#engineer use autocad
Explore tagged Tumblr posts
Text
though also the fact that this chromebook only has 15gb of storage which like speaks on how shitty it is and Still runs faster than the shitty laptop my dad gave me says. so much. like im pretty sure every time it freezes its doing so bc the entire thing is contained with an external hard drive. instead kf an actual laptop. which is so.
#i gave my dad my Good laptop bc i have an actual pc so the laptop is just for school#and he needed a laptop that can handle like autocad and shit for his engineering degree#and so he gave me the one he was using and. idfk how he used that for like 2+ years i used it for 1 semester and immediately started#looking into a new one#and then found this one! which we obv abandoned bc chromebooks Fucking Suck#but its not a chromebook anymore. heh.#anyways this is all to say if you ever are shopping for laptops even if your philosophy is 'well ot doesn't need ti be anythibg spscial im#just using it as a glorified word document' or whatever#You Still Need Mkre Than 2gb Of Ram. how did they sell this fucking windows 11 laptop w only 2gb ram o_o#one time that laptop froze becayse i went tk take a screenshot of a gif.
0 notes
Note
Re: VIKTOR & ROLF Couture Fall/Winter 2024
I know fashion, especially couture, is meant to be an expressive and exploratory art. I think the exploration of geometry in fashion, silhouettes, and textures here is really neat! But I am unfamiliar with the designer - is there more to those pieces than meets the eye?
Sometimes there is less evident meaning in a collection to those who don't spend a lot of time and study in the industry. Where would you recommend going for more information on current collections?

If you remember these dresses from last year, Viktor & Rolf have been having a very interesting conversation about current fashion trends and the intersection of the cultural zeitgeist. Structuralism is big in fashion right now, arguably the biggest since Antoinette did her shit. A bunch of designers are fucking around with pushing the limits of what is possible to be worn on the body in a very literal sense, treating garments as almost like physics theorems to be solved. Textile sciences, 3d modeling, etc--it's all being used to make dresses that are more fiendishly complex than the last, than arguably we've ever been able to make.
And Viktor & Rolf specifically seem to be having a very purposeful dialogue of the absurdity of it in the face of what beauty standards are "supposed" to be, what high fashion is "supposed" to be. Their works have always relied heavily on pushing those boundaries and the current couture tech boom is just enabling a lot of their weirdness, which is absolutely fantastic to watch.
I would argue that their 2024 FW collection is specifically exploring what it means to be prioritizing those structuralist tendencies over the actual bodies they're being worn on. It's a conversation piece going back to the old hack question: "Who would ever want to wear this?". The harsh geometries make most of the collection entirely infeasible and impractical for actual wear. No celebrity is gonna want to sit at the Met wearing any of these. Their only value is...what, exactly? Where IS the value coming from? Why do we consider Viktor & Rolf as high fashion icons if the dresses they keep making seem to be actively infeasible for even their "intended" purpose as red carpet event shit? What happens to the fashion industry when the ability to make whatever you want no longer requires it to be intended to be worn, to be used a single time in that runway show and then shoved in an archive?
When couture maisons have to pump out hundreds of dresses every two months, when the world is burning down around us, when none of this matters--isn't it refreshing to see some absolutely buckwild shit on a runway? In a world where the spectacle is supposed to distract from the horror, it feels lately like Viktor & Rolf are specifically hamming up the absurdity of it all. They've watched the industry change from when they first started out into becoming something alien and unrecognizable. Fashion design demands Autocad and 3d printing and literally engineering in order to keep ahead of the pack--and in what is supposed to be an industry defined by the inherent humanity needed to design couture, perhaps these strange polygons are a sort of reckoning with that.
86 notes
·
View notes
Text
From Design to Deployment: How Switchgear Systems Are Built

In the modern world of electrical engineering, switchgear systems play a critical role in ensuring the safe distribution and control of electrical power. From substations and factories to commercial buildings and critical infrastructure, switchgear is the silent guardian that protects equipment, ensures safety, and minimizes power failures.
But have you ever wondered what goes on behind the scenes, from the idea to the actual installation? Let’s dive into the full journey — from design to deployment — of how a switchgear system is built.
