультиплексирование) позволяют носителям предоставлять больше услуг по своей существующей волоконной инфраструктуре путем объединения нескольких длин волн на одном волокне. FS предлагает серию решений и товаров CWDM/DWDM, которые помогают снизить выделение волокон надежным и экономичным способом.
CWDM ITU Channel Обзор
ITU-T G.694.2 определяет длину волны 18 (C1-C18) для CWDM передачи в диапазоне от 1270 до 1610 нм, разнесенных на расстоянии 20 нм. Ниже представлена полная сетка CWDM. Каждый канал CWDM прозрачен для скорости и типа данных, означая, что любое соединение SAN, WAN, голосовых услуг и видеоуслуг может транспортироваться одновременно по одному волокну или паре волокон.
Быстрый Просмотр FS CWDM Оптического Модля
FS CWDM модули доступны со всеми 18 длиной волны CWDM, включая CWDM SFP, CWDM SFP+, CWDM XFP и 3G SDI CWDM SFP модули. Эти трансиверы CWDM могут применяться при передаче данных с 20 до 120 километров.
20KM CWDM Модули
CWDM SFP 20KM
CWDM SFP+ 20KM
CWDM XFP 20KM
3G SDI CWDM SFP 20KM
40KM CWDM Модули
CWDM SFP 40KM
CWDM SFP+ 40KM
CWDM XFP 40KM
3G SDI CWDM SFP 40KM
80KM CWDM Модули
CWDM SFP 80KM
CWDM SFP+ 80KM
CWDM XFP 80KM
120KM CWDM Модули
CWDM SFP 120KM
FS CWDM Mux/Demux Решение
В дополнение к различным модулям CWDM/DWDM, FS также предоставляет широкий спектр модулей CWDM Mux/Demux, который выступает в качестве основного структурного элемента при расширении и обновлении сети. FS CWDM Mux/Demux имеет несколько разных типов в отношении типа линии, номера канала и специальных портов.
DWDM ITU Channel Обзор
ITU G.694.1 стандартный регион DWDM составляет от 1528,77 нм до 1563,86 нм, который находится в основном в диапазоне C. DWDM может иметь интервал длин волн 100 ГГц (0,8 нм) для 40 каналов или интервал 50 ГГц (0,4 нм) для 80 каналов. Ниже показана полная сетка каналов для DWDM 100 ГГц.
Быстрый Просмотр FS DWDM Оптического Модля
FS CWDM модули доступны со всеми 44 длинами волн DWDM, включая DWDM SFP, DWDM SFP+, DWDM XFP и Tunable DWDM модули, которые поддерживают дальность передачи данных макс.до 120 км. ��ерестраиваемые модули Tunable (DWDM) могут способен поддерживать определенный канал в оптической сети DWDM, позволяя удаленно изменять длины волн в программном обеспечении.
40KM DWDM Модули
DWDM SFP 40KM
DWDM SFP+ 40KM
DWDM XFP 40KM
80KM DWDM Модули
DWDM SFP 80KM
DWDM SFP+ 80KM
Tunable DWDM SFP+ 80KM
DWDM XFP 80KM
Tunable DWDM XFP 80KM
120KM DWDM Модули
DWDM SFP 120KM
FS DWDM Mux/Demux Решение
DWDM Mux/Demux используется в сетях дальнего расстояния, чтобы облегчить истощение волокна и затраты, связанные с запуском нового волокна. Каждый канал DWDM может передать данных макс.до 100G, а расстояния более 1000 километров могут быть достигнуты с использованием оптических усилителей.
CWDM ITU Channel
0 notes
Text
Understanding WDM MUX/DEMUX Ports and Its Application
Wavelength division multiplexing (WDM) is a commonly used technology in optical communications. It combines multiple wavelengths to transmit signals on a single fiber. To realize this process, CWDM and DWDM mux/demux are the essential part. As we all know, there are several different ports on the WDM mux and demux. This article will give a clear explanation to these ports and their applications in WDM network.
Overview of Different Ports on WDM MUX/DEMUX
Line Port
Line port, sometimes also called as common port, is the one of the must-have ports on CWDM and DWDM Mux/Demux. The outside fibers are connected to the Mux/Demux unit through this port, and they are often marked as Tx and Rx. All the WDM channels are multiplexed and demultiplexed over this port.
Channel Port
Like the line port, channel ports are another must-have ports. They transmit and receive signals on specific WDM wavelengths. CWDM Mux/Demux supports up to 18 channels from 1270nm to 1610nm with a channel space of 20nm. While DWDM Mux/Demux uses wavelengths from 1470nm to 1625nm usually with channel space of 0.8nm (100GHz) or 0.4nm (50GHz). Services or circuits can be added in any order to the Mux/Demux unit.
Monitor Port
Monitor port on CWDM and DWDM Mux/Demux offers a way to test the dB level of the signal without service interruption, which enable users the ability to monitor and troubleshoot networks. If the Mux/Demux is a sing-fiber unit, the monitor port also should be a simplex one, and vice verse.
Expansion Port
Expansion port on WDM Mux/Demux is used to add or expand more wavelengths or channels to the network. By using this port, network managers can increase the network capacity easily by connecting the expansion port with the line port of another Mux/Demux supporting different wavelengths. However, not every WDM Mux/Demux has an expansion port.
1310nm and 1550nm Port
