Tumgik
#matuyama
jhavelikes · 3 months
Quote
Early efforts to date the tools proved troublesome. Measurements of remnant magnetism in the overlying sediments indicated that the lowermost tools predate the most recent reversal in the Earth's magnetic field 0.8 million years ago, an event known as the Matuyama-Brunhes reversal. This timing is well beyond the limits of commonly used dating methods, such as radiocarbon (useful back to about 50 thousand years) and luminescence dating (usually limited to the last 300 thousand years or so). A dating method based on cosmic rays To solve this problem, we applied an innovative dating method using cosmogenic nuclides that can reach back 5 million years, the critical timeframe for human evolution. This method has already yielded definitive ages at other key sites, such as the 3.4 million year old Australopithecus at Sterkfontein in southern Africa, and the 0.77 million year old Zhoukoudian Homo erectus, also known as "Peking Man." It works like this: exploding stars (supernovae) outside our solar system release streams of cosmic rays that enter Earth's upper atmosphere, sending showers of secondary cosmic rays down to Earth, where they react with minerals in rocks and soils to produce radioactive nuclides in tiny but measurable quantities. We measured two such nuclides, beryllium-10 and aluminum-26, to calculate the burial age. A date was obtained by observing the ratio of these two nuclides, which changes over time during burial due to their differing radioactive decay half-lives: 1.4-million-years for beryllium-10 and 0.7-million-years for aluminum-26.
The first Europeans reached Ukraine 1.4 million years ago, new study finds
0 notes
efvicioso · 11 months
Link
Tumblr media
Tal día como hoy, en 1867, nace Bernard Brunhes, geofísico francés que, a principios del siglo XX, descubrió la inversión del campo magnético de la Tierra, lo que fue clave para el desarrollo de la Tectónica de Placas.
https://buff.ly/43dIGLs
0 notes
Text
Earth's magnetic field, predominantly dipolar at its surface, is distorted further out by the solar wind. This is a stream of charged particles leaving the Sun's corona and accelerating to a speed of 200 to 1000 kilometres per second. They carry with them a magnetic field, the interplanetary magnetic field (IMF).[25]
The solar wind exerts a pressure, and if it could reach Earth's atmosphere it would erode it. However, it is kept away by the pressure of the Earth's magnetic field. The magnetopause, the area where the pressures balance, is the boundary of the magnetosphere. Despite its name, the magnetosphere is asymmetric, with the sunward side being about 10 Earth radii out but the other side stretching out in a magnetotail that extends beyond 200 Earth radii.[26] Sunward of the magnetopause is the bow shock, the area where the solar wind slows abruptly.[25]
Inside the magnetosphere is the plasmasphere, a donut-shaped region containing low-energy charged particles, or plasma. This region begins at a height of 60 km, extends up to 3 or 4 Earth radii, and includes the ionosphere. This region rotates with the Earth.[26] There are also two concentric tire-shaped regions, called the Van Allen radiation belts, with high-energy ions (energies from 0.1 to 10 MeV). The inner belt is 1–2 Earth radii out while the outer belt is at 4–7 Earth radii. The plasmasphere and Van Allen belts have partial overlap, with the extent of overlap varying greatly with solar activity.[27]
As well as deflecting the solar wind, the Earth's magnetic field deflects cosmic rays, high-energy charged particles that are mostly from outside the Solar System. Many cosmic rays are kept out of the Solar System by the Sun's magnetosphere, or heliosphere.[28] By contrast, astronauts on the Moon risk exposure to radiation. Anyone who had been on the Moon's surface during a particularly violent solar eruption in 2005 would have received a lethal dose.[25]
Some of the charged particles do get into the magnetosphere. These spiral around field lines, bouncing back and forth between the poles several times per second. In addition, positive ions slowly drift westward and negative ions drift eastward, giving rise to a ring current. This current reduces the magnetic field at the Earth's surface.[25]Particles that penetrate the ionosphere and collide with the atoms there give rise to the lights of the aurorae and also emit X-rays.[26]
The varying conditions in the magnetosphere, known as space weather, are largely driven by solar activity. If the solar wind is weak, the magnetosphere expands; while if it is strong, it compresses the magnetosphere and more of it gets in. Periods of particularly intense activity, called geomagnetic storms, can occur when a coronal mass ejection erupts above the Sun and sends a shock wave through the Solar System. Such a wave can take just two days to reach the Earth. Geomagnetic storms can cause a lot of disruption; the "Halloween" storm of 2003damaged more than a third of NASA's satellites. The largest documented storm, the Carrington Event, occurred in 1859. It induced currents strong enough to disrupt telegraph lines, and aurorae were reported as far south as Hawaii.[25][29]
Tumblr media
Main article:
Geomagnetic reversal
Although generally Earth's field is approximately dipolar, with an axis that is nearly aligned with the rotational axis, occasionally the North and South geomagnetic poles trade places. Evidence for these geomagnetic reversals can be found in basalts, sediment cores taken from the ocean floors, and seafloor magnetic anomalies.[41] Reversals occur nearly randomly in time, with intervals between reversals ranging from less than 0.1 million years to as much as 50 million years. The most recent geomagnetic reversal, called the Brunhes–Matuyama reversal, occurred about 780,000 years ago.[24][42] A related phenomenon, a geomagnetic excursion, takes the dipole axis across the equator and then back to the original polarity.[43][44] The Laschamp event is an example of an excursion, occurring during the last ice age (41,000 years ago).
