#CodingForLife
Explore tagged Tumblr posts
learncodes · 2 years ago
Text
Learn Codes
Tumblr media
🚀 Unlock the World of Coding with Learn Codes! 🚀
Are you ready to embark on an exciting coding journey from the comfort of your own home? Look no further! Learn Codes is here to make coding fun, engaging, and accessible to all ages. 🌟
👩‍💻 Our Online 1:1 Coding Classes offer: ✅ Personalized learning tailored to your pace and skill level ✅ Expert instructors with years of industry experience ✅ Interactive coding projects to boost your skills ✅ Flexible scheduling to fit your busy life
Don't miss out on this amazing opportunity to enhance your coding skills and unlock endless possibilities! 💻💡
🌟 Why Choose Learn Codes? 🌟
OnlineCodingClasses
LearnCoding
CodingForAll
CodingJourney
CodingMadeEasy
CodingFun
CodingSkills
CodeWithUs
Programming101
TechEnthusiasts
CodeWithConfidence
OnlineLearning
CodingCommunity
TechEducation
CodeToSuccess
CodingMentor
FutureProgrammers
LearnToCode
CodeWithPassion
CodingGoals
EmpowerWithCode
DigitalSkills
CodingExcellence
TechSavvy
CodeYourDreams
CodingForKids
CodeYourFuture
CodingPro
OnlineTutoring
TechEducationForAll
Join the Learn Codes family today and take the first step towards mastering the language of the future! 🌐
Enroll now: Contact Us Now at +91-7544842581 🌐 Visit our website: https://learncodes.co.in/
0 notes
dotnetinstitute · 2 years ago
Text
Tumblr media
Top 10 Reasons People are Choosing to Learn Computer Programming
The 21st century has seen rapid growth in technological development.
.
.
.
Link:- https://dnce.in/reasons-people-are-choosing-to-learn.../
.
.
.
#reasonstolearnprogramming
#whylearnprogramming
#programmingforbeginners
#learntocode
#codingforlife
#codingisfun
#codingiscool
#careerinprogramming
#FutureOfProgramming
#dotnetinstitute
0 notes
techpaathshala · 2 years ago
Text
Tumblr media Tumblr media
Coding equips you with valuable skills that can enhance your problem-solving abilities, career prospects, and understanding of technology. Additionally, if you work in an analytical sector, coding might improve your data-handling skills. Think about your areas of strength and development. It opens up a world of possibilities and provides a foundation for continuous learning and personal growth in an increasingly digital world.
Develop these skills at Techpaathshala! #techpaathshala #codingforlife #learnandgrow #careersinIT
0 notes
testing-gb · 4 years ago
Text
Group Blog Posting Test
Tumblr media
0 notes
paracoders-blog · 5 years ago
Photo
Tumblr media
Like and follow for more amazing quiz..! . . . #paracoders . . . . . #codingquiz #codingchallenge #quizzes #pythonlearning #ballpythonlover #programminglibrarian #like4likess #follow #updates #programmingmemes #leadership #learntocode #codeblack #codingislife #learnsomethingnew #followfollowfollow #liketoknowit #lovecoding #codingforlife https://www.instagram.com/p/B-pIimRgP9s/?igshid=4cetbmq6034s
0 notes
alacraneando · 8 years ago
Photo
Tumblr media
#arduino #raspberrypi #makers #lab #coding #codingforlife #hack #hacking #hacker #bidouille #numerique #freecode #picoftheday #color🔝🔝🔝🔝 #freedrive #openaccess #cc
0 notes
puttoo21 · 5 years ago
Text
Another Program With Python
Data management will need your own variables that will depend on the variables that you've selected and the decisions you made about them.Data management is a part of the research process, that you can and will return to again, and again, as you learn more, and are able to make better decisions.
