#streamlit
Explore tagged Tumblr posts
nschool · 2 days ago
Text
The Best Open-Source Tools for Data Science in 2025
Tumblr media
Data science in 2025 is thriving, driven by a robust ecosystem of open-source tools that empower professionals to extract insights, build predictive models, and deploy data-driven solutions at scale. This year, the landscape is more dynamic than ever, with established favorites and emerging contenders shaping how data scientists work. Here’s an in-depth look at the best open-source tools that are defining data science in 2025.
1. Python: The Universal Language of Data Science
Python remains the cornerstone of data science. Its intuitive syntax, extensive libraries, and active community make it the go-to language for everything from data wrangling to deep learning. Libraries such as NumPy and Pandas streamline numerical computations and data manipulation, while scikit-learn is the gold standard for classical machine learning tasks.
NumPy: Efficient array operations and mathematical functions.
Pandas: Powerful data structures (DataFrames) for cleaning, transforming, and analyzing structured data.
scikit-learn: Comprehensive suite for classification, regression, clustering, and model evaluation.
Python’s popularity is reflected in the 2025 Stack Overflow Developer Survey, with 53% of developers using it for data projects.
2. R and RStudio: Statistical Powerhouses
R continues to shine in academia and industries where statistical rigor is paramount. The RStudio IDE enhances productivity with features for scripting, debugging, and visualization. R’s package ecosystem—especially tidyverse for data manipulation and ggplot2 for visualization—remains unmatched for statistical analysis and custom plotting.
Shiny: Build interactive web applications directly from R.
CRAN: Over 18,000 packages for every conceivable statistical need.
R is favored by 36% of users, especially for advanced analytics and research.
3. Jupyter Notebooks and JupyterLab: Interactive Exploration
Jupyter Notebooks are indispensable for prototyping, sharing, and documenting data science workflows. They support live code (Python, R, Julia, and more), visualizations, and narrative text in a single document. JupyterLab, the next-generation interface, offers enhanced collaboration and modularity.
Over 15 million notebooks hosted as of 2025, with 80% of data analysts using them regularly.
4. Apache Spark: Big Data at Lightning Speed
As data volumes grow, Apache Spark stands out for its ability to process massive datasets rapidly, both in batch and real-time. Spark’s distributed architecture, support for SQL, machine learning (MLlib), and compatibility with Python, R, Scala, and Java make it a staple for big data analytics.
65% increase in Spark adoption since 2023, reflecting its scalability and performance.
5. TensorFlow and PyTorch: Deep Learning Titans
For machine learning and AI, TensorFlow and PyTorch dominate. Both offer flexible APIs for building and training neural networks, with strong community support and integration with cloud platforms.
TensorFlow: Preferred for production-grade models and scalability; used by over 33% of ML professionals.
PyTorch: Valued for its dynamic computation graph and ease of experimentation, especially in research settings.
6. Data Visualization: Plotly, D3.js, and Apache Superset
Effective data storytelling relies on compelling visualizations:
Plotly: Python-based, supports interactive and publication-quality charts; easy for both static and dynamic visualizations.
D3.js: JavaScript library for highly customizable, web-based visualizations; ideal for specialists seeking full control.
Apache Superset: Open-source dashboarding platform for interactive, scalable visual analytics; increasingly adopted for enterprise BI.
Tableau Public, though not fully open-source, is also popular for sharing interactive visualizations with a broad audience.
7. Pandas: The Data Wrangling Workhorse
Pandas remains the backbone of data manipulation in Python, powering up to 90% of data wrangling tasks. Its DataFrame structure simplifies complex operations, making it essential for cleaning, transforming, and analyzing large datasets.
8. Scikit-learn: Machine Learning Made Simple
scikit-learn is the default choice for classical machine learning. Its consistent API, extensive documentation, and wide range of algorithms make it ideal for tasks such as classification, regression, clustering, and model validation.
9. Apache Airflow: Workflow Orchestration
As data pipelines become more complex, Apache Airflow has emerged as the go-to tool for workflow automation and orchestration. Its user-friendly interface and scalability have driven a 35% surge in adoption among data engineers in the past year.
10. MLflow: Model Management and Experiment Tracking
MLflow streamlines the machine learning lifecycle, offering tools for experiment tracking, model packaging, and deployment. Over 60% of ML engineers use MLflow for its integration capabilities and ease of use in production environments.
11. Docker and Kubernetes: Reproducibility and Scalability
Containerization with Docker and orchestration via Kubernetes ensure that data science applications run consistently across environments. These tools are now standard for deploying models and scaling data-driven services in production.
12. Emerging Contenders: Streamlit and More
Streamlit: Rapidly build and deploy interactive data apps with minimal code, gaining popularity for internal dashboards and quick prototypes.