Step 1: Requirement Analysis and Load Study
Every switchgear project begins with requirement analysis. This includes:
Understanding the electrical load requirements
Calculating voltage levels, short-circuit ratings, and operating current
Identifying environmental conditions: indoor, outdoor, temperature, humidity
Reviewing applicable industry standards like IEC, ANSI, or DEWA regulations (especially in UAE)
This stage helps engineers determine whether the project needs low voltage (LV), medium voltage (MV), or high voltage (HV) switchgear.
Step 2: Conceptual Design & Engineering
Once the requirements are clear, the conceptual design begins.
Selection of switchgear type (air insulated, gas insulated, metal-enclosed, metal-clad, etc.)
Deciding on protection devices: MCCBs, ACBs, relays, CTs, VTs, and fuses
Creating single-line diagrams (SLDs) and layout drawings
Choosing the busbar material (copper or aluminum), insulation type, and earthing arrangements
Software like AutoCAD, EPLAN, and ETAP are commonly used for precise engineering drawings and simulations.
Step 3: Manufacturing & Fabrication
This is where the physical structure comes to life.
Sheet metal is cut, punched, and bent to form the panel enclosures
Powder coating or galvanizing is done for corrosion protection
Assembly of circuit breakers, contactors, protection relays, meters, etc.
Internal wiring is installed according to the schematic
Every switchgear panel is built with precision and must undergo quality control checks at each stage.
Step 4: Factory Testing (FAT)
Before deployment, every switchgear unit undergoes Factory Acceptance Testing (FAT) to ensure it meets technical and safety standards.
Typical FAT includes:
High-voltage insulation testing
Continuity and phase sequence testing
Functionality check of all protection relays and interlocks
Mechanical operations of breakers and switches
Thermal imaging to detect hotspots
Only after passing FAT, the switchgear is cleared for shipping.
Step 5: Transportation & Site Installation
Transportation must be handled with care to avoid damage to components. At the site:
Panels are unloaded and moved to their final location
Cabling and bus duct connections are established
Earthing systems are connected
Environmental sealing is done if installed outdoors or in dusty environments
Step 6: Commissioning & Site Acceptance Testing (SAT)
This final stage ensures the switchgear is ready for live operation.
Final checks and Site Acceptance Tests (SAT) are performed
System integration is tested with other components like transformers, UPS, and generators
Load tests and trial runs are conducted
Commissioning report is generated, and documentation is handed over to the client
Conclusion
From idea to execution, the journey of building a switchgear system is highly technical, safety-driven, and precision-based. Whether you’re in power generation, industrial automation, or commercial construction, understanding this process ensures you choose the right system for your needs.
7 notes
·
View notes
Text
#WageCageLocations










To proceed with generating or acquiring maps of underground tunnels or systems for 1183 Western Ave S, Los Angeles, CA, here’s a detailed guide you can follow:
Access Public Records
Contact Local Authorities: Reach out to the Los Angeles Department of Public Works or the Bureau of Engineering. They maintain maps and schematics of underground utilities and tunnel systems.
Website: LA Public Works
Phone: 311 (or 213-473-3231 outside Los Angeles)
Request Public Records: Submit a Public Records Act (PRA) request to obtain detailed maps of underground utilities or tunnels.
Use Geospatial Tools
Google Earth Pro:
Download Google Earth Pro (free) from here.
Search the address and explore its 3D and historical imagery layers.
Overlay city planning or utility map data if available.
ArcGIS:
Use GIS mapping software such as ArcGIS to access local underground data layers.
Some public libraries or universities provide free access to ArcGIS.
USGS Resources:
Check the U.S. Geological Survey (USGS) for geospatial data in the area: USGS Website.
Search their databases for subsurface or geological maps.
Hire Professionals
Geophysical Survey Services: Companies offering ground-penetrating radar (GPR) services can map underground tunnels, pipelines, and utilities. Examples:
GSSI (Ground Penetrating Radar Systems, Inc.)
Local geotechnical or engineering firms.
