#computer vision engineers
Explore tagged Tumblr posts
Text
What Is a Computer Vision Engineer? Unlocking the Power of Sight in Machines

In today's rapidly evolving technological landscape, one of the most remarkable areas of development is computer vision. As humans, our ability to perceive and understand the visual world around us is a fundamental aspect of our daily lives. Similarly, the field of computer vision aims to enable machines to interpret and understand visual data. At the heart of this fascinating domain lies the computer vision engineer, an expert who plays a crucial role in unlocking the power of sight in machines.
In this article, we will delve into the world of computer vision engineering, exploring the responsibilities, skills, and potential applications of this field.
Understanding Computer Vision Engineering:
Computer vision engineering encompasses the design, development, and deployment of systems that enable machines to gain an understanding of visual data. The primary goal of computer vision engineers is to create algorithms and models that can accurately interpret images and videos, replicating human visual perception to some extent. By using artificial intelligence (AI) techniques such as machine learning and deep learning, computer vision engineers equip machines with the ability to analyze, recognize, and make decisions based on visual information.
Responsibilities of a Computer Vision Engineer:
The responsibilities of a computer vision engineer are diverse and demanding. They involve working with large datasets, developing and fine-tuning complex algorithms, and collaborating with cross-functional teams to implement computer vision solutions.
Some key responsibilities include:
1. Data Collection and Preprocessing: Computer vision engineers gather large volumes of visual data and preprocess it to enhance the accuracy of subsequent analysis. This often involves tasks such as data labeling, augmentation, and cleaning.
2. Algorithm Development: Computer vision engineers develop and optimize algorithms that can detect and recognize objects, people, gestures, and other visual cues. They leverage machine learning techniques, such as convolutional neural networks (CNNs), to train models on labeled data and improve their ability to make accurate predictions.
3. Model Evaluation and Optimization: Computer vision engineers evaluate the performance of trained models, fine-tuning them to achieve higher accuracy and robustness. They employ techniques like transfer learning and regularization to enhance the models' generalization capabilities.
4. Integration and Deployment: Once the computer vision systems are developed, engineers work on integrating them into real-world applications. This involves optimizing the models for efficiency, scalability, and compatibility with hardware and software frameworks.
Skills Required:
Becoming a proficient computer vision engineer requires a combination of technical skills and domain knowledge. Some essential skills include:
1. Programming: Proficiency in programming languages such as Python, C++, or MATLAB is crucial for implementing computer vision algorithms and working with relevant libraries and frameworks like OpenCV, TensorFlow, or PyTorch.
2. Mathematics and Statistics: A solid foundation in linear algebra, calculus, probability, and statistics is necessary to understand the mathematical underpinnings of computer vision algorithms and models.
3. Machine Learning: Familiarity with machine learning concepts and techniques is vital for training and fine-tuning models. Understanding topics like supervised and unsupervised learning, neural networks, and optimization algorithms is essential.
4. Image Processing: Knowledge of image processing techniques, such as filtering, segmentation, and feature extraction, allows computer vision engineers to manipulate and enhance visual data before feeding it into models.
5. Problem-Solving and Critical Thinking: Strong problem-solving and critical thinking skills enable computer vision engineers to tackle complex challenges and devise innovative solutions.
Applications of Computer Vision:
Computer vision has many uses in numerous industries. Some famous examples are:
1. Autonomous Vehicles: Computer vision enables self-driving cars to perceive and understand their surroundings, identifying objects, pedestrians, traffic signs, and lane markings to make informed decisions.
2. Healthcare: Computer vision aids in medical imaging analysis, assisting with tasks like tumor detection, disease diagnosis, and surgical planning. It also facilitates remote patient monitoring and analysis of vital signs.
3. Retail and E-commerce: Computer vision is used for product recognition and visual search, allowing customers to find similar products based on images. It also enables automated inventory management and checkout processes.
4. Security and Surveillance: Computer vision systems enhance security by detecting and tracking suspicious activities, recognizing faces, and analyzing video footage for real-time threat detection.