Redash: SQL-based visualization and dashboarding tool, ideal for teams needing quick insights from databases.
Kibana: Real-time data exploration and monitoring, especially for log analytics and anomaly detection.
Conclusion: The Open-Source Advantage in 2025
Open-source tools continue to drive innovation in data science, making advanced analytics accessible, scalable, and collaborative. Mastery of these tools is not just a technical advantage—it’s essential for staying competitive in a rapidly evolving field. Whether you’re a beginner or a seasoned professional, leveraging this ecosystem will unlock new possibilities and accelerate your journey from raw data to actionable insight.
The future of data science is open, and in 2025, these tools are your ticket to building smarter, faster, and more impactful solutions.
0 notes
damilola-doodles · 20 days ago
Text
📌Project Title: AI-Driven Real-Time Fraud Detection System for Banking Transactions with Interactive Dashboard.🔴
ai-ml-ds-finance-fraud-detect-008 Filename: real_time_fraud_detection_dashboard.py Timestamp: Mon Jun 02 2025 19:20:58 GMT+0000 (Coordinated Universal Time) Problem Domain:Financial Services, Banking, Fraud Detection, Anomaly Detection, Real-Time Systems (Simulated), Machine Learning, Data Visualization. Project Description:This project focuses on building an AI-driven system for detecting…
0 notes
dammyanimation · 20 days ago
Text
📌Project Title: AI-Driven Real-Time Fraud Detection System for Banking Transactions with Interactive Dashboard.🔴
ai-ml-ds-finance-fraud-detect-008 Filename: real_time_fraud_detection_dashboard.py Timestamp: Mon Jun 02 2025 19:20:58 GMT+0000 (Coordinated Universal Time) Problem Domain:Financial Services, Banking, Fraud Detection, Anomaly Detection, Real-Time Systems (Simulated), Machine Learning, Data Visualization. Project Description:This project focuses on building an AI-driven system for detecting…
0 notes
damilola-ai-automation · 20 days ago
Text
📌Project Title: AI-Driven Real-Time Fraud Detection System for Banking Transactions with Interactive Dashboard.🔴
ai-ml-ds-finance-fraud-detect-008 Filename: real_time_fraud_detection_dashboard.py Timestamp: Mon Jun 02 2025 19:20:58 GMT+0000 (Coordinated Universal Time) Problem Domain:Financial Services, Banking, Fraud Detection, Anomaly Detection, Real-Time Systems (Simulated), Machine Learning, Data Visualization. Project Description:This project focuses on building an AI-driven system for detecting…
0 notes
damilola-warrior-mindset · 20 days ago
Text
📌Project Title: AI-Driven Real-Time Fraud Detection System for Banking Transactions with Interactive Dashboard.🔴
ai-ml-ds-finance-fraud-detect-008 Filename: real_time_fraud_detection_dashboard.py Timestamp: Mon Jun 02 2025 19:20:58 GMT+0000 (Coordinated Universal Time) Problem Domain:Financial Services, Banking, Fraud Detection, Anomaly Detection, Real-Time Systems (Simulated), Machine Learning, Data Visualization. Project Description:This project focuses on building an AI-driven system for detecting…
0 notes
damilola-moyo · 20 days ago
Text
📌Project Title: AI-Driven Real-Time Fraud Detection System for Banking Transactions with Interactive Dashboard.🔴
ai-ml-ds-finance-fraud-detect-008 Filename: real_time_fraud_detection_dashboard.py Timestamp: Mon Jun 02 2025 19:20:58 GMT+0000 (Coordinated Universal Time) Problem Domain:Financial Services, Banking, Fraud Detection, Anomaly Detection, Real-Time Systems (Simulated), Machine Learning, Data Visualization. Project Description:This project focuses on building an AI-driven system for detecting…
0 notes
ibuilder · 1 month ago
Text
gcPanel Streamlit: Interactive Gas Chromatography Data Visualization
Introduction gcPanel Streamlit is an open-source project hosted on GitHub (ibuilder/gcPanel-Streamlit) that leverages Streamlit’s interactive web application framework to visualize and analyze gas chromatography (GC) data. Created to address the need for more accessible and user-friendly tools in analytical chemistry, gcPanel offers scientists and researchers a modern alternative to traditional…
0 notes
erickayscifi · 1 month ago
Text
Looking for data content? Check out Hoyt Emerson's page.