The past magnetic field is recorded mostly by strongly magnetic minerals, particularly iron oxides such as magnetite, that can carry a permanent magnetic moment. This remanent magnetization, or remanence, can be acquired in more than one way. In lava flows, the direction of the field is "frozen" in small minerals as they cool, giving rise to a thermoremanent magnetization. In sediments, the orientation of magnetic particles acquires a slight bias towards the magnetic field as they are deposited on an ocean floor or lake bottom. This is called detrital remanent magnetization.[8]
Thermoremanent magnetization is the main source of the magnetic anomalies around mid-ocean ridges. As the seafloor spreads, magma wells up from the mantle, cools to form new basaltic crust on both sides of the ridge, and is carried away from it by seafloor spreading. As it cools, it records the direction of the Earth's field. When the Earth's field reverses, new basalt records the reversed direction. The result is a series of stripes that are symmetric about the ridge. A ship towing a magnetometer on the surface of the ocean can detect these stripes and infer the age of the ocean floor below. This provides information on the rate at which seafloor has spread in the past.[8]
Radiometric dating of lava flows has been used to establish a geomagnetic polarity time scale, part of which is shown in the image. This forms the basis of magnetostratigraphy, a geophysical correlation technique that can be used to date both sedimentary and volcanic sequences as well as the seafloor magnetic anomalies.[8]
0 notes
takeuchiitsuka · 3 years
Photo
Tumblr media
#7857 Matsuyama - Ehime, Japan Copyright © Takeuchi Itsuka. All Rights Reserved.
83 notes · View notes
helenkwara · 4 years
Text
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
Matuyama aya
19 notes · View notes
umaburo · 2 years
Link
松山市のご当地寿司といえば、松山を代表する郷土料理でもある松山鮓(もぶり飯)。正岡子規の大好物でもあった豪華で贅沢なちらし寿司。「すし丸 本店」では、松山の郷土料理が美味しい名店で、リーズナブルな価格で松山鮓が食べられます!
Speaking of local sushi in Matsuyama City, Matsuyama sushi (moburi rice) is one of Matsuyama's representative local dishes. Gorgeous and luxurious chirashizushi, which was also a favorite of Shiki Masaoka. At "Sushimaru Main Store", Matsuyama's local cuisine is delicious, and you can eat Matsuyama sushi at a reasonable price!
続きはこちら(Click here for more)⇒http://fanblogs.jp/souguru/archive/1475/0
0 notes
zeqoo69 · 6 years
Photo
Tumblr media
#skatterbrains #clubjammin #matuyama #barcaezar 今年の初ライヴ 演ります。20:00から。 しかし、暑いわ。
1 note · View note
maruhi · 7 years
Photo
Tumblr media
馬に触った、優しい目を持つ馬に
a horse has beautiful eyes,i stroked a horse.
18 notes · View notes
gairo · 3 years
Video
Cold rain in Matuyama. by yuyosimu
38 notes · View notes
adurowrites · 3 years
Text
Geomagnetic Reversal: The relationship between God, Satan, and Lil Nas X
(Spoilers for the Montero music video by Lil Nas X if you haven’t seen it yet.)
Every 450,000 years (approximately), the Earth’s magnetic poles switch places. The last switch, the Brunhes-Matuyama reversal, occurred about 780,000 years ago, so the Earth is ‘due’ for another one (except, averages don’t quite work like that.... but that’s a tangent we won’t explore at this time). But another reversal is happening, this one in society. A recent Gallup pole shows that for the first time in American history, the number of church-goers has dropped under 50% of the population. 
While this is certainly frightening for the religious community, it appears more of them are frightened by Lil Nas X’s recent music video for his song Montero (Call Me By Your Name) in which the singer descends to Hell and seduces the Devil. Now, for the American Conservative Christian, anything dealing with the Devil, demons, or Hell is pretty disturbing. Many of these families don’t celebrate Halloween (as it’s the Devil’s day) and will even avoid books, movies, and tv shows if it involves anything deemed Satanic. This includes magical powers as they are “of the Devil” and anything “of the Devil” will corrupt the person who engages in the story. 
And yet, in modern American society, media portrayals of the Devil appears to be at an all-time high. Not only does the Devil (or his various demons) appear in a variety of shows and movies, but he’s also played sympathetically. Or at the very least, far more nuanced than the earliest iterations of him. In the 1980s, 1990s, and even into the early 2000s, the Devil was portrayed as genuinely evil. Films like the Devil’s Advocate, The Last Temptation of Christ, and Angel Heart cast the Devil quite firmly into the role of villain. And not just villain, but creepy, manipulative, psychologically-disturbing villain. We begin to see a more complex take of the Devil in the 00′s and on, and it’s sort of culminated in the TV series Lucifer in which the Devil is sort of a good guy. (Not going to lie, I like the show - and yes, it’s based on a DC comic character).
But if the media has given the Devil a character redemption arc, God has suffered from the opposite. In fact, He’s begun a descent in villainy. Or, at the very least, He’s become the ‘absent parent’ who neglects His creation. 