5. Augmented Reality (AR) and Virtual Reality (VR): Computer vision is instrumental in AR and VR applications, overlaying digital information in the real world or creating immersive virtual environments.
Conclusion:
Computer vision engineering is an exciting and rapidly evolving field that empowers machines with the ability to perceive and understand the visual world. By leveraging AI and machine learning techniques, computer vision engineers unlock the potential for machines to analyze, interpret, and make decisions based on visual data. With applications spanning industries like automotive, healthcare, retail, security, and entertainment, the impact of computer vision is revolutionizing our lives. As technology continues to advance, computer vision engineers will play an increasingly vital role in shaping the future of intelligent machines.
#Hire Machine Learning Developer#Machine Learning Development in India#Looking For Machine Learning Developer#Looking For Machine Learning Dev Team#Data Analytics Company#Vision AI Solution#Vision AI Development#Vision AI Software#Vision API#Vertex AI Vision#computer vision engineers#Computer Vision
1 note
·
View note
Text
Building the World's First True Reverse Video Search Engine
While it may not be widely known, no true video search engine currently exists. Services that claim to offer "reverse video search" are, in fact, merely searching via static images or individual frames, and they are transparent about these limitations.
The reason for this is simple: searching entire videos is a highly complex and resource-intensive task. The technical challenges and costs associated with processing full-length videos have made it prohibitive—until now.
At Comexp Research Lab, we have developed a new approach, based on the Theory of Active Perception (TAPe), that allows us to tackle these challenges with a fraction of the usual computational resources.
Leveraging TAPe, we’ve created an innovative solution capable of handling complex information processing problems in a more efficient manner. This breakthrough has enabled us to develop a new video search engine—essentially Google for videos—which we’ve named TAPe Reverse Video Search (RVS). In this article, we detail the journey toward building this pioneering technology and outline the progress we’ve made to date.
A Tangible Milestone: Creating the First True Reverse Video Search Engine
At Comexp Research Lab, our work has focused on developing services based on our proprietary video-by-video search technology, which mimics the efficiency of human perception. The TAPe model represents a significant departure from traditional search methods by utilizing a perceptual approach rooted in group theory.
In our discussions with peers, investors, and the general public, we typically delve into the Theory of Active Perception (TAPe) and present demonstrations that are conceptually straightforward. Yet, the feedback is often the same: “This is fascinating, but can you show us something more concrete?”
This year, we reached that milestone. We’ve launched a prototype of our video-by-video search engine. Although still in its early stages, the engine indexes videos much like how Google began by indexing text-based websites. In Google’s case, as the volume of indexed sites grew, so did its ability to deliver rapid, relevant search results. The same principle applies to video search, albeit with far greater challenges.
Indexing video content requires substantially more computational resources than indexing text. Even with modern technologies, the process remains slow, costly, and inefficient. For this reason, no major company—Google included—currently offers a fully realized video search engine that searches entire videos. This is where TAPe provides a significant advantage.
Revolutionizing Video Search with TAPe
Our search engine, powered by TAPe, enables users to search a vast archive of indexed video content to locate specific videos. The process begins by comparing the user’s video query against the indexed database and delivering the most relevant matches.
The Theory of Active Perception (TAPe) is a set of novel methods we’ve developed that fundamentally changes how information is processed. This approach allows us to achieve results that are orders of magnitude more efficient than conventional methods—using thousands of times less computational power, less time, and fewer resources overall.
Given the rapidly increasing volume of video content, we began by indexing feature films, documentaries, and TV series. As of now, our system has indexed 80,000 movies. This forms the foundation of our search engine, similar to how textual search engines require comprehensive indexing to be effective.
Additionally, we’ve expanded our capabilities to include television search. Our system tracks broadcasts from major global TV channels, allowing users to discover when and where specific video content, such as TV episodes, has aired. Our next major goal is to index YouTube content, which will significantly enhance the power of TAPe RVS.
Introducing ComexpBot: A Practical Application of TAPe Video Search
To facilitate the use of TAPe RVS and explore potential applications, we’ve developed a Telegram-based bot called ComexpBot. This tool allows users to search for films, TV series, and broadcasts by submitting video fragments instead of traditional text or image queries.
