#Red Hat OpenShift Container Platform
Explore tagged Tumblr posts
hawkstack · 3 days ago
Text
Migrating Virtual Machines to Red Hat OpenShift Virtualization with Ansible Automation Platform
As enterprises modernize their infrastructure, migrating traditional virtual machines (VMs) to container-native platforms is no longer just a trend — it’s a necessity. One of the most powerful solutions for this evolution is Red Hat OpenShift Virtualization, which allows organizations to run VMs side-by-side with containers on a unified Kubernetes platform. When combined with Red Hat Ansible Automation Platform, this migration can be automated, repeatable, and efficient.
In this blog, we’ll explore how enterprises can leverage Ansible to seamlessly migrate workloads from legacy virtualization platforms (like VMware or KVM) to OpenShift Virtualization.
🔍 Why OpenShift Virtualization?
OpenShift Virtualization extends OpenShift’s capabilities to include traditional VMs, enabling:
Unified management of containers and VMs
Native integration with Kubernetes networking and storage
Simplified CI/CD pipelines that include VM-based workloads
Reduction of operational overhead and licensing costs
🛠️ The Role of Ansible Automation Platform
Red Hat Ansible Automation Platform is the glue that binds infrastructure automation, offering:
Agentless automation using SSH or APIs
Pre-built collections for platforms like VMware, OpenShift, KubeVirt, and more
Scalable execution environments for large-scale VM migration
Role-based access and governance through automation controller (formerly Tower)
🧭 Migration Workflow Overview
A typical migration flow using Ansible and OpenShift Virtualization involves:
1. Discovery Phase
Inventory the source VMs using Ansible VMware/KVM modules.
Collect VM configuration, network settings, and storage details.
2. Template Creation
Convert the discovered VM configurations into KubeVirt/OVIRT VM manifests.
Define OpenShift-native templates to match the workload requirements.
3. Image Conversion and Upload
Use tools like virt-v2v or Ansible roles to export VM disk images (VMDK/QCOW2).
Upload to OpenShift using Containerized Data Importer (CDI) or PVCs.
4. VM Deployment
Deploy converted VMs as KubeVirt VirtualMachines via Ansible Playbooks.
Integrate with OpenShift Networking and Storage (Multus, OCS, etc.)
5. Validation & Post-Migration
Run automated smoke tests or app-specific validation.
Integrate monitoring and alerting via Prometheus/Grafana.
- name: Deploy VM on OpenShift Virtualization
  hosts: localhost
  tasks:
    - name: Create PVC for VM disk
      k8s:
        state: present
        definition: "{{ lookup('file', 'vm-pvc.yaml') }}"
    - name: Deploy VirtualMachine
      k8s:
        state: present
        definition: "{{ lookup('file', 'vm-definition.yaml') }}"
🔐 Benefits of This Approach
✅ Consistency – Every VM migration follows the same process.
✅ Auditability – Track every step of the migration with Ansible logs.
✅ Security – Ansible integrates with enterprise IAM and RBAC policies.
✅ Scalability – Migrate tens or hundreds of VMs using automation workflows.
🌐 Real-World Use Case
At HawkStack Technologies, we’ve successfully helped enterprises migrate large-scale critical workloads from VMware vSphere to OpenShift Virtualization using Ansible. Our structured playbooks, coupled with Red Hat-supported tools, ensured zero data loss and minimal downtime.
🔚 Conclusion
As cloud-native adoption grows, merging the worlds of VMs and containers is no longer optional. With Red Hat OpenShift Virtualization and Ansible Automation Platform, organizations get the best of both worlds — a powerful, policy-driven, scalable infrastructure that supports modern and legacy workloads alike.
If you're planning a VM migration journey or modernizing your data center, reach out to HawkStack Technologies — Red Hat Certified Partners — to accelerate your transformation. For more details www.hawkstack.com 
0 notes
dauntlessshipexile · 12 days ago
Text
OpenShift DO180 (Red Hat OpenShift I: Containers & Kubernetes)
This course provides a comprehensive introduction to container technologies and the Red Hat OpenShift Container Platform. Designed for IT professionals and developers, it focuses on building, deploying, and managing containerized applications using industry-standard tools like Podman and Kubernetes. By the end of this course, you'll gain hands-on experience in deploying applications on OpenShift and managing their lifecycle.
Show Less
0 notes
cybersecurityict · 12 days ago
Text
How much can energy harvesting cut maintenance costs for remote IoT sensors
Cloud Native Applications Market was valued at USD 6.49 billion in 2023 and is expected to reach USD 45.71 billion by 2032, growing at a CAGR of 24.29% from 2024-2032. 
The Cloud Native Applications Market: Pioneering the Future of Digital Transformation is experiencing an unprecedented surge, driven by the imperative for businesses to achieve unparalleled agility, scalability, and resilience in a rapidly evolving digital economy. This architectural shift, emphasizing microservices, containers, and automated orchestration, is not merely a technological upgrade but a fundamental re-imagining of how software is conceived, developed, and deployed.
U.S. Businesses Lead Global Charge in Cloud-Native Adoption
The global Cloud Native Applications Market is a dynamic and rapidly expanding sector, foundational to modern enterprise IT strategies. It empowers organizations to build, deploy, and manage applications that fully leverage the inherent advantages of cloud computing. This approach is characterized by modularity, automation, and elasticity, enabling businesses to accelerate innovation, enhance operational efficiency, and significantly reduce time-to-market for new services. The market's robust growth is underpinned by the increasing adoption of cloud platforms across various industries, necessitating agile and scalable software solutions.
Get Sample Copy of This Report: https://www.snsinsider.com/sample-request/6545 
Market Keyplayers:
Google LLC (Google Kubernetes Engine, Firebase)
International Business Machines Corporation (IBM Cloud, IBM Cloud Pak)
Infosys Technologies Private Limited (Infosys Cobalt, Cloud Ecosystem)
Larsen & Toubro Infotech (LTI Cloud, LTI Digital Transformation)
Microsoft Corporation (Azure Kubernetes Service, Azure Functions)
Oracle Corporation (Oracle Cloud Infrastructure, Oracle Autonomous Database)
Red Hat (OpenShift, Ansible Automation Platform)
SAP SE (SAP Business Technology Platform, SAP S/4HANA Cloud)
VMware, Inc. (VMware Tanzu, VMware Cloud on AWS)
Alibaba Cloud (Alibaba Cloud Container Service, Alibaba Cloud Elastic Compute Service)
Apexon (Cloud-Native Solutions, Cloud Application Modernization)
Bacancy Technology (Cloud Development, Cloud-Native Microservices)
Citrix Systems, Inc. (Citrix Workspace, Citrix Cloud)
Harness (Harness Continuous Delivery, Harness Feature Flags)
Cognizant Technology Solutions Corp (Cognizant Cloud, Cognizant Cloud-Native Solutions)
Ekco (Cloud Infrastructure Services, Cloud Application Development)
Huawei Technologies Co. Ltd. (Huawei Cloud, Huawei Cloud Container Engine)
R Systems (R Systems Cloud Platform, R Systems DevOps Solutions)
Scality (Scality RING, Scality Cloud Storage)
Sciencesoft (Cloud-Native Development, Cloud Integration Solutions)
Market Trends
Microservices Architecture Dominance: A widespread shift from monolithic applications to independent, smaller services, enhancing flexibility, fault tolerance, and rapid deployment cycles.
Containerization and Orchestration: Continued and expanding reliance on container technologies like Docker and orchestration platforms such as Kubernetes for efficient packaging, deployment, and management of applications across diverse cloud environments.