However, I would argue that this character devolvement has not been due to the media, rather it has been due to the institution of the Church and the harm that the Church has done to recent generations, specifically millennials. 
Most millennials were raised in some form of church, and there were widespread issues across the different denominations. The Catholic Church was covering up its child sexual abuse scandal. Mega churches were preaching the lie of the ‘prosperity gospel’, all while taking money from their parishioners to buy private jets. And independent, fundamental churches were bashing gays, denigrating women, and promoting toxic purity culture. Oh, and denying science. This was understandably harmful to the kids being raised in these churches.
(And shout-out to all the Gen-Z’s out there who are going through/went through similar experiences. It didn’t stop with millennials. However, if the Gallup poll is right, a lot of the flight from Church is due to millennials noping out of there). 
So with all of these problems, is it any wonder that the image of God took a hit? Gandhi (as problematic as he was) said it best when he said, “I like your Christ, but not your Christianity.” And as most evangelicals will tell you, the word Christian literally means ‘Christ-like’. So... yeah. How Christians behave really does influence a person’s opinion of who God is. 
What’s interesting about God and the Devil is that they are literary foils for each other. One is good; one is bad. One is kind; one is cruel. One will save you; one will destroy you. But if one of them changes sides, it forces the other to change sides as well. 
For a lot of LGBTQIA+ folks, and minorities, and poor people, and people struggling with mental illness or substance abuse, the Church was not a good place to be. Or a kind place to be. Or even a place of refuge and safety. It became... well... sort of like Hell. And therefore, God became the Devil. (Not literally, obviously). And if God is bad... well, the Devil becomes good by default. After all, someone that rebels against cruelty and evil, can’t be purely evil themselves.  
Now, after watching the music video for Montero, I don’t think Lil Nas is saying that the Devil is good (do correct me if I’m wrong though). And I do think a lot of the outcry about the video from American Conservative Christians was because the video features a gay man expressing his sexuality. BUT, I think it is yet another sign that the societal poles are starting to reverse. If the Christian Church continues to harm the people it is supposed to serve, and if it continues to stand in the way of progress, more and more people will consider God to be the evil one. And they might find themselves with some... how best to put it.... well, Sympathy for the Devil. 
(Yes, that was a stupid attempt at a pun. I’ll see myself out.)
14 notes · View notes
astroimages · 4 years
Video
youtube
A ÚLTIMA REVERSÃO DO CAMPO MAGNÉTICO DA TERRA EM DETALHES | SPACE TOD...
ENTRE AGORA NO GRUPO VIP E APROVEITE A MEGA PROMOÇÃO DA BLACK HOLE FRIDAY DO CURSO DE ASTRONOMIA DO SPACE TODAY: https://spacetoday.com.br/bfriday2020/ Geofísicos estudaram em detalhe a reversão de Matuyama-Brunhes, a última reversão do campo magnético da Terra e descobriram que o campo magnético do planeta ficou instável 10 mil antes da reversão, que ela ocorreu a 773000 anos atrás, e que durou cerca de 20 mil anos para se concretizar!!! Fontes: https://www.nipr.ac.jp/english/info/notice/20201022.html https://progearthplanetsci.springeropen.com/articles/10.1186/s40645-020-00354-y #MAGNETICFIELD #EARTH #SPACETODAY
1 note · View note
lugarescontextos · 4 years
Link
Izquierda: KNM-ER 3733. Derecha: HAM.
DNH 134, un fragmento de cráneo,  y KNM-ER 2598, un fragmento occipital, son los únicos ejemplares africano de erectus más antiguos que los fósiles de Homo de Dmanisi y Java. Se han datado en hace 2,04-1,95 Ma y 1,87 Ma respectivamente. Los erectus más antiguos, provienen de Koobi Fora, Kenia, y la especie persiste en África hasta cerca de la frontera Brunhes-Matuyama (0,78 Ma).
Los restos son más abundantes en Kenia y Tanzania, aunque también se han hallado ejemplares en Etiopía y en el Sur.
Los ejemplares mejor conservados se hallaron en las riberas del lago Turkana. Se complementan con los hallazgos de la garganta de Olduvai.
Tobias y von Koegniswald (1964) definieron los grados de hominización:
Australopitecos.
Habilis.
Erectus de Sangiran y ejemplares de Olduvai como OH13.
OH13 había sido considerado por L. Leakey (1964) como paratipo del habilis. Esto indica bien a las claras las dificultades con que tropezamos a la hora de establecer fronteras precisas en la transición entre habilis y erectus.
Erectus de Olduvai, Ternifini, Kabuh y Zhoukoudian.
KNM-ER 3733. Turkana Basin Institute/Richard Leakey.
El fragmento de cráneo DNH 134, datado entre hace 2,04-1,95 Ma, hallado en Drimolen, África del Sur, presenta similitudes con el cráneo de Sangiran (Herries et al, 2020). Un par de cráneos de Turkana presentan rasgos similares al erectus de Pekín, pero con una capacidad craneal inferior.
KNM-ER 3733 (Leakey y Walker, 1985) fue descubierto por Bernard Ngeneo, del equipo de Richard Leakey, en 1975 en Koobi Fora (Kenia). Se trata de un cráneo completo de hembra madura, con capacidad craneal de 850 cc, similar a la del Hombre de Pequín. Se ha datado en ~1.63 Ma (Lepra y Kent, 2015).