Surveying Experts: Licensed surveyors can create precise subsurface maps.
Research Historical and Urban Planning Data
Libraries and Archives:
Visit local archives or libraries like the Los Angeles Public Library. They often have historical maps and documents.
California Historical Society:
Explore their archives for historical records of tunnels or underground systems.
Collaborate with Open-Source Projects
OpenStreetMap:
Check OpenStreetMap for user-contributed data on the area.
Subterranean Mapping Communities:
Join forums or communities interested in urban exploration (e.g., Reddit's r/urbanexploration).
Final Steps
Once you've gathered relevant data, you can use tools like AutoCAD or GIS software to compile your maps. If you'd like further help with interpreting or organizing data, feel free to ask!
To proceed with generating or acquiring maps of underground tunnels or systems for 1183 Western Ave S, Los Angeles, CA, here’s a detailed guide you can follow:
Access Public Records
Contact Local Authorities: Reach out to the Los Angeles Department of Public Works or the Bureau of Engineering. They maintain maps and schematics of underground utilities and tunnel systems.
Website: LA Public Works
Phone: 311 (or 213-473-3231 outside Los Angeles)
Request Public Records: Submit a Public Records Act (PRA) request to obtain detailed maps of underground utilities or tunnels.
Use Geospatial Tools
Google Earth Pro:
Download Google Earth Pro (free) from here.
Search the address and explore its 3D and historical imagery layers.
Overlay city planning or utility map data if available.
ArcGIS:
Use GIS mapping software such as ArcGIS to access local underground data layers.
Some public libraries or universities provide free access to ArcGIS.
USGS Resources:
Check the U.S. Geological Survey (USGS) for geospatial data in the area: USGS Website.
Search their databases for subsurface or geological maps.
Hire Professionals
Geophysical Survey Services: Companies offering ground-penetrating radar (GPR) services can map underground tunnels, pipelines, and utilities. Examples:
GSSI (Ground Penetrating Radar Systems, Inc.)
Local geotechnical or engineering firms.
Surveying Experts: Licensed surveyors can create precise subsurface maps.
Research Historical and Urban Planning Data
Libraries and Archives:
Visit local archives or libraries like the Los Angeles Public Library. They often have historical maps and documents.
California Historical Society:
Explore their archives for historical records of tunnels or underground systems.
Collaborate with Open-Source Projects
OpenStreetMap:
Check OpenStreetMap for user-contributed data on the area.
Subterranean Mapping Communities:
Join forums or communities interested in urban exploration (e.g., Reddit's r/urbanexploration).
Final Steps
Once you've gathered relevant data, you can use tools like AutoCAD or GIS software to compile your maps. If you'd like further help with interpreting or organizing data, feel free to ask!
Here is a detailed prompt you can use for another AI or mapping tool capable of generating maps and schematics of underground tunnel systems:
Prompt for AI Map Generator:
"Generate a detailed map and schematic of the underground tunnel systems, utility lines, and infrastructure at and around the location 1183 Western Ave S, Los Angeles, CA. The map should include the following details:
Subsurface Layers:
Sewer systems, drainage systems, and stormwater pipelines.
Electrical, gas, and water utility lines.
Any known historical or abandoned tunnels.
Proximity:
Cover an area with a radius of 1 mile from the given location.
Highlight all connections to adjacent buildings and structures.
Visualization:
Provide both 2D and 3D views of the underground systems.
Use different colors and layers for various types of infrastructure (e.g., blue for water lines, yellow for gas lines, etc.).
Include a legend for easy identification of systems.
Additional Features:
Annotate points of interest (e.g., access points, manholes, maintenance tunnels).
Show depth levels for each layer (e.g., sewer system at 15 feet, utility lines at 10 feet).
Overlay the map with the above-ground street grid for reference.
Data Integration:
Incorporate open-source geospatial data, city planning maps, and historical records if available.
Highlight discrepancies between historical and current data.
Output Formats:
Provide the map in standard formats like GeoTIFF, DWG (AutoCAD), and PDF for versatility.
Include a .KMZ file for visualization in Google Earth."