DevOps and CI/CD Integration: Deep integration of DevOps practices and Continuous Integration/Continuous Delivery (CI/CD) pipelines, automating software delivery, improving collaboration, and ensuring frequent, reliable updates.
Hybrid and Multi-Cloud Strategies: Increasing demand for cloud-native solutions that can seamlessly operate across multiple public cloud providers and on-premises hybrid environments, promoting vendor agnosticism and enhanced resilience.
Rise of Serverless Computing: Growing interest and adoption of serverless functions, allowing developers to focus solely on code without managing underlying infrastructure, further reducing operational overhead.
AI and Machine Learning Integration: Leveraging cloud-native principles to build and deploy AI/ML-driven applications, enabling real-time data processing, advanced analytics, and intelligent automation across business functions.
Enhanced Security Focus: Development of security-first approaches within cloud-native environments, including zero-trust models, automated compliance checks, and robust data protection mechanisms.
Market Scope: Unlocking Limitless Potential
Beyond Infrastructure: Encompasses not just the underlying cloud infrastructure but the entire lifecycle of application development, from conceptualization and coding to deployment, scaling, and ongoing management.
Cross-Industry Revolution: Transforming operations across a vast spectrum of industries, including BFSI (Banking, Financial Services, and Insurance), Healthcare, IT & Telecom, Retail & E-commerce, Manufacturing, and Government.
Scalability for All: Provides unprecedented scalability and cost-efficiency benefits to organizations of all sizes, from agile startups to sprawling large enterprises.
Platform to Service: Includes robust cloud-native platforms that provide the foundational tools and environments, alongside specialized services that support every stage of the cloud-native journey.
The Cloud Native Applications Market fundamentally reshapes how enterprises harness technology to meet dynamic market demands. It represents a paradigm shift towards highly adaptable, resilient, and performant digital solutions designed to thrive in the cloud.
Forecast Outlook
The trajectory of the Cloud Native Applications Market points towards sustained and exponential expansion. We anticipate a future where cloud-native principles become the de facto standard for new application development, driving widespread modernization initiatives across industries. This growth will be fueled by continuous innovation in container orchestration, the pervasive influence of artificial intelligence, and the increasing strategic importance of agile software delivery. Expect to see further refinement in tools that simplify cloud-native adoption, foster open-source collaboration, and enhance the developer experience, ultimately empowering businesses to accelerate their digital transformation journeys with unprecedented speed and impact. The market will continue to evolve, offering richer functionalities and more sophisticated solutions that redefine business agility and operational excellence.
Access Complete Report: https://www.snsinsider.com/reports/cloud-native-applications-market-6545 
Conclusion:
The Unstoppable Ascent of Cloud-Native The Cloud Native Applications Market is at the vanguard of digital innovation, no longer a niche technology but an indispensable pillar for any organization striving for competitive advantage. Its emphasis on agility, scalability, and resilience empowers businesses to not only respond to change but to actively drive it. For enterprises seeking to unlock new levels of performance, accelerate time-to-market, and cultivate a culture of continuous innovation, embracing cloud-native strategies is paramount. This market is not just growing; it is fundamentally reshaping the future of enterprise software, promising a landscape where adaptability and rapid evolution are the keys to sustained success.
About Us:
SNS Insider is one of the leading market research and consulting agencies that dominates the market research industry globally. Our company's aim is to give clients the knowledge they require in order to function in changing circumstances. In order to give you current, accurate market data, consumer insights, and opinions so that you can make decisions with confidence, we employ a variety of techniques, including surveys, video talks, and focus groups around the world.
Contact Us:
Jagney Dave - Vice President of Client Engagement
Phone: +1-315 636 4242 (US) | +44- 20 3290 5010 (UK)
0 notes
highskyit · 14 days ago
Text
Riding the Cloud Wave: Red Hat Training in Ahmedabad
Cloud computing is not only a way to access and use technology services and resources remotely, but the foundation of IT infrastructure relies on it. To enable businesses to move toward automation and containerisation, the Red Hat OpenShift platform facilitates cloud-native software development. Open-source platforms and hands-on practical skills are crucial now more than ever for success in the competitive tech industry.
If you are from Gujarat, an opportunity for career advancement lies in attending the Red Hat Training and Certification in Ahmedabad, which prepares you for the new in-demand positions.
Why Red Hat Training and Certification in Ahmedabad?
With a good reputation in the field of technology, Ahmedabad is also known as an educational hub. Red Hat courses in Ahmedabad are designed for fast-tracked professional development.
Here is what a student can look out for:
IT Industry Accredited Certification – Boost your career as you get properly recognised skills by IT professionals with the guiding documents that will help you gain higher positions.
Contemporary Use of OpenShift – Utilise Red Hat's flagship platform to learn how to set up, deploy, and, thus, manage containers along with Kubernetes.
Post Secondary Learning Experience – Classes are thus structured according to international standards and industry practices and address real-life challenges.
Now, DevOps engineers, system admins, and cloud developers are enabled with the new tools to help them complete their engineering goals. Whatever path they pursue with this training, they can now succeed.
Red Hat Training Ahmedabad: What to Expect
Alongside theory, learners will acquire Red Hat Training Ahmedabad through an immersive approach, including:
Teaching sessions and labs conducted by trainers
Thus, preparation for certification examinations
Learning paths dependent on roles (Like RHCSA, RHCE, OpenShift Admin, et cetera)
Access to Red Hat-endorsed resources
And so much more; with everything said above, you can move from novice to certified in a matter of weeks, which is favourable when considering time and financial investments.
Accelerate Earning Your Certification with Local Access
Even if you are a complete novice to Linux or an experienced system administrator, you will find everything you need, from instructor-led training to exam simulations in Ahmedabad, on Red Hat’s learning paths. Courses are taught using Red Hat training materials, which makes sure that you will be employable from the outset.
Conclusion: Elevate your cloud skillset The need for Red Hat Training Ahmedabad with certified professionals is increasing, and with the adoption of the cloud, there is no better time to jump in. For those wishing to remain a step ahead of others in the industry, look no further than Red Hat Training and Certification in Ahmedabad, which acts as a springboard for a powerful career in IT. Visit Highsky IT Solutions to learn more about Red Hat courses and certification paths.
0 notes
coredgeblogs · 14 days ago
Text
Kubernetes Cluster Management at Scale: Challenges and Solutions
As Kubernetes has become the cornerstone of modern cloud-native infrastructure, managing it at scale is a growing challenge for enterprises. While Kubernetes excels in orchestrating containers efficiently, managing multiple clusters across teams, environments, and regions presents a new level of operational complexity.
In this blog, we’ll explore the key challenges of Kubernetes cluster management at scale and offer actionable solutions, tools, and best practices to help engineering teams build scalable, secure, and maintainable Kubernetes environments.
Why Scaling Kubernetes Is Challenging
Kubernetes is designed for scalability—but only when implemented with foresight. As organizations expand from a single cluster to dozens or even hundreds, they encounter several operational hurdles.
Key Challenges:
1. Operational Overhead
Maintaining multiple clusters means managing upgrades, backups, security patches, and resource optimization—multiplied by every environment (dev, staging, prod). Without centralized tooling, this overhead can spiral quickly.
2. Configuration Drift
Cluster configurations often diverge over time, causing inconsistent behavior, deployment errors, or compliance risks. Manual updates make it difficult to maintain consistency.
