Tumgik
#Yoel Fink
sunaleisocial · 1 month
Text
This sound-suppressing silk can create quiet spaces
New Post has been published on https://sunalei.org/news/this-sound-suppressing-silk-can-create-quiet-spaces/
This sound-suppressing silk can create quiet spaces
Tumblr media
We are living in a very noisy world. From the hum of traffic outside your window to the next-door neighbor’s blaring TV to sounds from a co-worker’s cubicle, unwanted noise remains a resounding problem.
To cut through the din, an interdisciplinary collaboration of researchers from MIT and elsewhere developed a sound-suppressing silk fabric that could be used to create quiet spaces.
The fabric, which is barely thicker than a human hair, contains a special fiber that vibrates when a voltage is applied to it. The researchers leveraged those vibrations to suppress sound in two different ways.
In one, the vibrating fabric generates sound waves that interfere with an unwanted noise to cancel it out, similar to noise-canceling headphones, which work well in a small space like your ears but do not work in large enclosures like rooms or planes.
In the other, more surprising technique, the fabric is held still to suppress vibrations that are key to the transmission of sound. This prevents noise from being transmitted through the fabric and quiets the volume beyond. This second approach allows for noise reduction in much larger spaces like rooms or cars.
By using common materials like silk, canvas, and muslin, the researchers created noise-suppressing fabrics which would be practical to implement in real-world spaces. For instance, one could use such a fabric to make dividers in open workspaces or thin fabric walls that prevent sound from getting through.
“Noise is a lot easier to create than quiet. In fact, to keep noise out we dedicate a lot of space to thick walls. [First author] Grace’s work provides a new mechanism for creating quiet spaces with a thin sheet of fabric,” says Yoel Fink, a professor in the departments of Materials Science and Engineering and Electrical Engineering and Computer Science, a Research Laboratory of Electronics principal investigator, and senior author of a paper on the fabric.
The study’s lead author is Grace (Noel) Yang SM ’21, PhD ’24. Co-authors include MIT graduate students Taigyu Joo, Hyunhee Lee, Henry Cheung, and Yongyi Zhao; Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering at MIT; graduate student Guanchun Rui and professor Lei Zhu of Case Western University; graduate student Jinuan Lin and Assistant Professor Chu Ma of the University of Wisconsin at Madison; and Latika Balachander, a graduate student at the Rhode Island School of Design. An open-access paper about the research appeared recently in Advanced Materials.
Silky silence
The sound-suppressing silk builds off the group’s prior work to create fabric microphones.
In that research, they sewed a single strand of piezoelectric fiber into fabric. Piezoelectric materials produce an electrical signal when squeezed or bent. When a nearby noise causes the fabric to vibrate, the piezoelectric fiber converts those vibrations into an electrical signal, which can capture the sound.
In the new work, the researchers flipped that idea to create a fabric loudspeaker that can be used to cancel out soundwaves.
“While we can use fabric to create sound, there is already so much noise in our world. We thought creating silence could be even more valuable,” Yang says.
Applying an electrical signal to the piezoelectric fiber causes it to vibrate, which generates sound. The researchers demonstrated this by playing Bach’s “Air” using a 130-micrometer sheet of silk mounted on a circular frame.
To enable direct sound suppression, the researchers use a silk fabric loudspeaker to emit sound waves that destructively interfere with unwanted sound waves. They control the vibrations of the piezoelectric fiber so that sound waves emitted by the fabric are opposite of unwanted sound waves that strike the fabric, which can cancel out the noise.
However, this technique is only effective over a small area. So, the researchers built off this idea to develop a technique that uses fabric vibrations to suppress sound in much larger areas, like a bedroom.
Let’s say your next-door neighbors are playing foosball in the middle of the night. You hear noise in your bedroom because the sound in their apartment causes your shared wall to vibrate, which forms sound waves on your side.
To suppress that sound, the researchers could place the silk fabric onto your side of the shared wall, controlling the vibrations in the fiber to force the fabric to remain still. This vibration-mediated suppression prevents sound from being transmitted through the fabric.
“If we can control those vibrations and stop them from happening, we can stop the noise that is generated, as well,” Yang says.
A mirror for sound
Surprisingly, the researchers found that holding the fabric still causes sound to be reflected by the fabric, resulting in a thin piece of silk that reflects sound like a mirror does with light.
Their experiments also revealed that both the mechanical properties of a fabric and the size of its pores affect the efficiency of sound generation. While silk and muslin have similar mechanical properties, the smaller pore sizes of silk make it a better fabric loudspeaker.
But the effective pore size also depends on the frequency of sound waves. If the frequency is low enough, even a fabric with relatively large pores could function effectively, Yang says.
When they tested the silk fabric in direct suppression mode, the researchers found that it could significantly reduce the volume of sounds up to 65 decibels (about as loud as enthusiastic human conversation). In vibration-mediated suppression mode, the fabric could reduce sound transmission up to 75 percent.
These results were only possible due to a robust group of collaborators, Fink says. Graduate students at the Rhode Island School of Design helped the researchers understand the details of constructing fabrics; scientists at the University of Wisconsin at Madison conducted simulations; researchers at Case Western Reserve University characterized materials; and chemical engineers in the Smith Group at MIT used their expertise in gas membrane separation to measure airflow through the fabric.
Moving forward, the researchers want to explore the use of their fabric to block sound of multiple frequencies. This would likely require complex signal processing and additional electronics.
In addition, they want to further study the architecture of the fabric to see how changing things like the number of piezoelectric fibers, the direction in which they are sewn, or the applied voltages could improve performance.
“There are a lot of knobs we can turn to make this sound-suppressing fabric really effective. We want to get people thinking about controlling structural vibrations to suppress sound. This is just the beginning,” says Yang.
This work is funded, in part, by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Threat Reduction Agency (DTRA), and the Wisconsin Alumni Research Foundation.
0 notes
jcmarchi · 1 month
Text
This sound-suppressing silk can create quiet spaces
New Post has been published on https://thedigitalinsider.com/this-sound-suppressing-silk-can-create-quiet-spaces/
This sound-suppressing silk can create quiet spaces
Tumblr media Tumblr media
We are living in a very noisy world. From the hum of traffic outside your window to the next-door neighbor’s blaring TV to sounds from a co-worker’s cubicle, unwanted noise remains a resounding problem.