1310nm and 1550nm are one of WDM wavelengths. Many optical transceivers, especially the CWDM and DWDM SFP/SFP+ transceiver, support long runs transmission over these two wavelengths. By connecting with the same wavelength optical transceivers, these two ports can be used to add 1310nm or 1550nm wavelengths into existing WDM networks.
Application Cases of Different Ports on WDM MUX/DEMUX
Although there are several different ports on WDM Mux/Demux, not all of them are used at the same time. Here are some examples of these functioning ports in different connections.
Example One: Using 8 Channels CWDM Mux/Demux with Monitor Port
This example is a typical point-to-point network where two switches/routers are connected over CWDM wavelength 1511nm. The CWDM Mux/Demux used has a monitor port and 1310nm port, but the 1310nm does not put into use. In addition, an optical power meter is used to monitor the power on fibers connecting the site A and B.
Example Two: Achieve 500Gbps at Existing Fiber Network with 1310nm Port
In this example, two 40 channels DWDM Mux/Demux with monitor port and 1310nm port are used to achieve total 500Gbps services. How to achieve this? First, plug a 1310nm 40G or 100G fiber optical transceiver into the terminal equipment, then use the patch cable to connect it to the existing DWDM network via the 1310nm port on the DWDM Mux/Demux. Since the 1310nm port is combined into a 40 channels DWDM Mux, then this set-up allows the transport of up to 40x10Gbps plus 100Gbpx over one fiber pair, which is total 500Gbps. If use 1550nm port, then the transceiver should be available on the wavelength of 1550nm.
Example Three: Stack Two CWDM MUX/DEMUX Using Expansion Port
The connection in this example is similar to the last one. The difference is that this connection is achieved with expansion port not 1310nm port. On the left side in the cases, a 8 channels CWDM Mux/Demux and a 4 channels CWDM Mux/Demux are stacked via the expansion port on the latter Mux/Demux. And the two 4 channels CWDM Mux/Demux are combined with the line port. If there is a need, more Mux/Demux modules can be added to increase the wavelengths and expand network capacity.
Summary
Different ports on the CWDM and DWDM Mux/Demux have different functions. Knowing more their function is helpful in WDM network deployment. FS.COM supplies various types of CWDM and DWDM Mux/Demux for your preference. And customer services are also available. If you have any needs, welcome to visit our website www.fs.com.
Sources:http://www.fiber-optic-components.com/understanding-wdm-muxdemux-ports-application.html
0 notes
Text
Optimize Network Performance with CWDM Mux/Demux
CWDM Mux/Demux enables efficient wavelength multiplexing and demultiplexing, expanding fiber capacity and optimizing data transmission. Perfect for telecommunications and data centers, it ensures seamless scalability and cost-effective network solutions. Contact DK Photonics who is a leadig company of these products.
To know more:
0 notes
Text
Implementing Passive CWDM to Upgrade Access PONs
Coarse Wavelength Division Multiplexing (CWDM) has proven itself to be a preferred approach to elevate the bandwidth of optical access networks, offering quicker and simpler installation and lower overall cost. Passive CWDM, which requires no electrical power at all, is considered reliable and robust to deploy in the most demanding environment. It generally offers lower cost and more flexible installation and network expansion. This article demonstrates how to use passive CWDM technology to upgrade access PONs.
Why Passive CWDM for Access PONs?
Passive CWDM is an implementation of CWDM that uses no electrical power. It separates the wavelengths using passive optical components. CWDM multiplexing components are compact enough to easily retrofit into existing fiber splice cassettes for installation into street cabinets or other forms of outside enclosure. Besides, it also processes the following merits:
Predictably low equipment and operating cost
Quick and efficient network upgrade
Simplicity of specification and simplicity of deployment
Sufficiently flexible solutions that facilitate expansion
Open standards, nothing proprietary
CWDM and Add/Drop With Access PONs
For PON networks, be it in the ring or point-to-point structures, not all capacity is needed at a single optical node. Therefore, data transported over certain channels may be added/dropped from the fiber as required. And it may be implemented at any CWDM node at any location in the field. The picture below illustrates how to achieve this. This is generally cost effective and simple to perform. A passive CWDM upgrade simply eliminates the need for deployment of additional network equipment.