3. Observability and Monitoring
Standard logging and monitoring solutions often fail to scale with the ephemeral and dynamic nature of containers. Observability becomes noisy and fragmented without standardization.
4. Resource Isolation and Multi-Tenancy
Balancing shared infrastructure with security and performance for different teams or business units is tricky. Kubernetes namespaces alone may not provide sufficient isolation.
5. Security and Policy Enforcement
Enforcing consistent RBAC policies, network segmentation, and compliance rules across multiple clusters can lead to blind spots and misconfigurations.
Best Practices and Scalable Solutions
To manage Kubernetes at scale effectively, enterprises need a layered, automation-driven strategy. Here are the key components:
1. GitOps for Declarative Infrastructure Management
GitOps leverages Git as the source of truth for infrastructure and application deployment. With tools like ArgoCD or Flux, you can:
Apply consistent configurations across clusters.
Automatically detect and rollback configuration drifts.
Audit all changes through Git commit history.
Benefits:
·       Immutable infrastructure
·       Easier rollbacks
·       Team collaboration and visibility
2. Centralized Cluster Management Platforms
Use centralized control planes to manage the lifecycle of multiple clusters. Popular tools include:
Rancher – Simplified Kubernetes management with RBAC and policy controls.
Red Hat OpenShift – Enterprise-grade PaaS built on Kubernetes.
VMware Tanzu Mission Control – Unified policy and lifecycle management.
Google Anthos / Azure Arc / Amazon EKS Anywhere – Cloud-native solutions with hybrid/multi-cloud support.
Benefits:
·       Unified view of all clusters
·       Role-based access control (RBAC)
·       Policy enforcement at scale
3. Standardization with Helm, Kustomize, and CRDs
Avoid bespoke configurations per cluster. Use templating and overlays:
Helm: Define and deploy repeatable Kubernetes manifests.
Kustomize: Customize raw YAMLs without forking.
Custom Resource Definitions (CRDs): Extend Kubernetes API to include enterprise-specific configurations.
Pro Tip: Store and manage these configurations in Git repositories following GitOps practices.
4. Scalable Observability Stack
Deploy a centralized observability solution to maintain visibility across environments.
Prometheus + Thanos: For multi-cluster metrics aggregation.
Grafana: For dashboards and alerting.
Loki or ELK Stack: For log aggregation.
Jaeger or OpenTelemetry: For tracing and performance monitoring.
Benefits:
·       Cluster health transparency
·       Proactive issue detection
·       Developer fliendly insights
5. Policy-as-Code and Security Automation
Enforce security and compliance policies consistently:
OPA + Gatekeeper: Define and enforce security policies (e.g., restrict container images, enforce labels).
Kyverno: Kubernetes-native policy engine for validation and mutation.
Falco: Real-time runtime security monitoring.
Kube-bench: Run CIS Kubernetes benchmark checks automatically.
Security Tip: Regularly scan cluster and workloads using tools like Trivy, Kube-hunter, or Aqua Security.
6. Autoscaling and Cost Optimization
To avoid resource wastage or service degradation:
Horizontal Pod Autoscaler (HPA) – Auto-scales pods based on metrics.
Vertical Pod Autoscaler (VPA) – Adjusts container resources.
Cluster Autoscaler – Scales nodes up/down based on workload.
Karpenter (AWS) – Next-gen open-source autoscaler with rapid provisioning.
Conclusion
As Kubernetes adoption matures, organizations must rethink their management strategy to accommodate growth, reliability, and governance. The transition from a handful of clusters to enterprise-wide Kubernetes infrastructure requires automation, observability, and strong policy enforcement.
By adopting GitOps, centralized control planes, standardized templates, and automated policy tools, enterprises can achieve Kubernetes cluster management at scale—without compromising on security, reliability, or developer velocity. 
0 notes
cubensquare-blogs · 20 days ago
Text
From Zero to Production: Real-World OpenShift Internship for DevOps and Cloud Engineers
In today's fast-paced IT world, mastering container orchestration platforms like Red Hat OpenShift isn’t just an advantage — it’s a necessity. Whether you're an aspiring DevOps engineer, a cloud administrator, or an IT professional aiming to stay ahead, OpenShift offers the power, flexibility, and security needed to deploy modern applications at scale.
That’s why CubenSquare is launching an industry-ready, hands-on internship: From Zero to Production with OpenShift – Mastering Installation to CI/CD Deployment — a comprehensive, project-based learning experience for IT professionals. https://www.linkedin.com/pulse/from-zero-production-real-world-openshift-internship-devops-y8ufc/
1 note · View note
digitalmore · 1 month ago
Text
0 notes
seodigital7 · 2 months ago
Text
Hybrid Cloud Application: The Smart Future of Business IT
Tumblr media
Introduction
In today’s digital-first environment, businesses are constantly seeking scalable, flexible, and cost-effective solutions to stay competitive. One solution that is gaining rapid traction is the hybrid cloud application model. Combining the best of public and private cloud environments, hybrid cloud applications enable businesses to maximize performance while maintaining control and security.
This 2000-word comprehensive article on hybrid cloud applications explains what they are, why they matter, how they work, their benefits, and how businesses can use them effectively. We also include real-user reviews, expert insights, and FAQs to help guide your cloud journey.
What is a Hybrid Cloud Application?
A hybrid cloud application is a software solution that operates across both public and private cloud environments. It enables data, services, and workflows to move seamlessly between the two, offering flexibility and optimization in terms of cost, performance, and security.
For example, a business might host sensitive customer data in a private cloud while running less critical workloads on a public cloud like AWS, Azure, or Google Cloud Platform.
Key Components of Hybrid Cloud Applications
Public Cloud Services – Scalable and cost-effective compute and storage offered by providers like AWS, Azure, and GCP.
Private Cloud Infrastructure – More secure environments, either on-premises or managed by a third-party.
Middleware/Integration Tools – Platforms that ensure communication and data sharing between cloud environments.
Application Orchestration – Manages application deployment and performance across both clouds.
Why Choose a Hybrid Cloud Application Model?
1. Flexibility
Run workloads where they make the most sense, optimizing both performance and cost.
2. Security and Compliance
Sensitive data can remain in a private cloud to meet regulatory requirements.
3. Scalability
Burst into public cloud resources when private cloud capacity is reached.
4. Business Continuity
Maintain uptime and minimize downtime with distributed architecture.
5. Cost Efficiency
Avoid overprovisioning private infrastructure while still meeting demand spikes.
Real-World Use Cases of Hybrid Cloud Applications
1. Healthcare
Protect sensitive patient data in a private cloud while using public cloud resources for analytics and AI.
2. Finance
Securely handle customer transactions and compliance data, while leveraging the cloud for large-scale computations.
3. Retail and E-Commerce
Manage customer interactions and seasonal traffic spikes efficiently.
4. Manufacturing
Enable remote monitoring and IoT integrations across factory units using hybrid cloud applications.
5. Education
Store student records securely while using cloud platforms for learning management systems.
Benefits of Hybrid Cloud Applications
Enhanced Agility
Better Resource Utilization
Reduced Latency
Compliance Made Easier
Risk Mitigation
Simplified Workload Management
Tools and Platforms Supporting Hybrid Cloud
Microsoft Azure Arc – Extends Azure services and management to any infrastructure.
AWS Outposts – Run AWS infrastructure and services on-premises.
Google Anthos – Manage applications across multiple clouds.
VMware Cloud Foundation – Hybrid solution for virtual machines and containers.
Red Hat OpenShift – Kubernetes-based platform for hybrid deployment.