For example, a user might upload a brief clip or GIF, and the bot will quickly identify the corresponding film or series if it exists in our database. The bot returns detailed information, such as the title of the content, links to related websites (like IMDB), and even available trailers.
One of the most striking features of the bot is its ability to recognize videos from small, low-resolution snippets—sometimes as small as 260 pixels. This showcases the efficiency of TAPe’s video sequence processing, which significantly reduces the computational overhead compared to traditional frame-by-frame analysis.
The Underlying Technology: How TAPe Works
Unlike traditional computer vision techniques that rely heavily on convolutional neural networks (CNNs) and deep learning, TAPe employs a unique methodology. Rather than focusing on individual frames, TAPe processes sequences of frames—typically around 5 seconds of video—at once. This approach is counterintuitive but far more efficient than analyzing frames individually, especially considering that a 5-second video segment can consist of 120 to 300 frames.
Importantly, TAPe does not require pre-trained models, as most computer vision systems do. Instead, it learns in real time during the recognition process, much like human perception. This real-time learning enables TAPe to bypass many of the computationally expensive steps involved in traditional video processing. As a result, TAPe can extract the minimal number of features necessary to identify video content, leading to a significantly more efficient search process.
By creating a lightweight “cast” of each video—known as a tape-index—TAPe captures the essential characteristics of the content, which allows for fast and accurate searches. This method drastically reduces storage requirements and computational complexity.
Looking Forward: The Future of TAPe and Video Search
TAPe’s potential extends far beyond its current application in video search. While we are focusing on video recognition and analytics, the underlying technology has broader implications for fields such as artificial intelligence, machine learning algorithms, CPU and GPU development, autopilot systems, and real-time video analytics.
We are also planning to offer the TAPe Video Search API, which will enable researchers and enterprises to analyze vast amounts of video content more efficiently. Additionally, we are developing an extension of the TAPe API for website developers, making it accessible to a wider audience.
One of our most ambitious goals is to index YouTube content, beginning with the platform’s most popular videos. Although this represents only a small fraction of the total content on YouTube, it still amounts to a staggering 2,500 years' worth of video footage. We are confident that TAPe’s efficiency will allow us to tackle this challenge within a reasonable timeframe.
As the use of video content continues to grow exponentially, the demand for efficient, large-scale video search solutions will only increase. TAPe’s revolutionary approach positions it to play a key role in meeting this demand, providing a sustainable and scalable solution for video search in the digital age.
#machine learning#machinelearning#video#computer vision#science#neuroscience#youtube#video search#search engine optimization
2 notes
·
View notes
Text
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
#im really thinking about like doing something with my life and going into cybersecurity like i said i would when i wasl ike 13#im so into engineering IT computers and all that shit#every trime my dad builds a computer im like I Want to do that#like i wnana build computers and do stuf with computers#i fantasize abotu doing art as a career but#i know it wont pan oput the way i want it to bc my vision is very romanticized#like i know damn well i wont be living by the beach remotely and clocking into freelance art job whenever i want#that just wont happen#we gotta be realistic#but ive lawyas been a person who cant pick betwween things#i really love computers though#the money doesnt really matter to me but i know my mom would be like#OH THATS SO COOL YOU GET PAID SO MUCH!#but like i just wnana be around computers and be in a labyrinth
3 notes
·
View notes
Text


[2/100 days of productivity]
Spent most of the day on my computer vision assignment, writing the code and later on writing the report. It was submitted on time.
The good thing is I've spent 7 hours of concentrated work, i haven't been able to do that since a very long time.
Used the 50min/10min pomodoro technique. I am trying to advance in my reading during the breaks. I've been suffering from constant reading slumps.
#100 days of productivity#Sophie's world#Computer vision#engineering student#Computer science student
2 notes
·
View notes
Text
In-House vs. Remote: What’s the Best Way to Hire a Computer Vision Engineer?

Computer vision has been reshaping industries from facial recognition, autonomous vehicles, to medical imaging and retail analysis. As demand proliferates, so does the challenge to find the right experts. Whether a startup or a growing tech company investing in AI, the key question in the picture is: should you opt to hire remote developers or in-house professionals for computer vision roles.