KNM-ER 3883 (Leakey y Walker, 1985). Cráneo de 800 cc datado en 1,6 Ma.
Del mismo yacimiento es KNM-ER 1808 (esqueleto parcial).
El equipo de Domínguez-Rodrigo halló en verano de 2009, en el yacimiento de Olduvai un fémur y un radio de adulto, posiblemente del mismo individuo, datados en 1,3 Ma. La cabeza del radio es un tercio más grande que la del sapiens y la tuberosidad donde se inserta el bíceps duplica a la del hombre actual.
Grado erectus finales
El norte del Danakil (Afar, Eritrea) ha proporcionado desde mediados de los noventa evidencia sobre el erectus, con el descubrimiento de más de 200 sitios de finales del Pleistoceno en un afloramiento sedimentario fluviolacustre de 1.000 m de espesor en la cuenca del río Dandiero, al sur de Buia (Abbate et al, 1998). Las excavaciones corren a cargo de la Expedición Danakil Italiana y Eritrea, coordinada por la Universidad La Sapienza de Roma y el Museo Nacional de Eritrea, bajo la dirección de Alfredo Coppa, dentro del Proyecto Internacional Buia.
El yacimiento de Uadi Aalad (UA), consta de depósitos deltaicos y fluviales de 5-6 m de espesor radiométricamente y biocronológicamente fechados en ca 1 Ma (Ghinassi et al, 2009). Destacan los hallazgos en la capa LK3 Homo (Macchiarelli et al 2004; Bondioli et al, 2006).
UA 31. Señora de Buia. Descubierto por el equipo de Lorenzo Rook y Berhane Tesfamariam. Un cráneo de adulto prácticamente completo con la cara preservada, atribuido a hembra, con mezcla de características erectus/ergaster y rasgos derivados, incluyendo caja craneana larga y ovalada, de más de 20 cm de longitud, un alto posicionamiento de los puntos más externos parietales como en rhodesiensis, una angulación débil a lo largo de la línea media y un ligero aplanamiento parasagital y huesos parietales delgados. No se ha determinado si su prominencia parietal es una consecuencia estructural de dolicocefalia, la expresión de la variación individual/regional, o una característica derivada con posible relevancia filogenética. Acusados arcos supraorbitales.
Según Bruner et al (2016), su capacidad craneal es de 995 cc. Las áreas occipitales muestran una pronunciada abultada, el cerebelo se encuentra en una posición posterior, y los vasos meníngeos medios están más desarrollados en las regiones posteriores. Estas características son comunes entre los especímenes atribuidos a erectus, en particular los endomoldes del Pleistoceno Medio de Zhoukoudian. Los lóbulos parietales muestran una curvatura pronunciada, asociada a una base del cráneo estrecha.
UA 222 y UA 369. Dientes incisivos permanentes. Tienen un esmalte relativamente delgado en comparación con la condición humana moderna, como en Homo antecessor, y la morfología recuerda al heidelbergensis norteafricano.
UA 173, UA 405 y UA 466. Fragmentos de pelvis.
En Mulhuli-Amo (MA), a 4,7 km de Uadi Aalad y formando parte posiblemente del mismo horizonte estratigráfico se han hallado nueve fragmentos humanos, pertenecientes posiblemente a tres individuos.
MA 14 fragmento de frontal.
MA 64 y MA 88 a-f, fragmentos parietales y MA 89 fragmento temporal, pertenecientes al mismo individuo adulto.
MA-88, compuesto por los seis fragmentos a-f, constituye un parietal izquierdo casi completo, incluyendo la región del asterión, cuyo espesor y características arquitectónicas y estructurales se ajustan con precisión a UA 31.
MA 93 Corona sin uso de un molar permanente inferior.
La campaña de 2016 ha proporcionado huellas de erectus datadas en hace 800 ka, en los sedimentos fluviales de un paleolago rodeado de pastizales, en el yacimiento de Aalad-Amo.
Daka. BOU-VP-2/66
Daka (o Dakanihylo, Formación Bouri, Middle Awash, Etiopía) Asfaw et al, 2002. BOU-VP-2/66. Caja craneana descubierta por Henry Gilbert, del equipo de Berhane Asfaw y Tim White, en 1997, datada en 1 Ma y con una forma similar a la de Buia. Según Keely B. Carlson et al (2013) es similar en morfología lineal a los fósiles de los erectus asiáticos. Para Baab (2016), pudo haber pertenecido a una población "avanzada" de erectus cercana a la raíz del Homo heidelbergensis sensu lato, o a una población inicial de H. heidelbergensis sensu lato.
Olorgesailie. KNM-OG 45500. Cráneo parcial datado en 0,9 Ma, descubierto en 2003 por el equipo de Rick Potts. Capacidad craneal de unos 700-800 cc. Se recuperó aproximadamente 1,5 km al este de una gran acumulación de hachas de mano, que provienen de la misma capa.