Best Practices for Developing Hybrid Cloud Applications
Design for Portability Use containers and microservices to enable seamless movement between clouds.
Ensure Security Implement zero-trust architectures, encryption, and access control.
Automate and Monitor Use DevOps and continuous monitoring tools to maintain performance and compliance.
Choose the Right Partner Work with experienced providers who understand hybrid cloud deployment strategies.
Regular Testing and Backup Test failover scenarios and ensure robust backup solutions are in place.
Reviews from Industry Professionals
Amrita Singh, Cloud Engineer at FinCloud Solutions:
"Implementing hybrid cloud applications helped us reduce latency by 40% and improve client satisfaction."
John Meadows, CTO at EdTechNext:
"Our LMS platform runs on a hybrid model. We’ve achieved excellent uptime and student experience during peak loads."
Rahul Varma, Data Security Specialist:
"For compliance-heavy environments like finance and healthcare, hybrid cloud is a no-brainer."
Challenges and How to Overcome Them
1. Complex Architecture
Solution: Simplify with orchestration tools and automation.
2. Integration Difficulties
Solution: Use APIs and middleware platforms for seamless data exchange.
3. Cost Overruns
Solution: Use cloud cost optimization tools like Azure Advisor, AWS Cost Explorer.
4. Security Risks
Solution: Implement multi-layered security protocols and conduct regular audits.
FAQ: Hybrid Cloud Application
Q1: What is the main advantage of a hybrid cloud application?
A: It combines the strengths of public and private clouds for flexibility, scalability, and security.
Q2: Is hybrid cloud suitable for small businesses?
A: Yes, especially those with fluctuating workloads or compliance needs.
Q3: How secure is a hybrid cloud application?
A: When properly configured, hybrid cloud applications can be as secure as traditional setups.
Q4: Can hybrid cloud reduce IT costs?
A: Yes. By only paying for public cloud usage as needed, and avoiding overprovisioning private servers.
Q5: How do you monitor a hybrid cloud application?
A: With cloud management platforms and monitoring tools like Datadog, Splunk, or Prometheus.
Q6: What are the best platforms for hybrid deployment?
A: Azure Arc, Google Anthos, AWS Outposts, and Red Hat OpenShift are top choices.
Conclusion: Hybrid Cloud is the New Normal
The hybrid cloud application model is more than a trend—it’s a strategic evolution that empowers organizations to balance innovation with control. It offers the agility of the cloud without sacrificing the oversight and security of on-premises systems.
If your organization is looking to modernize its IT infrastructure while staying compliant, resilient, and efficient, then hybrid cloud application development is the way forward.
At diglip7.com, we help businesses build scalable, secure, and agile hybrid cloud solutions tailored to their unique needs. Ready to unlock the future? Contact us today to get started.
0 notes
govindhtech · 2 months ago
Text
Red Hat Summit 2025: Microsoft Drives into Cloud Innovation
Tumblr media
Microsoft at Red Hat Summit 2025
Microsoft is thrilled to announce that it will be a platinum sponsor of Red Hat Summit 2025, an IT community favourite. IT professionals can learn, collaborate, and build new technologies from the datacenter, public cloud, edge, and beyond at Red Hat Summit 2025, a major enterprise open source event. Microsoft's partnership with Red Hat is likely to be a highlight this year, displaying collaboration's power and inventive solutions.
This partnership has changed how organisations operate and serve customers throughout time. Red Hat's open-source leadership and Microsoft's cloud knowledge synergise to advance technology and help companies.
Red Hat's seamless integration with Microsoft Azure is a major benefit of the alliance. These connections let customers build, launch, and manage apps on a stable and flexible platform. Azure and Red Hat offer several tools for system modernisation and cloud-native app development. Red Hat OpenShift on Azure's scalability and security lets companies deploy containerised apps. Azure Red Hat Enterprise Linux is trustworthy for mission-critical apps.
Attend Red Hat Summit 2025 to learn about these technologies. Red Hat and Azure will benefit from Microsoft and Red Hat's new capabilities and integrations. These improvements in security and performance aim to meet organisations' digital needs.
WSL RHEL
This lets Red Hat Enterprise Linux use Microsoft Subsystem for Linux. WSL lets creators run Linux on Windows. RHEL for WSL lets developers run RHEL on Windows without a VM. With a free Red Hat Developer membership, developers may install the latest RHEL WSL image on their Windows PC and run Windows and RHEL concurrently.
Red Hat OpenShift Azure
Red Hat and Microsoft are enhancing security with Confidential Containers on Azure Red Hat OpenShift, available in public preview. Memory encryption and secure execution environments provide hardware-level workload security for healthcare and financial compliance. Enterprises may move from static service principals to dynamic, token-based credentials with Azure Red Hat OpenShift's managed identity in public preview.
Reduced operational complexity and security concerns enable container platform implementation in regulated environments. Azure Red Hat OpenShift has reached Spain's Central region and plans to expand to Microsoft Azure Government (MAG) and UAE Central by Q2 2025. Ddsv5 instance performance optimisation, enterprise-grade cluster-wide proxy, and OpenShift 4.16 compatibility are added. Red Hat OpenShift Virtualisation on Azure is also entering public preview, allowing customers to unify container and virtual machine administration on a single platform and speed up VM migration to Azure without restructuring.
RHEL landing area
Deploying, scaling, and administering RHEL instances on Azure uses Azure-specific system images. A landing zone lesson. Red Hat Satellite and Satellite Capsule automate software lifecycle and provide timely updates. Azure's on-demand capacity reservations ensure reliable availability in Azure regions, improving BCDR. Optimised identity management infrastructure deployments decrease replication failures and reduce latencies.
Azure Migrate application awareness and wave planning
By delivering technical and commercial insights for the whole application and categorising dependent resources into waves, the new application-aware methodology lets you pick Azure targets and tooling. A collection of dependent applications should be transferred to Azure for optimum cost and performance.
JBossEAP on AppService
Red Hat and Microsoft developed and maintain JBoss EAP on App Service, a managed tool for running business Java applications efficiently. Microsoft Azure recently made substantial changes to make JBoss EAP on App Service more inexpensive. JBoss EAP 8 offers a free tier, memory-optimized SKUs, and 60%+ license price reductions for Make monthly payments subscriptions and the soon-to-be-released Bring-Your-Own-Subscription to App Service.
JBoss EAP on Azure VMs
JBoss EAP on Azure Virtual Machines is currently GA with dependable solutions. Microsoft and Red Hat develop and maintain solutions. Automation templates for most basic resource provisioning tasks are available through the Azure Portal. The solutions include Azure Marketplace JBoss EAP VM images.
Red Hat Summit 2025 expectations
Red Hat Summit 2025 should be enjoyable with seminars, workshops, and presentations. Microsoft will offer professional opinions on many subjects. Unique announcements and product debuts may shape technology.
This is a rare chance to network with executives and discuss future projects. Mission: digital business success through innovation. Azure delivers the greatest technology and service to its customers.
Read about Red Hat on Azure
Explore Red Hat and Microsoft's cutting-edge solutions. Register today to attend the conference and chat to their specialists about how their cooperation may aid your organisation.
1 note · View note
krnetwork · 2 months ago
Text
EX280: Red Hat OpenShift Administration
Red Hat OpenShift Administration is a vital skill for IT professionals interested in managing containerized applications, simplifying Kubernetes, and leveraging enterprise cloud solutions. If you’re looking to excel in OpenShift technology, this guide covers everything from its core concepts and prerequisites to advanced certification and career benefits.