To cut through the din, an interdisciplinary collaboration of researchers from MIT and elsewhere developed a sound-suppressing silk fabric that could be used to create quiet spaces.
The fabric, which is barely thicker than a human hair, contains a special fiber that vibrates when a voltage is applied to it. The researchers leveraged those vibrations to suppress sound in two different ways.
In one, the vibrating fabric generates sound waves that interfere with an unwanted noise to cancel it out, similar to noise-canceling headphones, which work well in a small space like your ears but do not work in large enclosures like rooms or planes.
In the other, more surprising technique, the fabric is held still to suppress vibrations that are key to the transmission of sound. This prevents noise from being transmitted through the fabric and quiets the volume beyond. This second approach allows for noise reduction in much larger spaces like rooms or cars.
By using common materials like silk, canvas, and muslin, the researchers created noise-suppressing fabrics which would be practical to implement in real-world spaces. For instance, one could use such a fabric to make dividers in open workspaces or thin fabric walls that prevent sound from getting through.
“Noise is a lot easier to create than quiet. In fact, to keep noise out we dedicate a lot of space to thick walls. [First author] Grace’s work provides a new mechanism for creating quiet spaces with a thin sheet of fabric,” says Yoel Fink, a professor in the departments of Materials Science and Engineering and Electrical Engineering and Computer Science, a Research Laboratory of Electronics principal investigator, and senior author of a paper on the fabric.
The study’s lead author is Grace (Noel) Yang SM ’21, PhD ’24. Co-authors include MIT graduate students Taigyu Joo, Hyunhee Lee, Henry Cheung, and Yongyi Zhao; Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering at MIT; graduate student Guanchun Rui and professor Lei Zhu of Case Western University; graduate student Jinuan Lin and Assistant Professor Chu Ma of the University of Wisconsin at Madison; and Latika Balachander, a graduate student at the Rhode Island School of Design. An open-access paper about the research appeared recently in Advanced Materials.
Silky silence
The sound-suppressing silk builds off the group’s prior work to create fabric microphones.
In that research, they sewed a single strand of piezoelectric fiber into fabric. Piezoelectric materials produce an electrical signal when squeezed or bent. When a nearby noise causes the fabric to vibrate, the piezoelectric fiber converts those vibrations into an electrical signal, which can capture the sound.
In the new work, the researchers flipped that idea to create a fabric loudspeaker that can be used to cancel out soundwaves.
“While we can use fabric to create sound, there is already so much noise in our world. We thought creating silence could be even more valuable,” Yang says.
Applying an electrical signal to the piezoelectric fiber causes it to vibrate, which generates sound. The researchers demonstrated this by playing Bach’s “Air” using a 130-micrometer sheet of silk mounted on a circular frame.
To enable direct sound suppression, the researchers use a silk fabric loudspeaker to emit sound waves that destructively interfere with unwanted sound waves. They control the vibrations of the piezoelectric fiber so that sound waves emitted by the fabric are opposite of unwanted sound waves that strike the fabric, which can cancel out the noise.
However, this technique is only effective over a small area. So, the researchers built off this idea to develop a technique that uses fabric vibrations to suppress sound in much larger areas, like a bedroom.
Let’s say your next-door neighbors are playing foosball in the middle of the night. You hear noise in your bedroom because the sound in their apartment causes your shared wall to vibrate, which forms sound waves on your side.
To suppress that sound, the researchers could place the silk fabric onto your side of the shared wall, controlling the vibrations in the fiber to force the fabric to remain still. This vibration-mediated suppression prevents sound from being transmitted through the fabric.
“If we can control those vibrations and stop them from happening, we can stop the noise that is generated, as well,” Yang says.
A mirror for sound
Surprisingly, the researchers found that holding the fabric still causes sound to be reflected by the fabric, resulting in a thin piece of silk that reflects sound like a mirror does with light.
Their experiments also revealed that both the mechanical properties of a fabric and the size of its pores affect the efficiency of sound generation. While silk and muslin have similar mechanical properties, the smaller pore sizes of silk make it a better fabric loudspeaker.
But the effective pore size also depends on the frequency of sound waves. If the frequency is low enough, even a fabric with relatively large pores could function effectively, Yang says.
When they tested the silk fabric in direct suppression mode, the researchers found that it could significantly reduce the volume of sounds up to 65 decibels (about as loud as enthusiastic human conversation). In vibration-mediated suppression mode, the fabric could reduce sound transmission up to 75 percent.
These results were only possible due to a robust group of collaborators, Fink says. Graduate students at the Rhode Island School of Design helped the researchers understand the details of constructing fabrics; scientists at the University of Wisconsin at Madison conducted simulations; researchers at Case Western Reserve University characterized materials; and chemical engineers in the Smith Group at MIT used their expertise in gas membrane separation to measure airflow through the fabric.
Moving forward, the researchers want to explore the use of their fabric to block sound of multiple frequencies. This would likely require complex signal processing and additional electronics.
In addition, they want to further study the architecture of the fabric to see how changing things like the number of piezoelectric fibers, the direction in which they are sewn, or the applied voltages could improve performance.
“There are a lot of knobs we can turn to make this sound-suppressing fabric really effective. We want to get people thinking about controlling structural vibrations to suppress sound. This is just the beginning,” says Yang.
This work is funded, in part, by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Threat Reduction Agency (DTRA), and the Wisconsin Alumni Research Foundation.
0 notes
customdesignnnn · 2 years
Text
Three from MIT awarded 2022 Paul and Daisy Soros Fellowships for New Americans | MIT News
Three from MIT awarded 2022 Paul and Daisy Soros Fellowships for New Americans | MIT News
MIT graduate student Fernanda De La Torre, alumni of Trang Luu ’18, SM’20, and senior Syamantak Payra are the 2022 recipients of Paul and Daisy Soros Fellowships for New American. De La Torre, Luu, and Payra are among the 30 New Americans selected from a pool of over 1,800 applicants. The partnership honors the contributions of immigrants and immigrant children by providing $ 90,000 in…
View On WordPress
0 notes
eretzyisrael · 7 years
Link
“The Boston Israeli community is very talented and accomplished,” says Dan Trajman, president and CEO of the New England Israel Business Council. He estimates that roughly 25,000 Israelis live in the Boston area.