This prompt provides clear instructions and context for generating a comprehensive underground map. Use it with AI tools like GIS-enabled platforms, geospatial mapping AIs, or simulation software. Let me know if you need adjustments or more guidance!






7 notes
·
View notes
Text

🚨 Start Your Career in Furniture Design Today! 📍 Scope Computers | Since 1993 | Bhaskar Circle, Ratanada, Jodhpur
Dear Jodhpur,
I'm not just an institute owner — I'm a dreamer who started Scope Computers in 1993 with just one thing in mind: empowering youth with skills that change lives. 🙏 Today, times are tough, and to keep this dream alive — I’m launching a powerful, career-focused 💼 Furniture Design Course that gives you the skills the market needs.
🎓 Furniture Design Course Includes: ✅ AutoCAD ✅ 3ds Max ✅ Photoshop ✅ V-Ray Rendering ✅ Adobe Premiere Pro ✅ Engineering Drawing ✅ Assembly Drawing ✅ Walkthrough Creation
🎯 After This Course, You'll Be Able To: 🔹 Design realistic 3D furniture models 🔹 Present your ideas with professional walkthroughs 🔹 Build a career in interior/furniture design 🔹 Work with architects, startups & interior studios 🔹 Even start your own freelancing or business!
⏳ No big money needed to start — just your passion and commitment. I’m not just teaching you tools — I’m helping you build your future.
📞 Call Now: 8560000535, 8000268898 🏫 Visit Us: Scope Computers, Bhaskar Circle, Ratanada, Jodhpur
#FurnitureDesign#ScopeComputers#InteriorDesignCourse#3dsMaxJodhpur#AutoCADTraining#PhotoshopJodhpur#VRayRendering#WalkthroughDesign#PremierePro#FurnitureDesignerJodhpur#LearnAndEarn#CareerInDesign#FurnitureSketch#InteriorWalkthrough#RealisticRendering#DesignSkills#JodhpurTraining#SkillIndia#YouthEmpowerment#FurnitureArt#JobReadyCourse#ScopeSince1993
2 notes
·
View notes
Text
How Civil Engineering Courses Are Evolving with New Technology
Civil engineering is no longer just about bricks, cement, and bridges. It has become one of the most future-focused fields today. If you are planning to study civil engineering, you must understand how the course has evolved. The best civil engineering colleges are now offering much more than classroom learning.
You now study with technology, not just about it. And this shift is shaping your career in ways that were never possible before.
Technology is Changing the Civil Engineering Classroom
In the past, civil engineering courses relied on heavy theory and basic field training. Today, you learn through software, simulations, and smart labs. At universities like BBDU in Lucknow, classrooms are powered by tools like AutoCAD, Revit, STAAD Pro, and BIM.
These tools help you visualize structures, test designs, and even simulate natural forces.
You work on 3D modeling tools
You test designs virtually before real-world execution
You understand smart city layouts and green construction methods
This means your learning is hands-on, job-ready, and tech-driven.
You Learn What the Industry Actually Uses
Most construction and infrastructure companies now depend on digital tools to plan, design, and execute projects. This is why modern B.Tech Civil Engineering courses include:
Building Information Modelling (BIM)
Geographic Information Systems (GIS)
Remote Sensing Technology
Drones for land surveying
IoT sensors in smart infrastructure
Courses in colleges like BBDU include these topics in the curriculum. You do not just learn civil engineering. You learn the tools that companies expect you to know from day one.
The future of Civil Engineering is Data-Driven
You might not think of civil engineering as a data-heavy field. But now, big data is used to monitor structural health, traffic flow, and resource planning. Many universities have added data analysis and AI basics to help you understand how smart infrastructure works.
By learning how to handle real-time data from buildings or roads, you become more skilled and more employable.
Real-world exposure is Now Part of the Course
Good civil engineering colleges in Uttar Pradesh understand that you need industry exposure. Colleges like BBDU offer:
Internships with construction firms and government bodies
Industry guest lectures and site visits
Capstone projects linked to real problems
You are not just attending lectures. You are solving real-world construction challenges while still in college.
Why Choose BBDU for Civil Engineering?