1. What is Red Hat OpenShift?
Red Hat OpenShift is a robust, enterprise-grade Kubernetes platform designed to help developers build, deploy, and scale applications across hybrid and multi-cloud environments. It offers a simplified, consistent approach to managing Kubernetes, with added security, automation, and developer tools, making it ideal for enterprise use.
Key Components of OpenShift:
OpenShift Platform: The foundation for scalable applications with simplified Kubernetes integration.
OpenShift Containers: Allows seamless container orchestration for optimized application deployment.
OpenShift Cluster: Manages workload distribution, ensuring application availability across multiple nodes.
OpenShift Networking: Provides efficient network configuration, allowing applications to communicate securely.
OpenShift Security: Integrates built-in security features to manage access, policies, and compliance seamlessly.
2. Why Choose Red Hat OpenShift?
OpenShift provides unparalleled advantages for organizations seeking a Kubernetes-based platform tailored to complex, cloud-native environments. Here’s why OpenShift stands out among container orchestration solutions:
Enterprise-Grade Security: OpenShift Security layers, such as role-based access control (RBAC) and automated security policies, secure every component of the OpenShift environment.
Enhanced Automation: OpenShift Automation enables efficient deployment, management, and scaling, allowing businesses to speed up their continuous integration and continuous delivery (CI/CD) pipelines.
Streamlined Deployment: OpenShift Deployment features enable quick, efficient, and predictable deployments that are ideal for enterprise environments.
Scalability & Flexibility: With OpenShift Scaling, administrators can adjust resources dynamically based on application requirements, maintaining optimal performance even under fluctuating loads.
Simplified Kubernetes with OpenShift: OpenShift builds upon Kubernetes, simplifying its management while adding comprehensive enterprise features for operational efficiency.
3. Who Should Pursue Red Hat OpenShift Administration?
A career in Red Hat OpenShift Administration is suitable for professionals in several IT roles. Here’s who can benefit:
System Administrators: Those managing infrastructure and seeking to expand their expertise in container orchestration and multi-cloud deployments.
DevOps Engineers: OpenShift’s integrated tools support automated workflows, CI/CD pipelines, and application scaling for DevOps operations.
Cloud Architects: OpenShift’s robust capabilities make it ideal for architects designing scalable, secure, and portable applications across cloud environments.
Software Engineers: Developers who want to build and manage containerized applications using tools optimized for development workflows.
4. Who May Not Benefit from OpenShift?
While OpenShift provides valuable enterprise features, it may not be necessary for everyone:
Small Businesses or Startups: OpenShift may be more advanced than required for smaller, less complex projects or organizations with a limited budget.
Beginner IT Professionals: For those new to IT or with minimal cloud experience, starting with foundational cloud or Linux skills may be a better path before moving to OpenShift.
5. Prerequisites for Success in OpenShift Administration
Before diving into Red Hat OpenShift Administration, ensure you have the following foundational knowledge:
Linux Proficiency: Linux forms the backbone of OpenShift, so understanding Linux commands and administration is essential.
Basic Kubernetes Knowledge: Familiarity with Kubernetes concepts helps as OpenShift is built on Kubernetes.
Networking Fundamentals: OpenShift Networking leverages container networks, so knowledge of basic networking is important.
Hands-On OpenShift Training: Comprehensive OpenShift training, such as the OpenShift Administration Training and Red Hat OpenShift Training, is crucial for hands-on learning.
Read About Ethical Hacking
6. Key Benefits of OpenShift Certification
The Red Hat OpenShift Certification validates skills in container and application management using OpenShift, enhancing career growth prospects significantly. Here are some advantages:
EX280 Certification: This prestigious certification verifies your expertise in OpenShift cluster management, automation, and security.
Job-Ready Skills: You’ll develop advanced skills in OpenShift deployment, storage, scaling, and troubleshooting, making you an asset to any IT team.
Career Mobility: Certified professionals are sought after for roles in OpenShift Administration, cloud architecture, DevOps, and systems engineering.
7. Important Features of OpenShift for Administrators
As an OpenShift administrator, mastering certain key features will enhance your ability to manage applications effectively and securely:
OpenShift Operator Framework: This framework simplifies application lifecycle management by allowing users to automate deployment and scaling.
OpenShift Storage: Offers reliable, persistent storage solutions critical for stateful applications and complex deployments.
OpenShift Automation: Automates manual tasks, making CI/CD pipelines and application scaling efficiently.
OpenShift Scaling: Allows administrators to manage resources dynamically, ensuring applications perform optimally under various load conditions.
Monitoring & Logging: Comprehensive tools that allow administrators to keep an eye on applications and container environments, ensuring system health and reliability.
8. Steps to Begin Your OpenShift Training and Certification
For those seeking to gain Red Hat OpenShift Certification and advance their expertise in OpenShift administration, here’s how to get started:
Enroll in OpenShift Administration Training: Structured OpenShift training programs provide foundational and advanced knowledge, essential for handling OpenShift environments.
Practice in Realistic Environments: Hands-on practice through lab simulators or practice clusters ensures real-world application of skills.
Prepare for the EX280 Exam: Comprehensive EX280 Exam Preparation through guided practice will help you acquire the knowledge and confidence to succeed.
9. What to Do After OpenShift DO280?
After completing the DO280 (Red Hat OpenShift Administration) certification, you can further enhance your expertise with advanced Red Hat training programs:
a) Red Hat OpenShift Virtualization Training (DO316)
Learn how to integrate and manage virtual machines (VMs) alongside containers in OpenShift.
Gain expertise in deploying, managing, and troubleshooting virtualized workloads in a Kubernetes-native environment.
b) Red Hat OpenShift AI Training (AI267)
Master the deployment and management of AI/ML workloads on OpenShift.
Learn how to use OpenShift Data Science and MLOps tools for scalable machine learning pipelines.
c) Red Hat Satellite Training (RH403)
Expand your skills in managing OpenShift and other Red Hat infrastructure on a scale.
Learn how to automate patch management, provisioning, and configuration using Red Hat Satellite.
These advanced courses will make you a well-rounded OpenShift expert, capable of handling complex enterprise deployments in virtualization, AI/ML, and infrastructure automation.
Conclusion: Is Red Hat OpenShift the Right Path for You?
Red Hat OpenShift Administration is a valuable career path for IT professionals dedicated to mastering enterprise Kubernetes and containerized application management. With skills in OpenShift Cluster management, OpenShift Automation, and secure OpenShift Networking, you will become an indispensable asset in modern, cloud-centric organizations.
KR Network Cloud is a trusted provider of comprehensive OpenShift training, preparing you with the skills required to achieve success in EX280 Certification and beyond.
Why Join KR Network Cloud?
 With expert-led training, practical labs, and career-focused guidance, KR Network Cloud empowers you to excel in Red Hat OpenShift Administration and achieve your professional goals.
https://creativeceo.mn.co/posts/the-ultimate-guide-to-red-hat-openshift-administration
https://bogonetwork.mn.co/posts/the-ultimate-guide-to-red-hat-openshift-administration
0 notes
qcs01 · 6 months ago
Text
Top Trends in Enterprise IT Backed by Red Hat
In the ever-evolving landscape of enterprise IT, staying ahead requires not just innovation but also a partner that enables adaptability and resilience. Red Hat, a leader in open-source solutions, empowers businesses to embrace emerging trends with confidence. Let’s explore the top enterprise IT trends that are being shaped and supported by Red Hat’s robust ecosystem.