The advantages of the PON architecture above lies in the low CAPEX, low OPEX and no electrical power required. And that it can be quickly and inexpensively upgraded when additional bandwidth demands arise.
How to Upgrade Access PONs With Passive CWDM?
With the prevalence of FTTH networks, access networks between the central office (CO) and the subscribes must be upgraded to keep pace with the hunger bandwidth. The figure below shows a typical PON architecture, with an optical line terminal (OLT) located in the CO to transmit traffic to approximately 16 to 32 residential drop points, and PON splitters located at fiber distribution hubs between the OLTs and subscribers’ optical network terminals (ONTs), enabling one OLT port and laser transceiver to be shared across many drop points.

Passive CWDM enables better fiber capacity utilization and supports far greater data traffic as the bandwidth demands from the ONTs increase. It permits network operators to implement many more optical nodes over multiple locations with minimal capital investment and virtually no additional operating cost. The following case presents how to use passive CWDM for access PONs upgrade.
Case: In this case, existing subscribers intend to upgrade to higher value-added bandwidth services. The 622 Mb/s downstream capacity between the CO and the OLT, appropriately 20 Mb/s to each subscriber is proven insufficient, which must to increase.

Solution: The adequate bandwidth requires a downstream CO/OLT link bandwidth of 2.5 Gb/s. Multiplying the number of bidirectional channels traveling between the CO and OLT by four demands four CWDM wavelengths. The upgraded passive CWDM based network (shown below) relives the fiber exhaust and boosts the bandwidth of the CO/OLT link. This installation requires four channel-specific (color coded) transceivers plugging into the router/switch, the associated patch cables, the rack-mounted CWDM module and the snap in passive CWDM cassette located in the OLT.

Benefits: The passive CWDM upgrade can be accomplished within hours, while the cost concerning material, labor, equipment and training is far less than that of laying a new fiber cable. Which is both energy-saving and cost-efficient.
Using CWDM to Expand EPON Bandwidth
Passive CWDM is also beneficial to Ethernet PON (EPON). Let’s see how it works in EPON through the case below.
Case: The figure below shows a common EPON architecture, which serves up to 64 subscribers, all sharing a single 1.25Gbps bidirectional optical Ethernet feed line. The theoretical maximum sustainable data-rate for each is roughly 16 Mb/s. The 16Mb/S downstream capacity should be increased since higher bandwidth services become available.

Solution: A four channel passive CWDM extension effectively multiplies the downstream capacity without affecting the upstream traffic. A rack-mounted CWDM unit in the CO and a miniature hardened CWDM module deployed in the fiber distribution hub increases the revenue earning potential while minimizes OPEX and CAPEX.

Benefits: In this case, the four channel CWDM upgrade promotes the throughput of the downlink by a factor of four while demanding minimal modification of the existing infrastructure.
Conclusion
A passive CWDM method provides the unique advantages of low CAPEX, minimal OPEX and rather simple yet reliable upgrade planning and implementation. More importantly, passive CWDM also preserves scalability and network flexibility for future network expansion and bandwidth demand changes. Hope this article is informative enough for getting a better understanding towards passive CWDM.
Source: http://www.fiber-optic-solutions.com/passive-cwdm-upgrade-access-pons.html
0 notes
Text
Company Profile
https://www.optical-sintai.com/company-profile.html