In Lucknow, BBDU is one of the few private universities offering a modern civil engineering course with world-class infrastructure. You learn in smart labs, access tools used by top firms, and receive career counseling throughout the program.
Here’s what makes BBDU a smart choice:
Advanced labs and smart classrooms
Training in AutoCAD, STAAD Pro, BIM
Live projects and on-site construction learning
Career cell and placement support
Affordable fees and scholarships for deserving students
Civil Engineering is Still One of the Most Stable Careers
Reports show that India will spend over ₹100 lakh crores on infrastructure in the next few years. Roads, smart cities, renewable power plants, metros – all need civil engineers. And companies prefer students trained in construction technology, digital tools, and real-world planning.
So, if you're thinking about joining a course, look at how it prepares you for tomorrow.
The future of civil engineering is digital, and your education should be too. Choose a program that keeps up with the times. Choose a university that helps you build more than just buildings – it helps you build your future.
Apply now at BBDU – one of the most future-focused civil engineering colleges in Uttar Pradesh.
2 notes
·
View notes
Text
NextCity recently published a hot take by Steffen Berr tying the ways in which the US is failing at reducing pedestrian deaths to the misaligned training that most transportation engineers in the US receive. Berr explains that a transportation engineer “is a really a civil engineer who has received a little exposure to the transportation sector.” Due to the structure of accredited degree programs, “In a best-case scenario, a civil engineer will only take three transportation classes during their bachelor’s degree. In the worst case, they’ll only take one: Introduction to Highway Engineering. To put this into perspective, the most educated professionals we entrust to design and run our roads and streets have received only half of a minor with a handful of credits on the topic.”
Berr goes on to address the reasonable objection that in many fields, people learn on the job. But what transportation engineers learn on the job, per Berr, is not things like how to choose the most appropriate intersection for the desired use, how the road system should be laid out at a network/route level, or how to fix congestion (none of which, he argues, they learn in school either.) Instead, they learn “how to navigate the impressive amounts of bureaucracy that have been built up in the industry, memorize an impressive vocabulary of technical jargon, practice with design software like AutoCAD to produce engineering plans, and how to copy the current engineering standards. There is no exposure to deep levels of theory that can help our future professionals create original solutions to fundamental problems like safety, congestion, emissions and ethics.”
I’m less interested in Berr’s point about the wrong degree requirements than I am in his observation about what the job of transportation engineer actually is. As Stafford Beer observed, “the purpose of a system is what it does,” and by analogy, the purpose of a job is not its stated goals but what the people who do it actually do day to day.1 When talking to people who’ve never worked in government, the biggest disconnect is usually a lack of understanding of the actual jobs of public servants. A rather dramatic illustration of this comes from a Mercatus Center podcast with Lant Pritchett in which he shares an anecdote about advocating for evidence-based policy in the Indian bureaucracy.
After they had done the RCT [random control trial] showing that this Balsakhi program of putting tutors in the schools really led to substantial gains and learning achievement and reading outcomes, he took it to the secretary of education of the place in which they had done the RCT. And he said, “Oh, by the way, I have the solution to your problem of low learning levels, or at least part of the solution. Look, we’ve got this powerful evidence that this works to improve leading outcomes by putting these volunteer tutors and pulling their low learning kids out.” The response of the secretary of education was, “What do you think my job is? Why do you think that this is a solution to a problem I have? Look around my office. See these piles and piles of files that keep me busy 60 hours a week and not one of these files is about a child not learning. I’m under no pressure about that problem. If I try and transfer a teacher, I’ve got a court case on my hand. If I try and close a school, I got a court case on my hand. My job is to administer the existing education policy such that there’s policy compliance. Super kudos to you for this cute little study you’ve done. It has nothing to do with my job as secretary of education.”
Ouch. And that’s a secretary of an agency serving a county with 1.5 billion people.