“Most Israelis who come to Boston are coming to study at the top universities in the area, to do research, to start a company or because they are being relocated by their company. It started in the 1960s and grew since then. There are several generations of successful Israelis, some already retired and some in their prime right now,” Trajman tells ISRAEL21c.
Israelis are active in Boston-area academia, healthcare, retail and other fields. In high-tech alone, about 250 Israeli-founded companies have set up shop here.
Read More: Israel21c
8 notes · View notes
softrobotcritics · 3 years
Text
Programmable fiber
FOR IMMEDIATE RELEASE: Thursday, June 3, 2021
Contact: Abby Abazorius, MIT News Office [email protected]; 617.253.2709
Engineers create a programmable fiber
In a first, the digital fiber contains memory, temperature sensors, and a trained neural network program for inferring physical activity.
CAMBRIDGE, Mass. -- MIT researchers have created the first fiber with digital capabilities, able to sense, store, analyze, and infer activity after being sewn into a shirt.
Yoel Fink, who is a professor of material sciences and electrical engineering, a Research Laboratory of Electronics principal investigator, and the senior author on the study, says digital fibers expand the possibilities for fabrics to uncover the context of hidden patterns in the human body that could be used for physical performance monitoring, medical inference, and early disease detection.
Or, you might someday store your wedding music in the gown you wore on the big day — more on that later.
Fink and his colleagues describe the features of the digital fiber today in Nature Communications. Until now, electronic fibers have been analog — carrying a continuous electrical signal — rather than digital, where discrete bits of information can be encoded and processed in 0s and 1s.
“This work presents the first realization of a fabric with the ability to store and process data digitally, adding a new information content dimension to textiles and allowing fabrics to be programmed literally,” Fink says.
MIT PhD student Gabriel Loke and MIT postdoc Tural Khudiyev are the lead authors on the paper. Other co-authors MIT postdoc Wei Yan; MIT undergraduates Brian Wang, Stephanie Fu, Ioannis Chatziveroglou, Syamantak Payra, Yorai Shaoul, Johnny Fung, and Itamar Chinn; John Joannopoulos, the Francis Wright Davis Chair Professor of Physics and director of the Institute for Soldier Nanotechnologies at MIT; Harrisburg University of Science and Technology master’s student Pin-Wen Chou; and Rhode Island School of Design Associate Professor Anna Gitelson-Kahn. The fabric work was facilitated by Professor Anais Missakian, who holds the Pevaroff-Cohn Family Endowed Chair in Textiles at RISD.
Memory and more
The new fiber was created by placing hundreds of square silicon microscale digital chips into a preform that was then used to create a polymer fiber. By precisely controlling the polymer flow, the researchers were able to create a fiber with continuous electrical connection between the chips over a length of tens of meters.
The fiber itself is thin and flexible and can be passed through a needle, sewn into fabrics, and washed at least 10 times without breaking down. According to Loke, “When you put it into a shirt, you can’t feel it at all. You wouldn’t know it was there.”
Making a digital fiber “opens up different areas of opportunities and actually solves some of the problems of functional fibers,” he says.
For instance, it offers a way to control individual elements within a fiber, from one point at the fiber’s end. “You can think of our fiber as a corridor, and the elements are like rooms, and they each have their own unique digital room numbers,” Loke explains. The research team devised a digital addressing method that allows them to “switch on” the functionality of one element without turning on all the elements.
A digital fiber can also store a lot of information in memory. The researchers were able to write, store, and read information on the fiber, including a 767-kilobit full-color short movie file and a 0.48 megabyte music file. The files can be stored for two months without power.
When they were dreaming up “crazy ideas” for the fiber, Loke says, they thought about applications like a wedding gown that would store digital wedding music within the weave of its fabric, or even writing the story of the fiber’s creation into its components.
Fink notes that the research at MIT was in close collaboration with the textile department at RISD led by Missakian.  Gitelson-Kahn incorporated the digital fibers into a knitted garment sleeve, thus paving the way to creating the first digital garment.
On-body artificial intelligence
The fiber also takes a few steps forward into artificial intelligence by including, within the fiber memory, a neural network of 1,650 connections. After sewing it around the armpit of a shirt, the researchers used the fiber to collect 270 minutes of surface body temperature data from a person wearing the shirt, and analyze how these data corresponded to different physical activities. Trained on these data, the fiber was able to determine with 96 percent accuracy what activity the person wearing it was engaged in.
Adding an AI component to the fiber further increases its possibilities, the researchers say. Fabrics with digital components can collect a lot of information across the body over time, and these “lush data” are perfect for machine learning algorithms, Loke says.
“This type of fabric could give quantity and quality open-source data for extracting out new body patterns that we did not know about before,” he says.
With this analytic power, the fibers someday could sense and alert people in real-time to health changes like a respiratory decline or an irregular heartbeat, or deliver muscle activation or heart rate data to athletes during training.
The fiber is controlled by a small external device, so the next step will be to design a new chip as a microcontroller that can be connected within the fiber itself.
“When we can do that, we can call it a fiber computer,” Loke says.
This research was supported by the U.S. Army Institute of Soldier Nanotechnology, National Science Foundation, the U.S. Army Research Office, the MIT Sea Grant, and the Defense Threat Reduction Agency.
###
Written by Becky Ham, MIT News correspondent
If you would rather not receive future communications from Massachusetts Institute of Technology, let us know by clicking
here.
Massachusetts Institute of Technology, 77 Massachusetts Avenue Building 11-400, Cambridge, MA 02139-4307 United States
4 notes · View notes
Producing a gaseous messenger molecule inside the body, on demand
Method could shed light on nitric oxide's role in the neural, circulatory, and immune systems
Nitric oxide is an important signaling molecule in the body, with a role in building nervous system connections that contribute to learning and memory. It also functions as a messenger in the cardiovascular and immune systems.