Tighenif 1 y 3
Tighenif 1 y 3
Otros hallazgos
MK3. En las excavaciones dirigidas por J. Chavaillon en 1976 en Gombore I (Melka Kunture, Etiopía) apareció in situ, en la unidad 2 del nivel 3, datada en >1,39 Ma, una porción distal bien conservada de un húmero izquierdo de hominini conocido como Gombore IB-7594, Melka Kunture 3 o MK3, asociado a un rico conjunto lítico de transición olduvaiense achelense. De acuerdo con el análisis de Fabio Di Vincenzo et al (2015), MK3 añade una gran cantidad de variabilidad al género Homo. El gran tamaño de MK3 sugiere un peso corporal cercano a 90 kg, lejos de la gama del tamaño del cuerpo conocido para los Homo del Pleistoceno temprano.
Los autores sugieren que la dimensión y la morfología de MK3 pueden ser considerados como una exaptación que se convirtió en útil cuando los primeros humanos poblaron altas altitudes, como la cuenca superior del Awash, en la meseta etíope, por encima de 2.000 m de altura. El húmero fue estudiado también por Lague (2015).
OH 9, Chellean Man (Heberer, 1963; Rightmire, 1979). Descubierto por Louis Leakey en 1960 en la garganta de Olduvai (Tanzania). Su edad se estima en 1,5 Ma. Consiste en una bóveda craneal de unos 1065 c.c. de capacidad.
OH 12, Pinhead (Rightmire, 1979). Descubierto por Margaret Cropper en 1962 en la garganta de Olduvai (Tanzania) Es parecido, pero menos completo que OH 9, y su capacidad craneana es menor, sólo 750 c.c. Muy similar a KNM-ER 3733, aunque un millón de años más joven. Su edad está comprendida entre 600 y 800 ka.
OH 23, fragmento de mandíbula, datado en 0,6 Ma.
OH 28 (Rightmire, 1990). Coxis.
OH 34 (Rightmire, 1990). Fémur.
OH 82 (Hlusko, Reiner y Njau, 2015). Ulna. Sedimentos datados en hace ca 1 Ma.
KGA 10-1 (Asfaw et al, 1992). Mandíbula parcial.
KNM-ER 730 (Wood, 1991). Occipital, parietal, frontal y mandíbula parciales.
KNM-ER 736 (Rightmire, 1990). Fémur.
KNM-ER 737 (Rightmire, 1990). Fémur.
KNM-ER 820 (Wood, 1991). Mandíbula de subadulto.
KNM-ER 992 (Wood, 1991). Mandíbula. Holotipo de Homo ergaster.
KNM-ER 1472. (Wood y Collard, 1999). Fémur.
KNM-ER 1481. (Wood y Collard, 1999). Fémur.
KNM-ER 1808 (Walker, Zimmereman y Leakey, 1982). Esqueleto y fragmentos craneales.
KNM-ER 3228. Coxal.
KNM-ER 3733 (Leakey y Walker, 1985). Cráneo.
KNM-ER 3883 (Leakey y Walker, 1985). Cráneo.
KNM-ER 42700 (Spoor et al, 2007). Calvaria de adulto joven hallada en Ileret, Kenia, datada en 1,55 Ma. Su atribución taxonómica está sujeta a controversia (Baab, 2016). El tamaño es de los más pequeños conocidos para erectus. Los análisis morfogeométricos dan como resultado una forma intermedia entre erectus y el HAM (Catherine C. Bauer y Katerina Harvati, 2015).
KNM-WT 15000, Turkana Boy Descubierto por Kamoya Kimeu en 1984 en la ribera del río Nariokotome cerca del lago Turkana (Kenia). (Brown et al. 1985; Leakey and Lewin 1992; Walker and Leakey 1993; Walker and Shipman 1996). Se trata de un esqueleto casi completo de un niño entre 7,6-8,8 años, según estimación a partir de los parámetros dentales (Dean y Smith, 2009) al que le faltan las manos y pies. Es el Homo erectus más completo conocido, con una edad de 1,5 Ma. Su capacidad craneal es de 880 cc, y hubiera alcanzado los 910 cc de completar su desarrollo. Su talla era de 1,60 m. Christopher B. Ruff y M. Loring Burgess (2014) han estimado una estatura adulta de 176-180 cm y una masa corporal adulta de 80-83 kg en base a un patrón de crecimiento similar al de los simios africanos. Los músculos debían de estar muy desarrollados. Excepto por el cráneo, el esqueleto es muy similar al de los niños actuales, con pequeñas diferencias. La forma y el tamaño del canal espinal son similares a los de los HAM (Meyer y Haeusler, 2015). Se ha relacionado con diferentes patologías, sin que exista una conclusión definitiva. La maduración dental y esquelética es más parecida a la de un simio que a la de un humano moderno. El aparato locomotor muestra características totalmente modernas, con posibles adaptaciones para la carrera de resistencia (Marchi et al, 2019).
KNM-WT 51260, tercer metacarpiano hallado en Kaito (oeste del Lago Turkana) en 2012, datado en 1,4 Ma. Según el estudio de Carol WARD V. et al (2013) el hueso se asemeja al de un humano moderno en proporciones generales y morfología. Es el tercero más largo de los Hominini conocidos anteriores a los neandertales y humanos modernos tempranos. En particular,  muestra una apófisis estiloides bien desarrollada, una característica distintivas de la mano moderna y neandertal Neandertal, no presente en los primeros Hominini. Esta proyección ayuda a estabilizar la muñeca cuando la mano está agarrando pequeños objetos entre el pulgar y los dedos. La morfolgía y función de la mano modernas estaban presentes dentro del contexto de la tecnología achelense y sugiere que las actuales características carpometacarpianas evolucionaron temprano, seleccionadas para un mejor manejo de las herramientas.