In [1]:
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn
In [2]:
#this function reads data from csv file def read_data():    data = pd.read_csv('/home/data-sci/Desktop/analysis/course/nesarc_pds.csv',low_memory=False)                              return data
In [3]:
#this function saves the data in a pickle "binary" file so it's faster to deal with it next time we run the script def pickle_data(data):    data.to_pickle('cleaned_data.pickle') #this function reads data from the binary .pickle file def get_pickle():    return pd.read_pickle('cleaned_data.pickle')
In [4]:
def the_data():    """this function will check and read the data from the pickle file if not fond    it will read the csv file then pickle it"""    if os.path.isfile('cleaned_data.pickle'):        data = get_pickle()    else:        data = read_data()        pickle_data(data)    return data
In [20]:
data = the_data()
In [21]:
data.shape
Out[21]:
(43093, 3008)
In [22]:
data.head()
Out[22]:
Tumblr media
In [102]:
data2 = data[['MARITAL','S1Q4A','AGE','S1Q4B','S1Q6A']] data2 = data2.rename(columns={'MARITAL':'marital','S1Q4A':'age_1st_mar',                      'AGE':'age','S1Q4B':'how_mar_ended','S1Q6A':'edu'})
In [103]:
#selecting the wanted range of values    #THE RANGE OF WANTED AGES data2['age'] = data2[data2['age'] < 30]    #THE RANGE OF WANTED AGES OF FISRT MARRIEGE #convert to numeric so we can subset the values < 25 data2['age_1st_mar'] = pd.to_numeric(data2['age_1st_mar'], errors='ignor')
In [105]:
data2 = data2[data2['age_1st_mar'] < 25 ] data2.age_1st_mar.value_counts()
Out[105]:
21.0    3473 19.0    2999 18.0    2944 20.0    2889 22.0    2652 23.0    2427 24.0    2071 17.0    1249 16.0     758 15.0     304 14.0     150 Name: age_1st_mar, dtype: int64
for simplicity will remap the variable ed to have just 4 levels
below high school education == 0
high school == 1
collage == 2
higher == 3
In [106]:
edu_remap ={1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:1,9:1,10:1,11:1,12:2,13:2,14:3} data2['edu'] = data2['edu'].map(edu_remap)
Print the frequency of the values
In [107]:
def distribution(var_data):    """this function will print out the frequency    distribution for every variable in the data-frame   """    #var_data = pd.to_numeric(var_data, errors='ignore')    print("the count of the values in {}".format(var_data.name))    print(var_data.value_counts())    print("the % of every value in the {} variable  ".format(var_data.name))    print(var_data.value_counts(normalize=True))    print("-----------------------------------") def print_dist():    # this function loops though the variables and print them out    for i in data2.columns:        print(distribution(data2[i])) print_dist()
the count of the values in marital 1    13611 4     3793 3     3183 5      977 2      352 Name: marital, dtype: int64 the % of every value in the marital variable   1    0.621053 4    0.173070 3    0.145236 5    0.044579 2    0.016061 Name: marital, dtype: float64 ----------------------------------- None the count of the values in age_1st_mar 21.0    3473 19.0    2999 18.0    2944 20.0    2889 22.0    2652 23.0    2427 24.0    2071 17.0    1249 16.0     758 15.0     304 14.0     150 Name: age_1st_mar, dtype: int64 the % of every value in the age_1st_mar variable   21.0    0.158469 19.0    0.136841 18.0    0.134331 20.0    0.131822 22.0    0.121007 23.0    0.110741 24.0    0.094497 17.0    0.056990 16.0    0.034587 15.0    0.013871 14.0    0.006844 Name: age_1st_mar, dtype: float64 ----------------------------------- None the count of the values in age 1.0    1957 4.0     207 5.0     153 2.0      40 3.0       7 Name: age, dtype: int64 the % of every value in the age variable   1.0    0.827834 4.0    0.087563 5.0    0.064721 2.0    0.016920 3.0    0.002961 Name: age, dtype: float64 ----------------------------------- None the count of the values in how_mar_ended     10459 2     8361 1     2933 3      154 9        9 Name: how_mar_ended, dtype: int64 the % of every value in the how_mar_ended variable       0.477231 2    0.381502 1    0.133829 3    0.007027 9    0.000411 Name: how_mar_ended, dtype: float64 ----------------------------------- None the count of the values in edu 1    13491 0     4527 2     2688 3     1210 Name: edu, dtype: int64 the % of every value in the edu variable   1    0.615578 0    0.206561 2    0.122650 3    0.055211 Name: edu, dtype: float64 ----------------------------------- None
Summary
In [1]:
# ##### marital status                 # Married                0.48 %        | # Living with someone    0.22 %        | # Widowed                0.12 %        | # Divorced               0.1  %        | # Separated              0.03 %        | # Never Married          0.03 %        | #                                      | # -------------------------------------| # -------------------------------------| #                                      | # ##### AGE AT FIRST MARRIAGE FOR THOSE # WHO MARRY UNDER THE AGE OF 25        | # AGE     %                            | # 21    0.15 %                         | # 19    0.13 %                         | # 18    0.13 %                         | # 20    0.13 %                         | # 22    0.12 %                         | # 23    0.11 %                         | # 24    0.09 %                         | # 17    0.05 %                         | # 16    0.03 %                         | # 15    0.01 %                         | # 14    0.00 %                         | #                                      | # -------------------------------------| # -------------------------------------| #                                      | # ##### HOW FIRST MARRIAGE ENDED         # Widowed     0.65 %                   | # Divorced    0.25 %                   | # Other       0.09 %                   | # Unknown     0.004%                   | # Na          0.002%                   | #                                      | # -------------------------------------| # -------------------------------------| #                                      | # ##### education                       # high school               0.58 %     | # lower than high school    0.18 %     | # collage                   0.15 %     | # ms and higher             0.07 %     | #                                      |
1- Re-coding unknown values
from the variable "how_mar_ended" HOW FIRST MARRIAGE ENDED will code the 9 value from Unknown to NaN
In [13]:
data2['how_mar_ended'] = data2['how_mar_ended'].replace(9, np.nan) data2['age_1st_mar'] = data2['age_1st_mar'].replace(99, np.nan)
In [14]:
data2['how_mar_ended'].value_counts(sort=False, dropna=False)
Out[14]:
1     4025 9       98 3      201 2    10803     27966 Name: how_mar_ended, dtype: int64
In [23]:
#pickle the data tp binary .pickle file pickle_data(data2)
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
The key to performance is elegance, not battalions of special cases. -Jon Bentley and Doug McIlroy coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes
Photo
Tumblr media
Super excited for my first home #automation project. #raspberrypi #NodeJS #codingforlife
0 notes
efectiq · 6 years ago
Photo
Tumblr media
⚡ The code is poetry.⠀ ⠀ ✅ Check the link in bio!⠀ ⠀ Be educated. Be EFECTIQ. ⠀ #efectiq #beefectiq #CostaRica⠀ .⠀ #coding #codingtshirt #codingatschools #codingismycardio #codingquotes #codingdiva #codingeveryday #codingblonde #codingislove #codingfordays #codingtoys #codingame #codingmonkey #codingforlife #codingview #codingstyle #codingbaby #codingallday #codingshirts #codingIsLikeWorshipping #codingintheclassroom #codingjokes #Coding365 #codingforemails #codingquote #codingdad #codingblog — view on Instagram https://ift.tt/2XuIhHF
0 notes
innovatribe · 8 years ago
Text
RT @EdSurge: How Scratch & Minecraft Developers Hope to Keep Kids Coding For Life: https://t.co/TMwKGvr44q @hourofcode… https://t.co/vtAvdtCaWE
How Scratch & Minecraft Developers Hope to Keep Kids Coding For Life: https://t.co/TMwKGvr44q @hourofcode #stemchat #edchat #codingforlife http://pic.twitter.com/aowVy5FJcL
— EdSurge (@EdSurge) July 7, 2017
from Twitter https://twitter.com/soozietwits July 07, 2017 at 09:26PM via IFTTT
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
The way to tell a great idea is that, when people hear it, they say "Gee, I could have thought of that." -Richard Feynman coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
Don't fear moving slowly. Fear standing still. -Chinese Proverb coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
Success is easy to handle: You've solved the wrong problem. Work harder to improve. -Alan Perlis coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
Premature optimization is the root of all evil in programming. -Donald Knuth. coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes
discoveringcode · 8 years ago
Photo
Tumblr media
The best way to predict the future is to invent it. -Alan Kay #coding #codinglife #codingbootcamp #codinglove #codingforlife #codingquotes #codingisthenewliteracy #programming #programminglife #programmingquotes #programmingwithapurpose #learning #learningbydoing #learninglife #learningtocode #learntocode #discover #discoveringcode (at New York, New York)
0 notes