Both options offer their own pros and cons, but the best choice depends on your project scope, budget, and team structure. To understand this in more detail let’s read furthermore.
In-House vs. Remote: What’s the Best Way to Hire a Computer Vision Engineer?
Let’s first explore the traditional and most-preferred hiring approach of in-house developers. Hiring computer vision engineers in-house brings obvious advantages, especially when your project involves ongoing development, close collaboration, or sensitive data.
Having a dedicated engineer on-site will make it easier to coordinate with product managers, data scientists, and developers. You must opt for in-house when:
You must work closely with cross-functional teams.
The project is crucial to your roadmap for products.
Working with sensitive or private datasets.
You intend to make long-term innovation investments.
An internal computer vision specialist can fully own the design of the vision system, contribute continuously to the tech stack, and become a part of the corporate culture.
Why Remote Hiring Is Gaining Ground
Unlike advancements in technology, hiring approaches have also evolved, especially post-pandemic. Hiring remotely from a global talent pool has become a preferred approach among several tech companies and startups.
Many tech companies now prefer to hire AI engineers remotely - especially when looking for rare or specialized skills. Remote hiring offers you access to a global talent network, growing your chances of finding the exact expertise you need. Go remote when:
For a particular use case, such as object tracking or picture segmentation, you require a specialist.
Hiring time is crucial or limited.
You're operating on a tight budget.
You desire flexibility without committing to anything long-term.
Hiring remote developers lowers overhead expenses, particularly in the fields of AI and machine learning. In many areas, pay can be lower without compromising quality, and there's no need to move staff or offer office space.
Consider Hybrid or Project-Based Models
Sometimes combining the two is the best course of action. As you gradually assemble an internal team, you may hire a remote engineer for temporary project or consulting work. This enables you to make rapid progress while developing long-term skills.
Depending on the size of the project, many teams also employ ML or AI engineers to collaborate with computer vision experts. A flexible model keeps your core staff small and concentrated while filling in gaps.
Tips for Hiring the Right Talent
Hiring the best candidate, whether in-house or remote, necessitates having a thorough grasp of your requirements. Identify the precise issues you wish to resolve, such as video analytics, facial recognition, or image classification, and compare them to the engineer's background.
Look for the following when hiring computer vision engineers:
A solid foundation in PyTorch, TensorFlow, OpenCV, or Python.
Knowledge of practical applications (not simply scholarly research).
Case studies or a portfolio demonstrating quantifiable impact.
Excellent communication abilities, particularly for jobs requiring remote work.
Screening for collaborative style is also beneficial. Working across time zones with platforms like Slack, GitHub, and project boards requires self-motivation and comfort on the part of remote engineers.
0 notes
Text
Sistemas de Recomendación y Visión por Computadora: Las IAs que Transforman Nuestra Experiencia Digital
Sistemas de Recomendación: ¿Qué son y para qué sirven? Los sistemas de recomendación son tecnologías basadas en inteligencia artificial diseñadas para predecir y sugerir elementos (productos, contenidos, servicios) que podrían interesar a un usuario específico. Estos sistemas analizan patrones de comportamiento, preferencias pasadas y similitudes entre usuarios para ofrecer recomendaciones…
#Amazon Recommendation System#Amazon Rekognition#Google Cloud Vision API#Google News#IBM Watson Visual Recognition#inteligencia artificial#machine learning#Microsoft Azure Computer Vision#Netflix Recommendation Engine#OpenAI CLIP#personalización#sistemas de recomendación#Spotify Discover Weekly#visión por computadora#YouTube Algorithm
0 notes
Text
How did I get this far not knowing about the hough transform
1 note
·
View note
Text
Giới thiệu chi tiết về học tăng cường: Phương pháp và ứng dụng
🔍 Học tăng cường (Reinforcement Learning) không còn là khái niệm xa lạ với những người yêu thích công nghệ AI. Đây là một phương pháp học tập cho phép máy móc tự khám phá và hoàn thiện kỹ năng thông qua việc thử nghiệm và phản hồi từ môi trường. 🧠✨
💡 Bạn có biết? Học tăng cường đã tạo nên những bước tiến vượt bậc, từ việc giúp AI đánh bại con người trong các trò chơi phức tạp 🎮 như cờ vây, đến việc tối ưu hóa các hệ thống thực tế như quản lý năng lượng 🌱, xe tự hành 🚗, và thậm chí cả dịch vụ khách hàng 📞!