BSN49/P27. Gona (Simpson et al, 2008). Pelvis. Debió pertenecer a una hembra de tamaño pequeño, pero con una cadera amplia para ese tamaño.
SK 15 (Robinson, 1961; Howell, 1978; Grine, 2001). Mandíbula parcial.
SK 45 (Robinson, 1961; Howell, 1978; Grine, 2001). Mandíbula parcial.
SK 847 (Clarke, Howell y Brain, 1970; Tobias, 1991; Walker, 1981; Kimbel, Johanson y Rak, 1997; Grine, 2001). 
Restos mandibulares, dentales y cráneo parcial, datado en hace 2,3-1,65 Ma. Hay daño provocado por un absceso, y probablemente al menos otros dos, en la cara anterior del maxilar y asociados con los incisivos (Ian Towle y Joel D. Irish, 2019).
SK 1896 (Susman, de Ruiter y Brain, 2001). Fragmento distal de fémur.
SK 2045 (Susman, de Ruiter y Brain, 2001). Fragmento proximal de radio.
SKW(SKX) 34805 (Susman, de Ruiter y Brain, 2001). Fragmento distal grande de húmero.
GAR IVE (Condemi, 2004; Zanolli et al, 2016). Mandíbula parcial inmadura hallada en Garba, Melka Kunture, en 1981. Se trata del representante humano más antiguo en un entorno montañoso, datado en hace ca 1,7 Ma.
Atlanthropus mauritanicus
En 1954-1955 C. Arambourg y R. Hoffstetter hallaron en Tighenif, a 20 km de Mascara, Argelia varios restos incluyendo las mandíbulas Tighenif 1 y 3. Con los hallazgos, Arambourg creó un nuevo género y especie aunque posteriormente se han clasificado dentro de Homo erectus (e.g., Howell, 1960; Geraads et al., 1986; Rightmire, 1990). También podría tratarse de un heidelbergensis muy temprano.
¿heidelbergensis africano?
Los conocimientos actuales sugieren una dicontinuidad filogenética en el momento de la reversión Matuyama / Brunhes hace 780 ka, en posible relación con el fenómeno más general conocido como la Revolución del Pleistoceno Medio (Maslin y Ridgwell, 2005) que, a su vez, corresponde con los drásticos cambios climáticos de MIS 18-16. El periodo entre 900-600 ka es muy pobre en fósiles, pero parece que una especie más encefalizada surge en África y se extiende rápidamente por África y Eurasia. (Homo heidelbergesis según Rightmire, 1998, 2008; Mounier et al, 2009, 2011; Stringer, 2012; pero Arsuaga et al, 2014, 2015; Balter, 2014) donde se encuentra con otros Homo (Profico, 2015). En la capa de achelense de Gombore II, en la zona arqueológica Melka Kunture, el alto valle de Awash, región de Oromia, a unos 50 km al sur de Addis Abeba, a más de 2.000 msnm, aparecieron dos grandes fragmentos craneales, con una datación de ca 850 ka.
En 1973, un parietal izquierdo parcial (Melka Kunture 1, MK1; Oakley et al, 1977), clasificado como Homo cf. erectus (Chavaillon et al 1974; Chavaillon y Coppens, 1975, 1986)
En 1975, una parte derecha del frontal (Melka Kunture 2, MK2).
Probablemente pertenezcan al mismo cráneo.
Con una datación de hace 700 ka se descubrieron huellas humanas, de otros mamíferos y aves, junto a un hipopótamo despiezado. Las huellas descubiertas pertenecen tanto a adultos como a niños, algunos de los cuáles podrían tener un año de edad. Nos sugieren una infancia con más responsabilidades y menos supervisión adulta que en la actualidad (Altamura et al, 2018).
Recreación de la escena según las huellas, herramientas y fauna -Matthew Bennett- Junto a las huellas de los seres humanos aparecieron los restos de un hipopótamo que había sido despiezado por los miembros del grupo, además de escamas de piedra y herramientas confeccionadas allí mismo para realizar la tarea de la obtención de la carne. Huella del pie izquierdo de un adulto - Matthew Bennet - Dentro del conjunto de herramientas se aprecian todas las secuencias de reducción lítica, lo que sugiere que fueron talladas en el mismo lugar del procesado de la carne del hipopótamo. El material utilizado fue la obsidiana; a nivel tipológico los restos líticos se adscriben al Achelense Medio. El descubrimiento de las huellas de los niños revela que los pequeños acompañaban a los adultos a realizar las tareas más importantes para su vida cotidiana y supervivencia, probablemente con la intención de que aprendieran in situ las tareas de talla de herramientas y despiece de los animales desde edades muy tempranas. Tampoco se descarta que las huellas puedan evidenciar juego y entretenimiento de los pequeños mientras los adultos completaban el trabajo. Lo único seguro que podemos concluir es que los niños acompañarían a los grupos móviles de caza, adentrándose en situaciones peligrosas y en la que los adultos no ejercerían la sobreprotección de los hijos a la que estamos acostumbrados en la actualidad. Atendiendo a la morfología de los seres humanos aparecidos en cronologías similares en Melka Kunture, se supone que las huellas pertenecerían a miembros de la especie Homo Heidelbergensis.