1. Hybrid Cloud Dominance
As enterprises navigate complex IT ecosystems, the hybrid cloud model continues to gain traction. Red Hat OpenShift and Red Hat Enterprise Linux (RHEL) are pivotal in enabling businesses to deploy, manage, and scale workloads seamlessly across on-premises, private, and public cloud environments.
Why It Matters:
Flexibility in workload placement.
Unified management and enhanced security.
Red Hat’s Role: With tools like Red Hat Advanced Cluster Management, organizations gain visibility and control across multiple clusters, ensuring a cohesive hybrid cloud strategy.
2. Edge Computing Revolution
Edge computing is transforming industries by bringing processing power closer to data sources. Red Hat’s lightweight solutions, such as Red Hat Enterprise Linux for Edge, make deploying applications at scale in remote or edge locations straightforward.
Why It Matters:
Reduced latency.
Improved real-time decision-making.
Red Hat’s Role: By providing edge-optimized container platforms, Red Hat ensures consistent infrastructure and application performance at the edge.
3. Kubernetes as the Cornerstone
Kubernetes has become the foundation of modern application architectures. With Red Hat OpenShift, enterprises harness the full potential of Kubernetes to deploy and manage containerized applications at scale.
Why It Matters:
Scalability for cloud-native applications.
Efficient resource utilization.
Red Hat’s Role: Red Hat OpenShift offers enterprise-grade Kubernetes with integrated DevOps tools, enabling organizations to accelerate innovation while maintaining operational excellence.
4. Automation Everywhere
Automation is the key to reducing complexity and increasing efficiency in IT operations. Red Hat Ansible Automation Platform leads the charge in automating workflows, provisioning, and application deployment.
Why It Matters:
Enhanced productivity with less manual effort.
Minimized human errors.
Red Hat’s Role: From automating repetitive tasks to managing complex IT environments, Ansible helps businesses scale operations effortlessly.
5. Focus on Security and Compliance
As cyber threats grow in sophistication, security remains a top priority. Red Hat integrates security into every layer of its ecosystem, ensuring compliance with industry standards.
Why It Matters:
Protect sensitive data.
Maintain customer trust and regulatory compliance.
Red Hat’s Role: Solutions like Red Hat Insights provide proactive analytics to identify vulnerabilities and ensure system integrity.
6. Artificial Intelligence and Machine Learning (AI/ML)
AI/ML adoption is no longer a novelty but a necessity. Red Hat’s open-source approach accelerates AI/ML workloads with scalable infrastructure and optimized tools.
Why It Matters:
Drive data-driven decision-making.
Enhance customer experiences.
Red Hat’s Role: Red Hat OpenShift Data Science supports data scientists and developers with pre-configured tools to build, train, and deploy AI/ML models efficiently.
Conclusion
Red Hat’s open-source solutions continue to shape the future of enterprise IT by fostering innovation, enhancing efficiency, and ensuring scalability. From hybrid cloud to edge computing, automation to AI/ML, Red Hat empowers businesses to adapt to the ever-changing technology landscape.
As enterprises aim to stay ahead of the curve, partnering with Red Hat offers a strategic advantage, ensuring not just survival but thriving in today’s competitive market.
Ready to take your enterprise IT to the next level? Discover how Red Hat solutions can revolutionize your business today.
For more details www.hawkstack.com 
0 notes
hawkstack · 3 days ago
Text
Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI268)
As AI and Machine Learning continue to reshape industries, the need for scalable, secure, and efficient platforms to build and deploy these workloads is more critical than ever. That’s where Red Hat OpenShift AI comes in—a powerful solution designed to operationalize AI/ML at scale across hybrid and multicloud environments.
With the AI268 course – Developing and Deploying AI/ML Applications on Red Hat OpenShift AI – developers, data scientists, and IT professionals can learn to build intelligent applications using enterprise-grade tools and MLOps practices on a container-based platform.
🌟 What is Red Hat OpenShift AI?
Red Hat OpenShift AI (formerly Red Hat OpenShift Data Science) is a comprehensive, Kubernetes-native platform tailored for developing, training, testing, and deploying machine learning models in a consistent and governed way. It provides tools like:
Jupyter Notebooks
TensorFlow, PyTorch, Scikit-learn
Apache Spark
KServe & OpenVINO for inference
Pipelines & GitOps for MLOps
The platform ensures seamless collaboration between data scientists, ML engineers, and developers—without the overhead of managing infrastructure.
📘 Course Overview: What You’ll Learn in AI268
AI268 focuses on equipping learners with hands-on skills in designing, developing, and deploying AI/ML workloads on Red Hat OpenShift AI. Here’s a quick snapshot of the course outcomes:
✅ 1. Explore OpenShift AI Components
Understand the ecosystem—JupyterHub, Pipelines, Model Serving, GPU support, and the OperatorHub.
✅ 2. Data Science Workspaces
Set up and manage development environments using Jupyter notebooks integrated with OpenShift’s security and scalability features.
✅ 3. Training and Managing Models
Use libraries like PyTorch or Scikit-learn to train models. Learn to leverage pipelines for versioning and reproducibility.
✅ 4. MLOps Integration
Implement CI/CD for ML using OpenShift Pipelines and GitOps to manage lifecycle workflows across environments.
✅ 5. Model Deployment and Inference
Serve models using tools like KServe, automate inference pipelines, and monitor performance in real-time.
🧠 Why Take This Course?
Whether you're a data scientist looking to deploy models into production or a developer aiming to integrate AI into your apps, AI268 bridges the gap between experimentation and scalable delivery. The course is ideal for:
Data Scientists exploring enterprise deployment techniques
DevOps/MLOps Engineers automating AI pipelines
Developers integrating ML models into cloud-native applications
Architects designing AI-first enterprise solutions
🎯 Final Thoughts
AI/ML is no longer confined to research labs—it’s at the core of digital transformation across sectors. With Red Hat OpenShift AI, you get an enterprise-ready MLOps platform that lets you go from notebook to production with confidence.
If you're looking to modernize your AI/ML strategy and unlock true operational value, AI268 is your launchpad.
👉 Ready to build and deploy smarter, faster, and at scale? Join the AI268 course and start your journey into Enterprise AI with Red Hat OpenShift.
For more details www.hawkstack.com 
0 notes
qcsdclabs · 6 months ago
Text
Red Hat Linux: Paving the Way for Innovation in 2025 and Beyond
As we move into 2025, Red Hat Linux continues to play a crucial role in shaping the world of open-source software, enterprise IT, and cloud computing. With its focus on stability, security, and scalability, Red Hat has been an indispensable platform for businesses and developers alike. As technology evolves, Red Hat's contributions are becoming more essential than ever, driving innovation and empowering organizations to thrive in an increasingly digital world.
1. Leading the Open-Source Revolution
Red Hat’s commitment to open-source technology has been at the heart of its success, and it will remain one of its most significant contributions in 2025. By fostering an open ecosystem, Red Hat enables innovation and collaboration that benefits developers, businesses, and the tech community at large. In 2025, Red Hat will continue to empower developers through its Red Hat Enterprise Linux (RHEL) platform, providing the tools and infrastructure necessary to create next-generation applications. With a focus on security patches, continuous improvement, and accessibility, Red Hat is poised to solidify its position as the cornerstone of the open-source world.