But it has been difficult for researchers to study exactly what its role is in these systems and how it functions. Because it is a gas, there has been no practical way to direct it to specific individual cells in order to observe its effects. Now, a team of scientists and engineers at MIT and elsewhere has found a way of generating the gas at precisely targeted locations inside the body, potentially opening new lines of research on this essential molecule's effects.
The findings are reported in the journal Nature Nanotechnology, in a paper by MIT professors Polina Anikeeva, Karthish Manthiram, and Yoel Fink; graduate student Jimin Park; postdoc Kyoungsuk Jin; and 10 others at MIT and in Taiwan, Japan, and Israel.
"It's a very important compound," Anikeeva says. But figuring out the relationships between the delivery of nitric oxide to particular cells and synapses, and the resulting higher-level effects on the learning process has been difficult. So far, most studies have resorted to looking at systemic effects, by knocking out genes responsible for the production of enzymes the body uses to produce nitric oxide where it's needed as a messenger.
But that approach, she says, is "very brute force. This is a hammer to the system because you're knocking it out not just from one specific region, let's say in the brain, but you essentially knock it out from the entire organism, and this can have other side effects."
Read more.
10 notes · View notes
materialsworld · 6 years
Text
Washable wearables and functional fabrics
By Ceri Jones 
Smart textiles have the potential to change the wearables market, offering a level of integration and convenience you just can’t get with a device. And while smart watches, fitness trackers and even anti-collision tags are common, they all have the same disadvantage – you have to actually put them on. 
MIT researchers are working on a project to eliminate extraneous devices and put the technology directly into clothing. Led by graduate student Michael Rein, the team has successfully embedded electronics into fibres to create a whole new type of wearable: smart textiles.
Tumblr media
Image credit: MIT 
Functional fabrics  
The MIT team deposited high-speed optoelectronic semiconductors the size of grains of sand and a pair of fine copper wires smaller than a hair’s width into fibre strands. This was coiled around a preform structure and heated, causing it to partly liquefy to create a long fibre with the diodes all lined up and connected by the tiny copper wires.
Rein, the lead author of the research paper, said, “This approach adds a new insight into the process of making fibres. Instead of drawing the material all together in a liquid state, we mixed in devices in particulate form, together with thin metal wires.”
The manipulated fibres were sent to a South Carolina firm, Inman Mills, to be woven into fabric. Here, the cloth was immersed in water and washed multiple times to ensure the electronic components could withstand exposure to heat and water, and the result was a completely waterproof and durable fabric.
Selling smart clothes
While still in the testing stages, the possibilities of smart textiles are easy to imagine, particularly for the benefits they offer to military personnel, from being able to track and trace individuals, monitor their physical and medical conditions, to exchanging communications directly.  
But upscaling production is a difficult process. MIT, the Advanced Functional Fabric of America Institute (AFFOA) and Inman Mills are all working on reaching large-scale manufacture, and they believe we could see functional fabric products in shops by as early as next year.
Rein’s research advisor Yoel Fink, MIT professor of materials science and electrical engineering and CEO of AFFOA, said, “We are anticipating the emergence of a ‘Moore’s law’ analogue in fibres in the years ahead. 
“It is already allowing us to expand the fundamental capabilities of fabrics to encompass communications, lighting, physiological monitoring, and more. In the years ahead fabrics will deliver value-added services and will no longer just be selected for aesthetics and comfort.”
The research paper was originally published in Nature journal by Rein and Fink, along with teams from MIT and AFFOA, Inman Mills, EPFL in Lausanne, Switzerland, and Lincoln Laboratory.
Research was supported by the MIT Materials Research Science and Engineering Center (MRSEC) through the MRSEC Program of the National Science Foundation; the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies; and the Assistant Secretary of Defense for Research and Engineering.
381 notes · View notes
freemindtech · 3 years
Text
MIT Researchers Create Programmable Digital Fibre That Can Be Sewn Into Fabrics
MIT Researchers Create Programmable Digital Fibre That Can Be Sewn Into Fabrics
A team of researchers at the Massachusetts Institute of Technology (MIT) has invented a fibre with digital capabilities that can sense, store, analyse, and infer activities after it’s sewn into a shirt. Yoel Fink, professor and principal investigator at the Research Laboratory of Electronics and a senior author on the study, said that these fibres enhance possibilities of uncovering the context…
View On WordPress
0 notes
textileebook · 3 years
Text
Lab-on-Fiber Technology PDF by Andrea Cusano, Marco Consales, Alessio Crescitelli, Armando Ricciardi
Lab-on-Fiber Technology PDF by Andrea Cusano, Marco Consales, Alessio Crescitelli, Armando Ricciardi
Lab-on-Fiber Technology By Andrea Cusano, Marco Consales, Alessio Crescitelli, Armando Ricciardi Contents 1 Multimaterial Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Guangming Tao, Ayman F. Abouraddy, Alexander M. Stolyarov and Yoel Fink 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Material Constraints and Fiber…
Tumblr media
View On WordPress
0 notes
themakersmovement · 5 years
Photo
Tumblr media
Multimaterial 3D Printing Filaments for Optoelectronics Authors Gabriel Loke, Rodger Yuan, Michael Rein, Tural Khudiyev, Yash Jain, John Joannopoulous, and Yoel Fink have all come together to explore new filament options, with their findings outlined... View the entire article via our website. https://buff.ly/32MheWg
0 notes
koliasa · 3 years
Text
At MIT, Clothing Fiber Watches You
https://koliasa.com/at-mit-clothing-fiber-watches-you/ At MIT, Clothing Fiber Watches You - https://koliasa.com/at-mit-clothing-fiber-watches-you/ [Yoel Fink] and his team at MIT have announced their creation of a fiber that ...
0 notes
sunaleisocial · 2 months
Text
MIT announces 2024 Bose Grants
New Post has been published on https://sunalei.org/news/mit-announces-2024-bose-grants/
MIT announces 2024 Bose Grants
Tumblr media
MIT Provost Cynthia Barnhart announced four Professor Amar G. Bose Research Grants to support bold research projects across diverse areas of study, including a way to generate clean hydrogen from deep in the Earth, build an environmentally friendly house of basalt, design maternity clothing that monitors fetal health, and recruit sharks as ocean oxygen monitors.