MK1. Profico et al, 2015.
MK2. Profico et al, 2015
Para Profico et al (2015) MK1 y MK2 representan un único cráneo de morfología arcaica en su curvatura sagital y transversal:
Rasgos comunes con otros ejemplares arcaicos: ausencia de foramen parietales, el desarrollo de la rama media de los vasos meníngeos, las líneas temporales que recorren el parietal medialmente a la eminencia pariental, las marcadas líneas temporales sobre el hueso frontal y la presencia de un pesado toro frontal.
Rasgos peculiares: espesor notable y fuerte divergencia de las líneas temporales tras la constricción postorbital.
El cráneo muestra afinidades con los erectus africanos (ergaster) y heidelbergesis. MK1 está más cerca de erectus en la curvatura y forma del perfil sagital medio y más cerca de heidelbergensis en las dimesiones absolutas y la curvatura y la forma generales.
Tras la reconstrucción digital, la capacidad craneal se ha estimado en ca 1.080 cc.
El cráneo perteneció a un individuo de unos 35-40 años en el momento de su muerte. 
De acuerdo con el análisis, estos ejemplares llenan un vacío fenético entre grado erectus y heidelbergensis y representan el mejor candidato o el único para el surgimiento de Homo heidelbergensis alrededor de hace ca 800 ka, así como una evidencia de que esta especie probablemente se originó en África antes de su dispersión en Eurasia.
Grado erectus africano
KNM-WT 15000
Por Adam van Arsdale
 Enlaces:
Brown, F., Harris, J., Leakey, R., & Walker, A. (1985). Early Homo erectus skeleton from west lake Turkana, Kenya. Nature, 316(6031), 788-792. 
Te puede interesar:
Compendio de evolución humana: menú general
Grado erectus
Cambios climáticos en el Pleistoceno
Grado erectus
ergaster y erectus
Interpretaciones
Morfología
Modo de vida
La salida de África del erectus
El grado erectus en Java
El grado erectus en China
El grado erectus en África
El grado erectus en Europa
Los denisovanos
4 notes · View notes
Photo
Tumblr media
Earth's last magnetic field reversal took far longer than once thought Earth's magnetic field seems steady and true -- reliable enough to navigate by. Yet, largely hidden from daily life, the field drifts, waxes and wanes. The magnetic North Pole is currently careening toward Siberia, which recently forced the Global Positioning System that underlies modern navigation to update its software sooner than expected to account for the shift. And every several hundred thousand years or so, the magnetic field dramatically shifts and reverses its polarity: Magnetic north shifts to the geographic South Pole and, eventually, back again. This reversal has happened countless times over the Earth's history, but scientists have only a limited understanding of why the field reverses and how it happens. New work from University of Wisconsin-Madison geologist Brad Singer and his colleagues finds that the most recent field reversal, some 770,000 years ago, took at least 22,000 years to complete. That's several times longer than previously thought, and the results further call into question controversial findings that some reversals could occur within a human lifetime. The new analysis -- based on advances in measurement capabilities and a global survey of lava flows, ocean sediments and Antarctic ice cores -- provides a detailed look at a turbulent time for Earth's magnetic field. Over millennia, the field weakened, partially shifted, stabilized again and then finally reversed for good to the orientation we know today. The results provide a clearer and more nuanced picture of reversals at a time when some scientists believe we may be experiencing the early stages of a reversal as the field weakens and moves. Other researchers dispute the notion of a present-day reversal, which would likely affect our heavily electronic world in unusual ways. Singer published his work Aug. 7 in the journal Science Advances. He collaborated with researchers at Kumamoto University in Japan and the University of California, Santa Cruz. "Reversals are generated in the deepest parts of the Earth's interior, but the effects manifest themselves all the way through the Earth and especially at the Earth's surface and in the atmosphere," explains Singer. "Unless you have a complete, accurate and high-resolution record of what a field reversal really is like at the surface of the Earth, it's difficult to even discuss what the mechanics of generating a reversal are." Earth's magnetic field is produced by the planet's liquid iron outer core as it spins around the solid inner core. This dynamo action creates a field that is most stable going through roughly the geographic North and South poles, but the field shifts and weakens significantly during reversals. As new rocks form -- typically either as volcanic lava flows or sediments being deposited on the sea floor -- they record the magnetic field at the time they were created. Geologists like Singer can survey this global record to piece together the history of magnetic fields going back millions of years. The record is clearest for the most recent reversal, named Matuyama-Brunhes after the researchers who first described reversals. For the current analysis, Singer and his team focused on lava flows from Chile, Tahiti, Hawaii, the Caribbean and the Canary Islands. The team collected samples from these lava flows over several field seasons. "Lava flows are ideal recorders of the magnetic field. They have a lot of iron-bearing minerals, and when they cool, they lock in the direction of the field," says Singer. "But it's a spotty record. No volcanoes are erupting continuously. So we're relying on careful field work to identify the right records." The researchers combined magnetic readings and radioisotope dating of samples from seven lava flow sequences to recreate the magnetic field over a span of about 70,000 years centered on the Matuyama-Brunhes reversal. They relied on upgraded methods developed in Singer's WiscAr geochronology lab to more accurately date the lava flows by measuring the argon produced from radioactive decay of potassium in the rocks. They found that the final reversal was quick by geological standards, less than 4,000 years. But it was preceded by an extended period of instability that included two excursions -- temporary, partial reversals -- stretching back another 18,000 years. That span is more than twice as long as suggested by recent proposals that all reversals wrap up within 9,000 years. The lava flow data was corroborated by magnetic readings from the seafloor, which provides a more continuous but less precise source of data than lava rocks. The researchers also used Antarctic ice cores to track the deposition of beryllium, which is produced by cosmic radiation colliding with the atmosphere. When the magnetic field is reversing, it weakens and allows more radiation to strike the atmosphere, producing more beryllium. Since humanity began recording the strength of the magnetic field, it has decreased in strength about five percent each century. As records like Singer's show, a weakening field seems to be a precursor to an eventual reversal, although it's far from clear that a reversal is imminent. A reversing field might significantly affect navigation and satellite and terrestrial communication. But the current study suggests that society would have generations to adapt to a lengthy period of magnetic instability. "I've been working on this problem for 25 years," says Singer, who stumbled into paleomagnetism when he realized the volcanoes he was studying served as a good record of Earth's magnetic fields. "And now we have a richer record and better-dated record of this last reversal than ever before."