2. Advancing Cloud-Native Technologies
The cloud has already transformed businesses, and Red Hat is at the forefront of this transformation. In 2025, Red Hat will continue to contribute significantly to the growth of cloud-native technologies, enabling organizations to scale and innovate faster. By offering RHEL on multiple public clouds and enhancing its integration with Kubernetes, OpenShift, and container-based architectures, Red Hat will support enterprises in building highly resilient, agile cloud environments. With its expertise in hybrid cloud infrastructure, Red Hat will help businesses manage workloads across diverse environments, whether on-premises, in the public cloud, or in a multicloud setup.
3. Embracing Edge Computing
As the world becomes more connected, the need for edge computing grows. In 2025, Red Hat’s contributions to edge computing will be vital in helping organizations deploy and manage applications at the edge—closer to the source of data. This move minimizes latency, optimizes resource usage, and allows for real-time processing. With Red Hat OpenShift’s edge computing capabilities, businesses can seamlessly orchestrate workloads across distributed devices and networks. Red Hat will continue to innovate in this space, empowering industries such as manufacturing, healthcare, and transportation with more efficient, edge-optimized solutions.
4. Strengthening Security in the Digital Age
Security has always been a priority for Red Hat, and as cyber threats become more sophisticated, the company’s contributions to enterprise security will grow exponentially. By leveraging technologies such as SELinux (Security-Enhanced Linux) and integrating with modern security standards, Red Hat ensures that systems running on RHEL are protected against emerging threats. In 2025, Red Hat will further enhance its security offerings with tools like Red Hat Advanced Cluster Security (ACS) for Kubernetes and OpenShift, helping organizations safeguard their containerized environments. As cybersecurity continues to be a pressing concern, Red Hat’s proactive approach to security will remain a key asset for businesses looking to stay ahead of the curve.
5. Building the Future of AI and Automation
Artificial Intelligence (AI) and automation are transforming every sector, and Red Hat is making strides in integrating these technologies into its platform. In 2025, Red Hat will continue to contribute to the AI ecosystem by providing the infrastructure necessary for AI-driven workloads. Through OpenShift and Ansible automation, Red Hat will empower organizations to build and manage AI-powered applications at scale, ensuring businesses can quickly adapt to changing market demands. The growing need for intelligent automation will see Red Hat lead the charge in helping businesses automate processes, reduce costs, and optimize performance.
6. Expanding the Ecosystem of Partners
Red Hat’s success has been in large part due to its expansive ecosystem of partners, from cloud providers to software vendors and systems integrators. In 2025, Red Hat will continue to expand this network, bringing more businesses into its open-source fold. Collaborations with major cloud providers like AWS, Microsoft Azure, and Google Cloud will ensure that Red Hat’s solutions remain at the cutting edge of cloud technology, while its partnerships with enterprises in industries like telecommunications, healthcare, and finance will further extend the company’s reach. Red Hat's strong partner network will be essential in helping businesses migrate to the cloud and stay ahead in the competitive landscape.
7. Sustainability and Environmental Impact
As the world turns its attention to sustainability, Red Hat is committed to reducing its environmental impact. The company has already made strides in promoting green IT solutions, such as optimizing power consumption in data centers and offering more energy-efficient infrastructure for businesses. In 2025, Red Hat will continue to focus on delivering solutions that not only benefit businesses but also contribute positively to the planet. Through innovation in cloud computing, automation, and edge computing, Red Hat will help organizations lower their carbon footprints and build sustainable, eco-friendly systems.
Conclusion: Red Hat’s Role in Shaping 2025 and Beyond
As we look ahead to 2025, Red Hat Linux stands as a key player in the ongoing transformation of IT, enterprise infrastructure, and the global technology ecosystem. Through its continued commitment to open-source development, cloud-native technologies, edge computing, cybersecurity, AI, and automation, Red Hat will not only help organizations stay ahead of the technological curve but also empower them to navigate the challenges and opportunities of the future. Red Hat's contributions in 2025 and beyond will undoubtedly continue to shape the way we work, innovate, and connect in the digital age.
for more details please visit 
👇👇
hawkstack.com
qcsdclabs.com
0 notes
cybersecurityict · 1 month ago
Text
Cloud Native Applications Market Size, Share, Analysis, Forecast, and Growth Trends to 2032: Edge Computing and 5G Fuel U.S. Growth
Cloud Native Applications Market was valued at USD 6.49 billion in 2023 and is expected to reach USD 45.71 billion by 2032, growing at a CAGR of 24.29% from 2024-2032. 
Cloud Native Applications Market is witnessing rapid acceleration as organizations across the USA shift towards scalable, resilient, and agile digital infrastructures. Built to thrive in cloud environments, these applications enable businesses to respond faster to market changes, reduce operational complexity, and enhance customer experiences through continuous innovation.
Cloud Native Applications Gain Momentum in the US as Enterprises Accelerate Digital Transformation
U.S. Cloud Native Applications Market was valued at USD 1.82 billion in 2023 and is expected to reach USD 12.70 billion by 2032, growing at a CAGR of 24.11% from 2024-2032. 
Cloud Native Applications Market is being propelled by enterprise demand for modern development frameworks like microservices, containers, and Kubernetes. As U.S.-based companies prioritize digital transformation, cloud-native architectures are becoming essential to reduce time-to-market and support distributed, remote-first teams.
Get Sample Copy of This Report: https://www.snsinsider.com/sample-request/6545 
Market Keyplayers:
Google LLC (Google Kubernetes Engine, Firebase)
International Business Machines Corporation (IBM Cloud, IBM Cloud Pak)
Infosys Technologies Private Limited (Infosys Cobalt, Cloud Ecosystem)
Larsen & Toubro Infotech (LTI Cloud, LTI Digital Transformation)
Microsoft Corporation (Azure Kubernetes Service, Azure Functions)
Oracle Corporation (Oracle Cloud Infrastructure, Oracle Autonomous Database)
Red Hat (OpenShift, Ansible Automation Platform)
SAP SE (SAP Business Technology Platform, SAP S/4HANA Cloud)
VMware, Inc. (VMware Tanzu, VMware Cloud on AWS)
Alibaba Cloud (Alibaba Cloud Container Service, Alibaba Cloud Elastic Compute Service)
Apexon (Cloud-Native Solutions, Cloud Application Modernization)
Bacancy Technology (Cloud Development, Cloud-Native Microservices)
Citrix Systems, Inc. (Citrix Workspace, Citrix Cloud)
Harness (Harness Continuous Delivery, Harness Feature Flags)
Cognizant Technology Solutions Corp (Cognizant Cloud, Cognizant Cloud-Native Solutions)
Ekco (Cloud Infrastructure Services, Cloud Application Development)
Huawei Technologies Co. Ltd. (Huawei Cloud, Huawei Cloud Container Engine)
R Systems (R Systems Cloud Platform, R Systems DevOps Solutions)
Scality (Scality RING, Scality Cloud Storage)
Sciencesoft (Cloud-Native Development, Cloud Integration Solutions)
Market Analysis
The rise of DevOps culture and increasing reliance on cloud service providers have created a robust environment for the growth of cloud-native technologies. Enterprises are migrating legacy systems to cloud-native platforms to gain performance agility, real-time updates, and seamless scalability. The USA leads this transition with strong tech infrastructure and innovation-driven business ecosystems. Industries such as finance, healthcare, and e-commerce are at the forefront, leveraging cloud-native solutions to enhance customer-facing and backend systems.