I suspect a lot of public servants in the US will read that and think “My job is not quite as bad as that but it sure feels that way a lot.” The people I know maintain enough connection to the actual mission to avoid such a meltdown (though I find the secretary’s frankness refreshing.) But both these stories help explain a conundrum that many who care about effective government (or, shall we say, state capacity) struggle to explain: the contradiction between the dedication, smarts, and creativity of most public servants and the sometimes terrible outcomes they are associated with, like the recent tragic lapses in administering student loans by the US Department of Education. (Or in Berr’s world, the 40,000 traffic deaths we’re stuck with every year while countries like the Netherlands have dropped their own already low number by 46%.2) To be sure, there are often extraordinary outcomes (hello Direct File!), and we notice them far less often, to our own detriment. But while it’s impossible to give government a meaningful overall grade, if its job is to meet challenges we face (national security, climate change, an effective safety net, etc.), we are at risk of falling dangerously short. The problem isn’t that public servants are doing a bad job, it’s that they’re doing a great job — at the wrong jobs.''
The (unnamed in this context) Indian Secretary of Education seems to agree: “My job is to administer the existing education policy such that there’s policy compliance.” I highly doubt that’s the job he thought he was getting, or the job he wanted to do. Berr is on the same general theme when he says that what transportation engineers learn on the job is “how to operate in the industry effectively as it has been currently set up.” Note his use of the word effectively. Effective towards what? Not towards reducing traffic deaths or congestion levels. “All the experience in the world of copying and pasting a standard invented fifty years ago is useless when the problems that the standard was invented to resolve have changed,” he says. “Understanding this sheds a lot of light as to why 40,000 people are still dying on our roads every year and why your local city insists on laying down sharrows [which are known to be ineffective and often dangerous] in their latest round of “safety improvements.” Quite frankly, it’s because we have no idea what we are doing.”
This is a useful nuance as I develop a framework for building state capacity. One of my admittedly obvious and oversimplified tenets is that systems have both “go energy” and “stop energy,” much as a car has a gas pedal and a brake. You wouldn’t drive a car without a brake, but you also wouldn’t drive a car in which the brake was pressed all the time, even when you were trying to accelerate. This is a good metaphor for how we’re dealing with the implementation of CHIPS, IRA, and the Infrastructure Bill, for example, where the clear intent is speed and scale but the public servants responsible are held back from that by the brakes of overly zealous compliance functions. I hear a version of this at every agency I visit: “Congress tells us to do something. Then the compliance offices keep us from doing that very thing.” (And side note for further discussion: This is an issue of representation, voice, and democracy.) The stop energy in our government is currently a lot bigger than it should be. We’re hitting the gas but we’re not accelerating because we’re pressing the brake at the same time.
Lots of people in government have “stop energy” jobs. We need them, and we need them to be good at them. I don’t want to live in a country where our government doesn’t exercise “stop authority.” I try to remember not to complain when my flight is delayed because I really don’t want to die in a plane crash, and a rigidly implemented checklist is a big part of how we keep safe (the current epidemic of doors and engine cowlings blowing off notwithstanding). I also really like being pretty confident that a pill I’m taking has been tested and not tampered with. I like thinking our nuclear arsenal is protected. You know, little things like that.
Stop energy is critical. Rigid adherence to protocol is usually lifesaving. But it must exist in balance. I recently learned the Navy concept of “front of sub/back of sub.” The back of a nuclear submarine, where the nukes live, is run by the book. You don’t deviate from the checklist. You don’t innovate. You don’t question. The front of the sub, on the other hand, is responsible for navigating through dark waters. You have to improvise. You have to make judgment calls. There are manuals and checklists, for sure, but the nature of the work calls for a different approach, and the Navy recognizes that the cultures of front and back have evolved appropriately to meet distinct needs.
There are times, of course, when you’ll need front of sub judgment in a back of sub context. If the plane I was on was about to be bombed by an enemy combatant (unlikely in my life, I hope), I would be okay with the pilot using her discretion to cut a corner or two on the takeoff checklist, because the very thing that checklist is there to protect (the lives of the people on board) would under threat from a different vector. Taking every precaution in that scenario could be reckless. That’s a bit how I feel about the NEPA reviews and other bureaucratic processes that are holding back building the infrastructure we need to move to a low-carbon economy. I wish for the public servants in charge to see the threat of inaction – those species the checklist is trying to protect are threatened by temperature rise as much or more than they are by the project in question – and make good judgment calls about getting the plane off the runway a lot quicker, so to speak. This feels like a domain where back of sub culture has more hold than it should given the circumstances. And to Berr’s point, we can’t rely on back of sub culture when the checklist and protocols it uses no longer serve the purpose.