This year’s recipients are Iwnetim Abate, assistant professor of materials science and engineering; Andrew Babbin, the Cecil and Ida Green Associate Professor in Earth, Atmospheric and Planetary Sciences; Yoel Fink, professor of materials science and engineering and of electrical engineering and computer science; and Skylar Tibbits, associate professor of design research in the Department of Architecture.
The program was named for the visionary founder of the Bose Corporation and MIT alumnus Amar G. Bose ’51, SM ’52, ScD ’56. After gaining admission to MIT, Bose became a top math student and a Fulbright Scholarship recipient. He spent 46 years as a professor at MIT, led innovations in sound design, and founded the Bose Corp. in 1964. MIT launched the Bose grant program 11 years ago to provide funding over a three-year period to MIT faculty who propose original, cross-disciplinary, and often risky research projects that would likely not be funded by conventional sources.
“The promise of the Bose Fellowship is to help bold, daring ideas become realities, an approach that honors Amar Bose’s legacy,” says Barnhart. “Thanks to support from this program, these talented faculty members have the freedom to explore their bold and innovative ideas.”
Deep and clean hydrogen futures
A green energy future will depend on harnessing hydrogen as a clean energy source, sequestering polluting carbon dioxide, and mining the minerals essential to building clean energy technologies such as advanced batteries. Iwnetim Abate thinks he has a solution for all three challenges: an innovative hydrogen reactor.
He plans to build a reactor that will create natural hydrogen from ultramafic mineral rocks in the crust. “The Earth is literally a giant hydrogen factory waiting to be tapped,” Abate explains. “A back-of-the-envelope calculation for the first seven kilometers of the Earth’s crust estimates that there is enough ultramafic rock to produce hydrogen for 250,000 years.”
The reactor envisioned by Abate injects water to create a reaction that releases hydrogen, while also supporting the injection of climate-altering carbon dioxide into the rock, providing a global carbon capacity of 100 trillion tons. At the same time, the reactor process could provide essential elements such as lithium, nickel, and cobalt — some of the most important raw materials used in advanced batteries and electronics.
“Ultimately, our goal is to design and develop a scalable reactor for simultaneously tapping into the trifecta from the Earth’s subsurface,” Abate says.
Sharks as oceanographers
If we want to understand more about how oxygen levels in the world’s seas are disturbed by human activities and climate change, we should turn to a sensing platform “that has been honed by 400 million years of evolution to perfectly sample the ocean: sharks,” says Andrew Babbin.
As the planet warms, oceans are projected to contain less dissolved oxygen, with impacts on the productivity of global fisheries, natural carbon sequestration, and the flux of climate-altering greenhouse gasses from the ocean to the air. While scientists know dissolved oxygen is important, it has proved difficult to track over seasons, decades, and underexplored regions both shallow and deep.
Babbin’s goal is to develop a low-cost sensor for dissolved oxygen that can be integrated with preexisting electronic shark tags used by marine biologists. “This fleet of sharks … will finally enable us to measure the extent of the low-oxygen zones of the ocean, how they change seasonally and with El Niño/La Niña oscillation, and how they expand or contract into the future.”
The partnership with sharks will also spotlight the importance of these often-maligned animals for global marine and fisheries health, Babbin says. “We hope in pursuing this work marrying microscopic and macroscopic life we will inspire future oceanographers and conservationists, and lead to a better appreciation for the chemistry that underlies global habitability.”
Maternity wear that monitors fetal health
There are 2 million stillbirths around the world each year, and in the United States alone, 21,000 families suffer this terrible loss. In many cases, mothers and their doctors had no warning of any abnormalities or changes in fetal health leading up to these deaths. Yoel Fink and colleagues are looking for a better way to monitor fetal health and provide proactive treatment.
Fink is building on years of research on acoustic fabrics to design an affordable shirt for mothers that would monitor and communicate important details of fetal health. His team’s original research drew inspiration from the function of the eardrum, designing a fiber that could be woven into other fabrics to create a kind of fabric microphone.
“Given the sensitivity of the acoustic fabrics in sensing these nanometer-scale vibrations, could a mother’s clothing transcend its conventional role and become a health monitor, picking up on the acoustic signals and subsequent vibrations that arise from her unborn baby’s heartbeat and motion?” Fink says. “Could a simple and affordable worn fabric allow an expecting mom to sleep better, knowing that her fetus is being listened to continuously?”
The proposed maternity shirt could measure fetal heart and breathing rate, and might be able to give an indication of the fetal body position, he says. In the final stages of development, he and his colleagues hope to develop machine learning approaches that would identify abnormal fetal heart rate and motion and deliver real-time alerts.
A basalt house in Iceland
In the land of volcanoes, Skylar Tibbits wants to build a case-study home almost entirely from the basalt rock that makes up the Icelandic landscape.
Architects are increasingly interested in building using one natural material — creating a monomaterial structure — that can be easily recycled. At the moment, the building industry represents 40 percent of carbon emissions worldwide, and consists of many materials and structures, from metal to plastics to concrete, that can’t be easily disassembled or reused.
The proposed basalt house in Iceland, a project co-led by J. Jih, associate professor of the practice in the Department of Architecture, is “an architecture that would be fully composed of the surrounding earth, that melts back into that surrounding earth at the end of its lifespan, and that can be recycled infinitely,” Tibbits explains.
Basalt, the most common rock form in the Earth’s crust, can be spun into fibers for insulation and rebar. Basalt fiber performs as well as glass and carbon fibers at a lower cost in some applications, although it is not widely used in architecture. In cast form, it can make corrosion- and heat-resistant plumbing, cladding and flooring.
“A monomaterial architecture is both a simple and radical proposal that unfortunately falls outside of traditional funding avenues,” says Tibbits. “The Bose grant is the perfect and perhaps the only option for our research, which we see as a uniquely achievable moonshot with transformative potential for the entire built environment.”