📈 Phương pháp này hoạt động dựa trên nguyên lý học hỏi từ phần thưởng và hình phạt 🔄, giúp mô hình AI không chỉ ra quyết định mà còn đưa ra những chiến lược tối ưu nhất để đạt mục tiêu. Điều này mở ra tiềm năng vô hạn trong các lĩnh vực như tài chính 💰, y tế 🏥, và giáo dục 📚.
👉 Bạn muốn tìm hiểu sâu hơn về cách thức hoạt động, các ứng dụng nổi bật và lý do tại sao học tăng cường lại được xem là tương lai của trí tuệ nhân tạo? Hãy đọc bài viết chi tiết tại đây: Giới thiệu chi tiết về học tăng cường: Phương pháp và ứng dụng
📢 Đừng quên chia sẻ bài viết này để bạn bè của bạn cũng cập nhật thêm kiến thức thú vị về AI nhé! 🤝💬
0 notes
Text
Imbalanced Dataset: Thách thức và Giải pháp trong Machine Learning
🚀 Bạn đã từng gặp tình huống khi dữ liệu của mình bị mất cân bằng giữa các lớp? Một lớp chiếm đến 90% dữ liệu, trong khi lớp khác chỉ chiếm 10% (hoặc ít hơn)? Điều này không chỉ phổ biến trong các bài toán thực tế mà còn đặt ra vô số thách thức khi xây dựng mô hình Machine Learning. 🤔
💡 Tại sao Imbalanced Dataset lại là vấn đề lớn?
📉 Mô hình có xu hướng ưu tiên lớp chiếm đa số, dẫn đến kết quả dự đoán sai lệch.
🛠️ Các chỉ số đánh giá như Accuracy dễ bị đánh lừa, không phản ánh đúng hiệu quả thực tế.
✨ Có giải pháp nào để đối phó với dữ liệu mất cân bằng không? Chắc chắn rồi! Trong bài viết này, chúng tôi sẽ cung cấp những chiến lược hiệu quả, từ: ✔ Resampling Techniques (Oversampling, Undersampling) ✔ Sử dụng các thuật toán mạnh mẽ hơn như SMOTE hoặc ADASYN ✔ Chọn metric đánh giá hợp lý như F1-score, ROC-AUC ✔ Và còn nhiều mẹo hữu ích khác để xử lý vấn đề này!
🔗 Đọc bài viết chi tiết tại đây: Imbalanced Dataset: Thách thức và giải pháp trong Machine Learning
📣 Hãy cùng chia sẻ kinh nghiệm của bạn! Bạn đã từng đối mặt với dữ liệu mất cân bằng chưa? Cách bạn xử lý là gì? Bình luận ngay bên dưới để chúng ta cùng trao đổi nhé! 💬👇
0 notes
Text
Ứng dụng GoogleNet: Công nghệ AI đột phá trong phân loại hình ảnh
🌐 Trong thời đại công nghệ số, việc phân loại hình ảnh chính xác là yếu tố then chốt giúp cải thiện hiệu suất của nhiều lĩnh vực, từ y tế 🏥, giao thông 🚦 đến thương mại điện tử 🛍️. Bạn đã nghe về GoogleNet – một trong những mạng nơ-ron sâu tiên tiến nhất được Google phát triển? 💡
🔍 GoogleNet không chỉ nổi bật với cấu trúc Inception mang tính cách mạng, mà còn giúp giảm thiểu số lượng tham số và tăng độ chính xác vượt bậc. Điều này mở ra khả năng nhận diện và phân loại hình ảnh với tốc độ ⚡ nhanh chóng và độ chính xác cực cao 🎯.