0 notes
pythonfullstackmasters · 2 months ago
Text
Tumblr media
🚀 Trending Niches for Python Full Stack Devs in 2025 💻
Want to level up your career as a Python developer? Here are the top niches to tap into this year:
✨ AI-Powered SaaS Tools ⚡ Serverless Full Stack Apps 💡 Micro SaaS for Freelancers 🛠️ HTMX + Django (No heavy JS!) 📊 Custom Dashboards & Internal Tools
Whether you're building your portfolio or launching your first SaaS, these are the trends that matter. Stay ahead. Stay relevant.
📚 ENROLL NOW at Python Full Stack Masters and start building real-world projects that make an impact!
🔗 www.pythonfullstackmasters.in 📞 +91 9704944488
0 notes
track-maniac · 11 months ago
Text
I used to like streamlit because it let me make experiments in my browser but the people at work made me change my mind. Some idiot let a data scientist use it to build a whole web app. These people can barely make proper python code to manipulate data, who tf thought it would be a good idea to let them make a website from that.
Now they're asking me to add a feature to 1200 lines of uncommented, badly written python code.
I don't dare run pylint because I fear the score might be negative
1 note · View note
satyakideworld · 1 year ago
Text
Building a real-time streamlit app by consuming events from Ably channels
In this post, I'll demonstrate the use of Real-time streamlit app to consume events from Ably channel using Python. #python #ably #streamlit #cloud #realtime
I’ll bring an exciting streamlit app that will reflect the real-time dashboard by consuming all the events from the Ably channel. “Coming Soon!”
Tumblr media
View On WordPress
0 notes
tsubakicraft · 2 years ago
Text
コード生成AIのデモ
モノづくり塾のサーバーで稼働しているCode Llamaベースのコード生成AIアプリケーションを動かした様子を動画にしました。 動画の内容は、 塾のダッシュ��ードからコード生成AIアプリケーションを開く コード生成を依頼する 生成されたコードを実際に動かす というものです。 言語モデルはCode Llamaに日本語追加学習を行ったELYZA社のモデル。llama-cpp-pythonを使いstreamlitでWeb UIを作っています。Dockerizeされているのでリポジトリからクローンしてdocker-composeで即稼働開始できます。 サーバーはCore i5 13400搭載の自作PCでUbuntu Server 22.04で動いています。 ブラウザを動かしているPCは6年ほど前のCore…
Tumblr media
View On WordPress
0 notes
datasciencewithpartha · 2 years ago
Text
0 notes
stone-cold-groove · 7 months ago
Text
Tumblr media
Strong and sexy. Samsonite Streamlite luggage ad - 1945.
11 notes · View notes
kindsonthegenius · 2 months ago
Video
youtube
Ollama vs OpenAI: Build Your Own Chatbot with Streamlit - Complete Step ...
0 notes
news-ai · 2 years ago
Text
youtube
Dans cette vidéo, l'auteur explique comment construire un agent conversationnel à l'aide d'un grand modèle linguistique nommé "Code Llama 34b", en utilisant le framework Streamlit. La première étape consiste à installer Streamlit et la bibliothèque Transformers sur votre machine. Le code est écrit dans un seul fichier Python, simple et court, contenant quelques méthodes utilitaires.
L'agent conversationnel construit peut répondre à des questions de codage. Pour lancer l'application Streamlit, une commande unique est utilisée dans le répertoire contenant le fichier Python. La méthode principale `load_models` charge le modèle en utilisant une configuration standard et un tokenizer adapté. L'auteur souligne qu'il n'utilise pas les méthodes de mise en cache de Streamlit pour charger le modèle, car elles sont conçues pour des fonctions légères et sans effet de bord, alors que le chargement de grands modèles linguistiques est complexe et pourrait impacter les performances de l'application.
Le script utilise également `st.session_state` pour maintenir l'état de la conversation entre les exécutions du script. Cette fonctionnalité permet de conserver l'historique de la conversation. Les messages sont stockés dans `st.session_state.messages`, permettant à l'application de maintenir le contexte de la conversation.
Plusieurs fonctions utilitaires sont utilisées pour gérer la conversation, comme la création de paires de conversation et la construction de l'invite pour le modèle. La fonction `generate_response` construit l'invite en intégrant l'instruction de l'utilisateur avec l'historique de la conversation, en respectant les limites de tokens du modèle. Elle utilise un thread séparé pour exécuter de manière asynchrone la fonction de génération du modèle, permettant à l'application Streamlit de rester réactive.
Enfin, l'auteur explique le fonctionnement du script principal et comment il gère l'entrée utilisateur et génère des réponses. L'application Streamlit est réactive, se mettant à jour dynamiquement avec de nouveaux messages et réponses, tout en maintenant l'historique de la conversation dans `st.session_state.messages`.
Pour utiliser l'application, il suffit d'exécuter le fichier Python avec la commande Streamlit appropriée. L'auteur promet d'autres vidéos similaires dans les semaines à venir.
0 notes