3 notes · View notes
namid-a-a · 7 years
Photo
Tumblr media
2泊3日の初松山。 吹き抜けた天井のようなホールの松山三越にて今までで一番広いポップアップショップを作らせて頂きました。 手応えあり四国初のFUKUNARY。 たくさんのお客さんに楽しんでいただけてたように思います。 新しい出会い、つい最近の出店でお会いした人との再開、親友くんとワンコの応援を頂き出張終了です。 ポップアップは4月3日まで! 引き続きよろしくお願いしますm(_ _)m 松山のみなさま、大変お世話になりました。また是非お会いしましょう★ ✱ #FUKUNARY #EHIME #matuyama #松山三越 #shop #出張 #広島 #愛媛 #松山 #ポップアップ #ショップ (松山三越)
0 notes
greed-matsuyama · 2 years
Photo
Tumblr media
☆☆☆ HYSTERIC GLAMOUR :VIXEN GIRL刺繍 Tシャツ color:WHITE・NAVY・BLACK size:M・L・XL / / ヴィクセンガールが刺繍で 更にカッコよく展開‼️ / / 1枚着でも インナー使いでも どの色でも🎉 / / 渋い。ヴィクセン。 やっぱり好きです😍 / / ストレートに ヒステリックグラマー👍🏻 / / @greedmatsuyama #hystericglamour #ヒステリックグラマー松山 #tシャツ #tshirts #fashion #selectshop #greed #matuyama #ehime #松山 #愛媛 (Greed Matsuyama) https://www.instagram.com/p/Cc1wTuCPryS/?igshid=NGJjMDIxMWI=
0 notes
earthstory · 6 years
Photo
Tumblr media
Flip Flops during the Jurassic
We are familiar with the Earth’s geomagnetic field and how it acts as a shield, protecting us from magnetic storms from the sun. Evidence of such storms can be witnessed during spectacular shows in the night sky in the northern and southern latitudes producing the Aurora borealis and the Aurora Australis, respectively (http://on.fb.me/1MfWBmb).
This geomagnetic field is the physical property of the Earth that enables magnetic compasses to point towards the north-pole. However, this has not been the case throughout our planet’s history. The polarity of the Earth’s geomagnetic field has undergone reversals – yes, our hiking compasses would point towards the south-pole during such periods. The geomagnetic field is a dynamic property that has the potential to change from milliseconds to millions of years. In 1906, geophysicists Bernard Brunhes and Motonori Matuyama identified the last time a geomagnetic reversal occurred – 780,000 years ago and named it the Brunhes-Matuyama reversal. Today, scientists are curious to understand reversals during the Jurassic period (145 – 200 million years ago), when a peculiar anomaly occurred. Scientists originally thought that during this period, no geomagnetic reversals happened. However, recent data from the volcanic sea floors of the Pacific Ocean reveals a different story.
Previously, measurements of the Earth’s magnetic field were carried out by towing magnetometers on a research vessel along the volcanic sea floors. This did not reveal sufficient information from deeper and harder to reach ocean areas. However, these days with a giant leap in underwater technology available for scientific study, scientists use autonomous underwater vehicles (AUV) to reach parts of the volcanic sea floors that have been out of reach previously.
The data using new technology reveals that geomagnetic reversals were ‘flipping and flopping’ so fast that it did not regain full strength as of today’s geomagnetic strength. This detail went unnoticed previously. The low strength of the geomagnetic field is distinctive to the Jurassic period and unique to the history of the Earth’s geomagnetic reversal. Understanding this period of the geomagnetic field’s behavior provides important data and clues for computer simulations (photo) to predict future reversals. This is a story how advances in technology aid in deeper understanding of our dynamic planet.
Nate
Image Credit: Gary A Glatzmeier http://bit.ly/1MMzkht
Source: http://1.usa.gov/1NTpdEv
135 notes · View notes