👉 Tò mò về cách GoogleNet hoạt động và ứng dụng thực tiễn của nó? 🌟 Hãy đọc ngay bài viết chi tiết trên website của chúng tôi! 📖 Bạn sẽ hiểu rõ: ✅ Tại sao GoogleNet là "chìa khóa vàng" trong công nghệ phân loại hình ảnh. ✅ Các ngành nghề đang hưởng lợi từ ứng dụng này. ✅ Tiềm năng phát triển không giới hạn của AI và học sâu (Deep Learning).
💻 Khám phá ngay tại đây: Ứng dụng mạng GoogleNet vào phân loại hình ảnh
📢 Hãy chia sẻ bài viết nếu bạn thấy hữu ích nhé! 🤗 Đừng quên để lại bình luận 💬 và ý kiến của bạn về công nghệ AI tiên tiến này!
❤️ Cùng nhau lan tỏa tri thức và khám phá tương lai!
#aicandy#aicandy.vn#artificial intelligence#machine learning#software engineering#programming#computer vision#googlenet
0 notes
Text
PyTorch trong học máy cho người mới bắt đầu
🔥 Khám Phá PyTorch: Công Cụ Đắc Lực Cho Học Máy Dành Cho Người Mới Bắt Đầu! 🔥
🌐 Bạn đang tìm hiểu về học máy (machine learning) nhưng không biết bắt đầu từ đâu? Hay bạn đã nghe đến PyTorch và tò mò tại sao nó lại là một trong những thư viện phổ biến nhất trong lĩnh vực này? 🧠💻
👉 PyTorch không chỉ mạnh mẽ mà còn cực kỳ dễ sử dụng, đặc biệt cho người mới bắt đầu! Với giao diện trực quan, linh hoạt, bạn có thể: ✅ Xây dựng và huấn luyện các mô hình học máy nhanh chóng. ✅ Tự tin thử nghiệm các ý tưởng mới trong lĩnh vực AI. ✅ Thực hành với các ví dụ thực tế từ các chuyên gia.
📖 Bài viết mới nhất của chúng tôi sẽ giúp bạn: 💡 Hiểu cơ bản về PyTorch và cách nó hoạt động. 🔧 Hướng dẫn từng bước cài đặt và sử dụng PyTorch. 🚀 Khám phá các ứng dụng thú vị của học máy qua PyTorch.
📌 Đừng bỏ lỡ cơ hội nâng cấp kỹ năng của bạn ngay hôm nay! 👉 Xem chi tiết tại đây: PyTorch trong học máy cho người mới bắt đầu
❤️ Nếu bạn thấy bài viết hữu ích, đừng quên like, share và để lại ý kiến của bạn trong phần bình luận nhé! 📲 Tag ngay bạn bè của bạn để cùng học và phát triển kỹ năng học máy nào! 🚀
0 notes
Text
Ứng dụng mạng ResNet-50 vào phân loại hình ảnh
📸 Ứng dụng mạng ResNet-50 vào phân loại hình ảnh - Tương lai của công nghệ AI! 🌟
Trong thời đại 4.0, trí tuệ nhân tạo (AI) đã và đang phát triển với tốc độ chóng mặt, giúp thay đổi cuộc sống của chúng ta từng ngày. 🚀 Trong số các mô hình tiên tiến, ResNet-50 là một mạng deep learning nổi bật, đặc biệt được ứng dụng nhiều trong phân loại hình ảnh 🖼️. Vậy ResNet-50 là gì và nó có thể làm được những gì? 🤔
👉 ResNet-50 sử dụng kiến trúc mạng nơ-ron tích chập (CNN), cho phép xử lý và nhận diện hàng triệu hình ảnh với độ chính xác cao. Nhờ cơ chế kết nối dư thừa (skip connections), mạng này có thể học được các đặc trưng phức tạp mà không gặp phải vấn đề biến mất gradient, điều mà các mô hình trước đây thường gặp phải. 🎯
🔥 ResNet-50 đã được ứng dụng rộng rãi trong nhiều lĩnh vực như:
Phân loại và nhận diện hình ảnh 📷
Y tế: Phát hiện sớm các bệnh lý qua ảnh chụp X-quang 🏥
Xe tự lái: Nhận diện và phân tích môi trường xung quanh 🚗
Bạn muốn hiểu rõ hơn về cách mà ResNet-50 có thể cải thiện hiệu suất trong việc phân loại hình ảnh? 😍 Hãy truy cập ngay bài viết đầy đủ của chúng mình tại đây để tìm hiểu chi tiết! ⬇️
🌐 Ứng dụng mạng ResNet-50 vào phân loại hình ảnh 🌐
Hãy để lại ý kiến của bạn và chia sẻ bài viết nếu bạn thấy hữu ích nhé! 💬👍
#aicandy#aicandy.vn#artificial intelligence#machine learning#software engineering#computer vision#deep learning
1 note
·
View note
Text

[1/100 of productivity]
Starting very slow, woke up late was tired most of the day which didn't help to achieve the goals I've set.