Guangzhou Sintai Communication Co., Ltd, which was founded in early 2013, is specialized in the optical transmission field with R&D, production, sales and customer service. And shortly after that our OTNS8600 optical transmission network system was brought to the market. Especially, we were the one of the first companies to provide 100G wavelength division products with professional solutions in the industry in 2015. We’ve been dedicated to providing optical transmission network systems and optical transmission optimization solutions and have become one of the top optical communication products manufacturers and service providers in China.
We are committed to providing integrated optical transport network systems and optical transport optimization solutions, and our products mainly contain the WDM/ OTN systems (10G/ 25G/ 40G/ 100G/ 200G WDM system, 5G fronthaul transmission WDM systems), optical amplifier system (OEO/ EDFA/ SOA), optical protection system (OLP/ OBP/ FMS), passive optical device (AWG/ CWDM/ DWDM MUX&DEMUX/ DCM/ Splitter) and optical transceivers (SFP/ SFP+/ SFP28/ QSFP+/ QSFP28/ CFP/ CFP2). They are widely used by telecom operators and private network industry customers, including ISP, electric power, IDC, education, transport, radio and television, network security, big data and cloud services, etc.
Our products have its patented technology through our independent R&D and won the authorized certification, such as the design patent certificate, software copyright register certificates and series of quality management and test certificates.
After years of development, our products and services have extended to various industries at home and abroad. Our company base is at Guangzhou with branches at North, Northwest and East China. And the establishment of brand advantage has promoted the construction of our international marketing network. The awareness of Sintai is continuously increasing in the key markets. Our overseas business has extended to Europe, Middle East, Southeast Asia, North America, South America, Africa and so on.
In order to support our increasing domestic and overseas markets, we have built professional production team, sales team, service team and R&D team to provide the industry-leading and comprehensive products. With many years’ experience of optical communication technology, we are focusing on optical transmission and optical device technology to continuously provide a forward-looking technology development strategy and products with core market competitiveness. And we are dedicated to provide every customer the perfect pre-sales, sales and after-sales service. Customers’ concerns will be always taken good care of by our professional service teams.
Over the years, Sintai has been centering on offering customer oriented service, high quality products and optimized optical transport solutions in the optical transmission field. Creating value for customers, achieving common development with customers and making contributions to the society will always be the fundamental and mission of the company's long-term work.
0 notes
Link
Do you need to enhance the capacity of a fiber optic network without adding more fibers? If yes, CWDM Mux/Demux is the device you are looking for. To help you learn more about this, let’s discuss what it is and how to install it.
0 notes
Photo

www.10giga.com.cn | #CWDM Multiplexer #MUX/#DEMUX #Modules, Why #CWDM,#DWDM,#CWDM,#MPO,#MTP as cost-effective choosing at mulitservice #Fiber Network,? no doublt,Hurry up for RFQ requested to [email protected]
0 notes
Text
CWDM: What You Need to Know
Wavelength division multiplexing (WDM) is a technology for transporting large amounts of data between sites. It increases bandwidth by allowing different data streams to be sent simultaneously over a single optical fiber network. There are two main types of WDM systems: coarse wavelength division multiplexing (CWDM) and dense wavelength division multiplexing (DWDM). This article provides some knowledge about CWDM.
What is CWDM?
Coarse Wavelength Division Multiplexing (CWDM) is a wavelength multiplexing technology for cities and access networks. The word coarse means the wavelength spacing between channels is relatively large. Furthermore, CWDM is an ideal solution for short-range applications and is used to improve the transmission capacity of optical fiber and the utilization of optical fiber resources.
CWDM Operating Principle
CWDM was standardized by the ITU-T G.694.2 based on a grid or wavelength separation of 20 nm in the range of 1270-1610 nm. It can carry up to 18 CWDM wavelengths over one pair of fibers. Each signal is assigned to a different wavelength of light. Each wavelength does not affect another wavelength, so the signals do not interfere. Each channel is usually transparent to the speed and data, so the voice, video, and other services can be transported simultaneously over a single fiber or fiber pair.
CWDM Network Component
A multiplexer (Mux) combines multiple wavelength channels on a single fiber, and a demultiplexer (Demux) separates them again at the other end. A Mux/Demux set-up is used to increase the end-to-end capacity of a deployed fiber. The Mux is located in the central office, and the Demux is located in the cabinet or splice closure from which the fibers go to their destination in a star-shaped topology.
Features and Benefits
CWDM provides low insertion loss, low polarization-dependent loss, low cost, low-temperature sensitivity, low power consumption, high channel isolation, high data rate, high stability, high reliability, small size, and ease of installation and deployment.
Applications
CWDM is used in metropolitan area networks (MAN), local area networks (LAN), storage area networks (SAN),10-gigabit ethernet, passive optical networks (PON), WDM transmission systems, FTTx networks, 5G front-haul, data centers, online monitoring, fiber optic amplifier, etc.
Conclusion
CWDM has become the preferred solution for increasing the bandwidth of metro/regional and optical access networks. And it has proven to be sufficiently robust, low-cost, and reliable for upgrading the optical network to accommodate future growth. Sun Telecom specializes in providing one-stop total fiber optic solutions for all fiber optic application industries worldwide. Contact us if any needs.
1 note
·
View note