0 notes
jcmarchi · 2 months
Text
MIT announces 2024 Bose Grants
New Post has been published on https://thedigitalinsider.com/mit-announces-2024-bose-grants/
MIT announces 2024 Bose Grants
Tumblr media Tumblr media
MIT Provost Cynthia Barnhart announced four Professor Amar G. Bose Research Grants to support bold research projects across diverse areas of study, including a way to generate clean hydrogen from deep in the Earth, build an environmentally friendly house of basalt, design maternity clothing that monitors fetal health, and recruit sharks as ocean oxygen monitors.
This year’s recipients are Iwnetim Abate, assistant professor of materials science and engineering; Andrew Babbin, the Cecil and Ida Green Associate Professor in Earth, Atmospheric and Planetary Sciences; Yoel Fink, professor of materials science and engineering and of electrical engineering and computer science; and Skylar Tibbits, associate professor of design research in the Department of Architecture.
The program was named for the visionary founder of the Bose Corporation and MIT alumnus Amar G. Bose ’51, SM ’52, ScD ’56. After gaining admission to MIT, Bose became a top math student and a Fulbright Scholarship recipient. He spent 46 years as a professor at MIT, led innovations in sound design, and founded the Bose Corp. in 1964. MIT launched the Bose grant program 11 years ago to provide funding over a three-year period to MIT faculty who propose original, cross-disciplinary, and often risky research projects that would likely not be funded by conventional sources.
“The promise of the Bose Fellowship is to help bold, daring ideas become realities, an approach that honors Amar Bose’s legacy,” says Barnhart. “Thanks to support from this program, these talented faculty members have the freedom to explore their bold and innovative ideas.”
Deep and clean hydrogen futures
A green energy future will depend on harnessing hydrogen as a clean energy source, sequestering polluting carbon dioxide, and mining the minerals essential to building clean energy technologies such as advanced batteries. Iwnetim Abate thinks he has a solution for all three challenges: an innovative hydrogen reactor.
He plans to build a reactor that will create natural hydrogen from ultramafic mineral rocks in the crust. “The Earth is literally a giant hydrogen factory waiting to be tapped,” Abate explains. “A back-of-the-envelope calculation for the first seven kilometers of the Earth’s crust estimates that there is enough ultramafic rock to produce hydrogen for 250,000 years.”
The reactor envisioned by Abate injects water to create a reaction that releases hydrogen, while also supporting the injection of climate-altering carbon dioxide into the rock, providing a global carbon capacity of 100 trillion tons. At the same time, the reactor process could provide essential elements such as lithium, nickel, and cobalt — some of the most important raw materials used in advanced batteries and electronics.
“Ultimately, our goal is to design and develop a scalable reactor for simultaneously tapping into the trifecta from the Earth’s subsurface,” Abate says.
Sharks as oceanographers
If we want to understand more about how oxygen levels in the world’s seas are disturbed by human activities and climate change, we should turn to a sensing platform “that has been honed by 400 million years of evolution to perfectly sample the ocean: sharks,” says Andrew Babbin.
As the planet warms, oceans are projected to contain less dissolved oxygen, with impacts on the productivity of global fisheries, natural carbon sequestration, and the flux of climate-altering greenhouse gasses from the ocean to the air. While scientists know dissolved oxygen is important, it has proved difficult to track over seasons, decades, and underexplored regions both shallow and deep.
Babbin’s goal is to develop a low-cost sensor for dissolved oxygen that can be integrated with preexisting electronic shark tags used by marine biologists. “This fleet of sharks … will finally enable us to measure the extent of the low-oxygen zones of the ocean, how they change seasonally and with El Niño/La Niña oscillation, and how they expand or contract into the future.”
The partnership with sharks will also spotlight the importance of these often-maligned animals for global marine and fisheries health, Babbin says. “We hope in pursuing this work marrying microscopic and macroscopic life we will inspire future oceanographers and conservationists, and lead to a better appreciation for the chemistry that underlies global habitability.”
Maternity wear that monitors fetal health
There are 2 million stillbirths around the world each year, and in the United States alone, 21,000 families suffer this terrible loss. In many cases, mothers and their doctors had no warning of any abnormalities or changes in fetal health leading up to these deaths. Yoel Fink and colleagues are looking for a better way to monitor fetal health and provide proactive treatment.
Fink is building on years of research on acoustic fabrics to design an affordable shirt for mothers that would monitor and communicate important details of fetal health. His team’s original research drew inspiration from the function of the eardrum, designing a fiber that could be woven into other fabrics to create a kind of fabric microphone.
“Given the sensitivity of the acoustic fabrics in sensing these nanometer-scale vibrations, could a mother’s clothing transcend its conventional role and become a health monitor, picking up on the acoustic signals and subsequent vibrations that arise from her unborn baby’s heartbeat and motion?” Fink says. “Could a simple and affordable worn fabric allow an expecting mom to sleep better, knowing that her fetus is being listened to continuously?”
The proposed maternity shirt could measure fetal heart and breathing rate, and might be able to give an indication of the fetal body position, he says. In the final stages of development, he and his colleagues hope to develop machine learning approaches that would identify abnormal fetal heart rate and motion and deliver real-time alerts.
A basalt house in Iceland
In the land of volcanoes, Skylar Tibbits wants to build a case-study home almost entirely from the basalt rock that makes up the Icelandic landscape.
Architects are increasingly interested in building using one natural material — creating a monomaterial structure — that can be easily recycled. At the moment, the building industry represents 40 percent of carbon emissions worldwide, and consists of many materials and structures, from metal to plastics to concrete, that can’t be easily disassembled or reused.
The proposed basalt house in Iceland, a project co-led by J. Jih, associate professor of the practice in the Department of Architecture, is “an architecture that would be fully composed of the surrounding earth, that melts back into that surrounding earth at the end of its lifespan, and that can be recycled infinitely,” Tibbits explains.
Basalt, the most common rock form in the Earth’s crust, can be spun into fibers for insulation and rebar. Basalt fiber performs as well as glass and carbon fibers at a lower cost in some applications, although it is not widely used in architecture. In cast form, it can make corrosion- and heat-resistant plumbing, cladding and flooring.