Market Trends
Rapid adoption of Kubernetes for container orchestration
Growth in microservices architecture for modular and scalable development
Increased use of CI/CD pipelines for continuous deployment
Integration of observability tools for real-time monitoring and performance insights
Expansion of hybrid and multi-cloud environments
Shift from monolithic applications to serverless computing
Investment in security-first cloud-native frameworks
Market Scope
The Cloud Native Applications Market offers vast potential as businesses demand faster innovation cycles and scalable IT solutions. These applications are driving the next phase of enterprise software by enabling seamless deployment and efficient resource management.
Agile and DevOps-ready platforms
Vendor-neutral deployment across major cloud services
Real-time data processing capabilities
Resilience through self-healing systems
High availability across distributed infrastructures
Strong alignment with edge computing growth
Cost-optimized through auto-scaling and containerization
Forecast Outlook
The future of the Cloud Native Applications Market looks exceptionally promising. As digital-first strategies become the standard in the U.S., organizations are doubling down on platforms that support continuous delivery, horizontal scaling, and secure development at speed. With increasing adoption across both startups and large enterprises, the market is expected to mature further with innovation in AI integration, cloud-native databases, and autonomous operations. This trend will only strengthen as cloud-native becomes a competitive necessity in every digital transformation roadmap.
Access Complete Report: https://www.snsinsider.com/reports/cloud-native-applications-market-6545 
Conclusion
The Cloud Native Applications Market is reshaping how U.S. businesses build, deploy, and scale their digital products. In a landscape where speed, reliability, and adaptability are key, cloud-native architecture offers the foundation for future-ready innovation.
Related reports:
Invest in the growing US data monetization industry
Explore the latest trends in the US cloud encryption market
Track adoption rates of public cloud services across US industries
About Us:
SNS Insider is one of the leading market research and consulting agencies that dominates the market research industry globally. Our company's aim is to give clients the knowledge they require in order to function in changing circumstances. In order to give you current, accurate market data, consumer insights, and opinions so that you can make decisions with confidence, we employ a variety of techniques, including surveys, video talks, and focus groups around the world.
Contact Us:
Jagney Dave - Vice President of Client Engagement
Phone: +1-315 636 4242 (US) | +44- 20 3290 5010 (UK)
0 notes
qcsdslabs · 6 months ago
Text
Migrating Virtual Machines to OpenShift: Tools and Techniques
As organizations shift to cloud-native architectures, migrating traditional virtual machines (VMs) to containerized platforms like OpenShift becomes crucial. OpenShift, a Kubernetes-based platform, offers scalability, flexibility, and developer-friendly features. However, moving from VMs to OpenShift requires careful planning and the right tools. Here’s an overview of key tools and techniques for a successful migration.
Tools for VM Migration
OpenShift Virtualization: OpenShift's native virtualization allows organizations to run VMs directly within the OpenShift environment. This tool enables you to transition VMs to containers with minimal disruption. It supports a variety of guest operating systems, simplifying the migration process.
Containerization Tools (e.g., Podman, Docker): These tools can be used to containerize applications running on VMs, making them ready for OpenShift. By converting applications into containers, organizations can leverage OpenShift's orchestration and scaling capabilities.
Red Hat Migrate2Container: This tool helps migrate legacy workloads from VMs to containers, offering automated assessments, planning, and execution. It reduces the complexity of the migration process and provides best practices for moving applications.
Techniques for Migration
Lift and Shift: This technique involves migrating VMs directly to OpenShift without significant changes. OpenShift Virtualization simplifies this process, allowing VMs to run alongside containerized workloads.
Re-platforming: In this approach, you convert VMs into containerized applications. This may involve breaking down monolithic applications into microservices and optimizing them for cloud-native environments.
Re-factoring: For more complex migrations, re-factoring involves redesigning the applications to fully exploit OpenShift’s capabilities, ensuring greater performance and scalability.
Migrating VMs to OpenShift can be a smooth transition with the right tools and strategies. By leveraging OpenShift’s native virtualization and containerization tools, organizations can embrace the future of cloud-native computing.
For more details visit www.hawkstack.com
0 notes
amritatech56 · 6 months ago
Text
Red Hat OpenShift Virtualization: Bridging Traditional and Modern Workloads
Red Hat OpenShift Virtualization is an integrated feature within the OpenShift platform, designed to enable the seamless management of both VM and containerized applications on a single hybrid cloud application environment. By incorporating virtualization into OpenShift, Red Hat offers a solution that simplifies the migration and management of traditional virtual machines alongside containerized workloads, providing organizations with a flexible, future-ready infrastructure that embraces the best of both traditional and modern technologies.
This virtualization capability is particularly beneficial for enterprises that rely on existing VM investments but are interested in modernizing their infrastructure to align with cloud-native principles. OpenShift Virtualization supports this transformation, empowering organizations to manage their VM and containerized workloads from a consistent, unified interface while taking advantage of OpenShift’s robust hybrid cloud capabilities.
Effortless Migration: Bringing Legacy Workloads into a Modern Framework
One of the biggest challenges businesses face in today’s fast-paced digital environment is migrating traditional VMs to a modern, flexible infrastructure without risking downtime, data loss, or service interruptions. OpenShift Virtualization includes a Migration Toolkit for Virtualization (MTV) that simplifies this process, allowing organizations to transfer their VMs from existing hypervisors—such as VMware, Red Hat Virtualization, or others—directly onto the OpenShift platform. The Migration Toolkit for Virtualization facilitates this process with user-friendly tools and automated workflows, enabling a streamlined transition of VMs onto OpenShift.
A Modernization Path for Infrastructure: Leveraging Cloud-Native and Hybrid Capabilities
One of the primary advantages of OpenShift Virtualization is its ability to provide a clear pathway for infrastructure modernization. By allowing organizations to migrate their VMs to a cloud-native platform, Red Hat OpenShift facilitates a gradual shift towards containerized workloads without requiring the immediate replacement of existing VM-based applications.
This hybrid capability allows businesses to leverage the agility, scalability, and efficiency of cloud-native architectures while continuing to utilize their VM workloads within the same environment. This approach maximizes the return on existing infrastructure investments, enabling organizations to adopt modern development practices, such as microservices architectures and DevOps, without sacrificing the stability or functionality of traditional applications.
Furthermore, OpenShift’s hybrid cloud model enables organizations to take advantage of streamlined operations and improved resource management across multiple environments. This flexibility is particularly beneficial for organizations with fluctuating workloads, as it allows for resources to be scaled up or down based on demand, resulting in optimized performance and cost savings.
Conclusion: Embracing the Best of Both Worlds with OpenShift Virtualization
Red Hat OpenShift Virtualization is more than just a tool—it is a comprehensive solution that enables organizations to bridge the gap between traditional VM-based environments and modern cloud-native architectures. By combining VM and container workloads into a single, cohesive platform, OpenShift Virtualization empowers businesses to unify their infrastructure, simplify operations, and accelerate innovation.
For enterprises seeking a hybrid or multi-cloud solution, OpenShift Virtualization provides the flexibility to move VMs seamlessly between on-premise and cloud environments, giving organizations the freedom to optimize their resources and scale as needed. This adaptability makes OpenShift Virtualization an ideal choice for businesses pursuing digital transformation while aiming to preserve the investments they have already made in virtualization.
Incorporating OpenShift Virtualization allows organizations to leverage the best of both worlds: maintaining their existing VM-based applications while embracing cloud-native architectures to stay competitive in a rapidly evolving landscape. As a result, businesses can achieve faster time-to-market, streamlined operations, and a secure, unified platform for all workloads—positioning them for sustainable growth and innovation in a hybrid cloud environment. https://amritahyd.org/
1 note · View note