I have an assignment deadline for 12/03 which I'm stuck on, hope to manage to solve it in time.
In the meantime I am enjoying my last days of being home with before going back to hustling in paris.
It has been a long time since I baked something, so it felt refreshing trying recipes out again.
🎧Watched a podcast
🎵Music : nebni - lotfi bouchnak ft wmd and emp1re
🍰 Baked a cake which turned out delicious
Goals for the week :
Finish computer vision assignment
Write brain dump file about the last project I've done
Take notes from my nlp lesson
Do my 2 nlp labs
Prepare the lessons I am going to teach for next week
#100 days of productivity#Need to beat procrastination#Nlp#Computer vision#AI#engineering student#tunisia#france
2 notes
·
View notes
Text
DIGITAL TRANSFORMATION COMPANY IN US Alignminds, a US-based digital transformation company, specializes in modernizing businesses through innovative technologies like AI, cloud solutions, and product engineering. With a focus on efficiency and scalability, we help you stay competitive in a rapidly evolving market. Ready to transform your business? Contact Alignminds today! VISIT: https://www.alignminds.com/
0 notes
Text
RVS College of Engineering and Technology Inaugurates AI Skills Lab in Partnership with Dell and Intel
New AI Skills Lab at RVS College of Engineering and Technology, Jamshedpur, aims to enhance digital education and prepare students for future challenges. In a significant step towards innovative education, RVS College of Engineering and Technology, Jamshedpur, has partnered with Dell Technologies and Intel Corporation to inaugurate an advanced AI Skills Lab. JAMSHEDPUR – RVS College of…
#AI skills development#AI Skills Lab#शिक्षा#Computer Vision#Dell Technologies#digital education#education#future workforce#innovative education#Intel Corporation#Jamshedpur#NCS2#NLP#OpenVINO#RVS College of Engineering and Technology
0 notes
Text
Künstliche Intelligenz: Trends
Derzeit wird der Begriff der Künstlichen Intelligenz extrem exzessiv verwendet, etwa im Bereich von: Beim Bloggen über Künstliche Intelligenz (KI) gibt es viele relevante Schlüsselwörter, die dir helfen können, mehr Klicks zu generieren. Hier sind einige Vorschläge: Allgemeine Schlüsselwörter zu KI Künstliche Intelligenz Maschinenlernen Deep Learning AI Trends AI Forschung Zukunft der…

View On WordPress
#AI Entwicklung#AI Forschung#AI Technologien#AI Trends#Architektur#Ästhetik#Bauen#Bauingenieur#Bauingenieur Südtirol#Bauingenieurwesen#Baukultur und Ästhetik#Bausubstanz#Deep Learning#Demanega#Design und Werkstoffe#Energie und Wasser#Engineering#Geologie#Infrastruktur und Infrastrukturplanung#Ingenieur#Innovation#Künstliche Intelligenz#KI Anwendungen#Kultur#Maschinenlernen#Michael Demanega#Mobilität#Nachhaltigkeit#Natur#Neuronale Netze 2. Natürliche Sprachverarbeitung (NLP) 3. Computer Vision 4. Robotics und KI 5. Generative KI 6. KI-Algorithmen 7. Reinforce
0 notes