“A monomaterial architecture is both a simple and radical proposal that unfortunately falls outside of traditional funding avenues,” says Tibbits. “The Bose grant is the perfect and perhaps the only option for our research, which we see as a uniquely achievable moonshot with transformative potential for the entire built environment.”
0 notes
zillatech · 3 years
Text
At MIT, Clothing Fiber Watches You
At MIT, Clothing Fiber Watches You
Blog – Hackaday [Yoel Fink] and his team at MIT have announced their creation of a fiber that can sense and store data. In addition, they can use data from a shirt made of the material to infer the wearer’s activity with high accuracy. The fiber contains hundreds of microscale silicon chips into a preform used to create a polymer fiber that connects the chips using four 25 micron tungsten wires.…
Tumblr media
View On WordPress
0 notes
scienceblogtumbler · 4 years
Text
Producing a gaseous messenger molecule inside the body, on demand
Nitric oxide is an important signaling molecule in the body, with a role in building nervous system connections that contribute to learning and memory. It also functions as a messenger in the cardiovascular and immune systems.
But it has been difficult for researchers to study exactly what its role is in these systems and how it functions. Because it is a gas, there has been no practical way to direct it to specific individual cells in order to observe its effects. Now, a team of scientists and engineers at MIT and elsewhere has found a way of generating the gas at precisely targeted locations inside the body, potentially opening new lines of research on this essential molecule’s effects.
The findings are reported today in the journal Nature Nanotechnology, in a paper by MIT professors Polina Anikeeva, Karthish Manthiram, and Yoel Fink; graduate student Jimin Park; postdoc Kyoungsuk Jin; and 10 others at MIT and in Taiwan, Japan, and Israel.
“It’s a very important compound,” Anikeeva says. But figuring out the relationships between the delivery of nitric oxide to particular cells and synapses, and the resulting higher-level effects on the learning process has been difficult. So far, most studies have resorted to looking at systemic effects, by knocking out genes responsible for the production of enzymes the body uses to produce nitric oxide where it’s needed as a messenger.
But that approach, she says, is “very brute force. This is a hammer to the system because you’re knocking it out not just from one specific region, let’s say in the brain, but you essentially knock it out from the entire organism, and this can have other side effects.”
Others have tried introducing compounds into the body that release nitric oxide as they decompose, which can produce somewhat more localized effects, but these still spread out, and it is a very slow and uncontrolled process.
The team’s solution uses an electric voltage to drive the reaction that produces nitric oxide. This is similar to what is happening on a much larger scale with some industrial electrochemical production processes, which are relatively modular and controllable, enabling local and on-demand chemical synthesis. “We’ve taken that concept and said, you know what? You can be so local and so modular with an electrochemical process that you can even do this at the level of the cell,” Manthiram says. “And I think what’s even more exciting about this is that if you use electric potential, you have the ability to start production and stop production in a heartbeat.”
The team’s key achievement was finding a way for this kind of electrochemically controlled reaction to be operated efficiently and selectively at the nanoscale. That required finding a suitable catalyst material that could generate nitric oxide from a benign precursor material. They found that nitrite offered a promising precursor for electrochemical nitric oxide generation.
“We came up with the idea of making a tailored nanoparticle to catalyze the reaction,” Jin says. They found that the enzymes that catalyze nitric oxide generation in nature contain iron-sulfur centers. Drawing inspiration from these enzymes, they devised a catalyst that consisted of nanoparticles of iron sulfide, which activates the nitric oxide-producing reaction in the presence of an electric field and nitrite. By further doping these nanoparticles with platinum, the team was able to enhance their electrocatalytic efficiency.
To miniaturize the electrocatalytic cell to the scale of biological cells, the team has created custom fibers containing the positive and negative microelectrodes, which are coated with the iron sulfide nanoparticles, and a microfluidic channel for the delivery of sodium nitrite, the precursor material. When implanted in the brain, these fibers direct the precursor to the specific neurons. Then the reaction can be activated at will electrochemically, through the electrodes in the same fiber, producing an instant burst of nitric oxide right at that spot so that its effects can be recorded in real-time.
As a test, they used the system in a rodent model to activate a brain region that is known to be a reward center for motivation and social interaction, and that plays a role in addiction. They showed that it did indeed provoke the expected signaling responses, demonstrating its effectiveness.
Anikeeva says this “would be a very useful biological research platform, because finally, people will have a way to study the role of nitric oxide at the level of single cells, in whole organisms that are performing tasks.” She points out that there are certain disorders that are associated with disruptions of the nitric oxide signaling pathway, so more detailed studies of how this pathway operates could help lead to treatments.
The method could be generalizable, Park says, as a way of producing other molecules of biological interest within an organism. “Essentially we can now have this really scalable and miniaturized way to generate many molecules, as long as we find the appropriate catalyst, and as long as we find an appropriate starting compound that is also safe.” This approach to generating signaling molecules in situ could have wide applications in biomedicine, he says.
“One of our reviewers for this manuscript pointed out that this has never been done — electrolysis in a biological system has never been leveraged to control biological function,” Anikeeva says. “So, this is essentially the beginning of a field that could potentially be very useful” to study molecules that can be delivered at precise locations and times, for studies in neurobiology or any other biological functions. That ability to make molecules on demand inside the body could be useful in fields such as immunology or cancer research, she says.
The project got started as a result of a chance conversation between Park and Jin, who were friends working in different fields — neurobiology and electrochemistry. Their initial casual discussions ended up leading to a full-blown collaboration between several departments. But in today’s locked-down world, Jin says, such chance encounters and conversations have become less likely. “In the context of how much the world has changed, if this were in this era in which we’re all apart from each other, and not in 2018, there is some chance that this collaboration may just not ever have happened.”
“This work is a milestone in bioelectronics,” says Bozhi Tian, an associate professor of chemistry at the University of Chicago, who was not connected to this work. “It integrates nanoenabled catalysis, microfluidics, and traditional bioelectronics … and it solves a longstanding challenge of precise neuromodulation in the brain, by in situ generation of signaling molecules. This approach can be widely adopted by the neuroscience community and can be generalized to other signaling systems, too.”
Besides MIT, the team included researchers at National Chiao Tung University in Taiwan, NEC Corporation in Japan, and the Weizman Institute of Science in Israel. The work was supported by the National Institute for Neurological Disorders and Stroke, the National Institutes of Health, the National Science Foundation, and MIT’s Department of Chemical Engineering.
source https://scienceblog.com/517123/producing-a-gaseous-messenger-molecule-inside-the-body-on-demand/
0 notes
dorcasrempel · 4 years
Text
Producing a gaseous messenger molecule inside the body, on demand
Nitric oxide is an important signaling molecule in the body, with a role in building nervous system connections that contribute to learning and memory. It also functions as a messenger in the cardiovascular and immune systems.
But it has been difficult for researchers to study exactly what its role is in these systems and how it functions. Because it is a gas, there has been no practical way to direct it to specific individual cells in order to observe its effects. Now, a team of scientists and engineers at MIT and elsewhere has found a way of generating the gas at precisely targeted locations inside the body, potentially opening new lines of research on this essential molecule’s effects.
The findings are reported today in the journal Nature Nanotechnology, in a paper by MIT professors Polina Anikeeva, Karthish Manthiram, and Yoel Fink; graduate student Jimin Park; postdoc Kyoungsuk Jin; and 10 others at MIT and in Taiwan, Japan, and Israel.
“It’s a very important compound,” Anikeeva says. But figuring out the relationships between the delivery of nitric oxide to particular cells and synapses, and the resulting higher-level effects on the learning process has been difficult. So far, most studies have resorted to looking at systemic effects, by knocking out genes responsible for the production of enzymes the body uses to produce nitric oxide where it’s needed as a messenger.
But that approach, she says, is “very brute force. This is a hammer to the system because you’re knocking it out not just from one specific region, let’s say in the brain, but you essentially knock it out from the entire organism, and this can have other side effects.”
Others have tried introducing compounds into the body that release nitric oxide as they decompose, which can produce somewhat more localized effects, but these still spread out, and it is a very slow and uncontrolled process.
The team’s solution uses an electric voltage to drive the reaction that produces nitric oxide. This is similar to what is happening on a much larger scale with some industrial electrochemical production processes, which are relatively modular and controllable, enabling local and on-demand chemical synthesis. “We’ve taken that concept and said, you know what? You can be so local and so modular with an electrochemical process that you can even do this at the level of the cell,” Manthiram says. “And I think what’s even more exciting about this is that if you use electric potential, you have the ability to start production and stop production in a heartbeat.”
The team’s key achievement was finding a way for this kind of electrochemically controlled reaction to be operated efficiently and selectively at the nanoscale. That required finding a suitable catalyst material that could generate nitric oxide from a benign precursor material. They found that nitrite offered a promising precursor for electrochemical nitric oxide generation.
“We came up with the idea of making a tailored nanoparticle to catalyze the reaction,” Jin says. They found that the enzymes that catalyze nitric oxide generation in nature contain iron-sulfur centers. Drawing inspiration from these enzymes, they devised a catalyst that consisted of nanoparticles of iron sulfide, which activates the nitric oxide-producing reaction in the presence of an electric field and nitrite. By further doping these nanoparticles with platinum, the team was able to enhance their electrocatalytic efficiency.
To miniaturize the electrocatalytic cell to the scale of biological cells, the team has created custom fibers containing the positive and negative microelectrodes, which are coated with the iron sulfide nanoparticles, and a microfluidic channel for the delivery of sodium nitrite, the precursor material. When implanted in the brain, these fibers direct the precursor to the specific neurons. Then the reaction can be activated at will electrochemically, through the electrodes in the same fiber, producing an instant burst of nitric oxide right at that spot so that its effects can be recorded in real-time.
As a test, they used the system in a rodent model to activate a brain region that is known to be a reward center for motivation and social interaction, and that plays a role in addiction. They showed that it did indeed provoke the expected signaling responses, demonstrating its effectiveness.
Anikeeva says this “would be a very useful biological research platform, because finally, people will have a way to study the role of nitric oxide at the level of single cells, in whole organisms that are performing tasks.” She points out that there are certain disorders that are associated with disruptions of the nitric oxide signaling pathway, so more detailed studies of how this pathway operates could help lead to treatments.
The method could be generalizable, Park says, as a way of producing other molecules of biological interest within an organism. “Essentially we can now have this really scalable and miniaturized way to generate many molecules, as long as we find the appropriate catalyst, and as long as we find an appropriate starting compound that is also safe.” This approach to generating signaling molecules in situ could have wide applications in biomedicine, he says.
“One of our reviewers for this manuscript pointed out that this has never been done — electrolysis in a biological system has never been leveraged to control biological function,” Anikeeva says. “So, this is essentially the beginning of a field that could potentially be very useful” to study molecules that can be delivered at precise locations and times, for studies in neurobiology or any other biological functions. That ability to make molecules on demand inside the body could be useful in fields such as immunology or cancer research, she says.
The project got started as a result of a chance conversation between Park and Jin, who were friends working in different fields — neurobiology and electrochemistry. Their initial casual discussions ended up leading to a full-blown collaboration between several departments. But in today’s locked-down world, Jin says, such chance encounters and conversations have become less likely. “In the context of how much the world has changed, if this were in this era in which we’re all apart from each other, and not in 2018, there is some chance that this collaboration may just not ever have happened.”
“This work is a milestone in bioelectronics,” says Bozhi Tian, an associate professor of chemistry at the University of Chicago, who was not connected to this work. “It integrates nanoenabled catalysis, microfluidics, and traditional bioelectronics … and it solves a longstanding challenge of precise neuromodulation in the brain, by in situ generation of signaling molecules. This approach can be widely adopted by the neuroscience community and can be generalized to other signaling systems, too.”
Besides MIT, the team included researchers at National Chiao Tung University in Taiwan, NEC Corporation in Japan, and the Weizman Institute of Science in Israel. The work was supported by the National Institute for Neurological Disorders and Stroke, the National Institutes of Health, the National Science Foundation, and MIT’s Department of Chemical Engineering.
Producing a gaseous messenger molecule inside the body, on demand syndicated from https://osmowaterfilters.blogspot.com/
0 notes