Of course, “stop energy” roles can themselves be balanced – if only I had a dime for every discussion about the value of lawyers who get to yes and the frustrations with those who seem to do nothing but block. The analogy breaks down a bit here because the items on a pre-flight checklist are binary – they are either red or green – whereas the ad hoc checklists that lawyers assemble to ensure compliance before signing off on an action are almost always shades of gray – they can be open to lots of interpretations. Any given lawyer, or compliance officer, or ethics cop can treat their role with appropriate balance, reserving their stop authority only when the risks truly outweigh the benefits. But getting the culture of a team, department, or agency to balance stop and go correctly at a macro level is extremely difficult. It’s rare to see leadership really change that balance, or for it to stick. It’s a retail approach, hugely dependent on personalities and circumstances.
What would a wholesale approach to getting back into balance look like? One answer should be a simple matter of top-down workforce planning, of the kind our Office of Personnel Management should be empowered to do: fewer stop energy jobs relative to go energy jobs. Hire more doers than brakers, both in how the position is defined and in the characteristics of the people selected for the job. But that proposal needs several important caveats. Of course, every great employee is some mix of these energies – a “go only” employee would be exhausting and dangerous in all but the most extreme circumstances – so we’re talking about a general orientation. More importantly, having fewer brakers will only result in enormous backlogs if they have the same stopping power. But there are plenty of functions where its possible to safely move from default no to default yes, possibly with an after the fact correction mechanism.3 Instead of requiring form redesigns to go through a long White House approval process before they can be made available to the public, for instance, allow agencies to apply the appropriate level of scrutiny and sign-off for the form at hand and develop a process for catching and quickly fixing anything determined to be detrimental. This example speaks to the issue of multiple levels of safeguards. Loosening a safeguard that operates at the top level of federal government may not make much difference to overall stop energy if agencies, or in turn their subcomponents, or even teams, react by strengthening their own safeguard processes. There might be something like a Law of Conservation of Safeguards at play here. But it’s still worth considering the value of moving to default yes processes where appropriate.
Of course, the question of the nature of the job public servants are tasked with is about much more than just stop vs go. It’s about what kind of work we’ve decided to invest in. I go into some depth about this in Chapter 5 of Recoding America as it relates to our lack of investment in digital competencies and how ideologies about private sector superiority led to a big outsourcing push just as digital was beginning to massively transform society.
…these internal competencies in digital became necessary just as we were jettisoning internal competencies of all sorts, not developing them. Instead of digital competency, government has developed extensive processes and procedures for procurement of digital work, and the ins and outs of procurements sometimes seem more complex and technical than the latest programming languages.
This points to another way to understand the disconnect between high employee performance and the outcomes our government produces (or fails to), especially relative to the investment made.4 Take procurement. I know a lot of people in procurement who are really good at their jobs. Some of them are considered really good because they’re great at the “back of sub” tasks of making sure every box is checked, and a manager might feel compelled to give them a high performance rating because of their thoroughness and dedication, even if the people who need the thing being acquired are frustrated by the slowness and rigidity of the process, and even if the thing that is ultimately acquired has checked all the boxes but doesn’t actually work. (For an example of this, see Chapter 4 of Recoding America.) But many of these procurement professionals operate according to “front of sub” principles, and are enormously creative and mission-driven. The other public servants who rely on them to procure things value them enormously. They may or may not receive high ratings, if the manager is judging them based on a “back of sub” approach. But procurement processes simply should not be as complex and burdensome as they have become. Both of these kinds of procurement professionals are doing a job that simply shouldn’t exist in its current form.
Especially with the looming threat of the return of Schedule F under a possible Trump administration, there’s a lot of talk of public sector employee performance and protections. I agree strongly with Donald Kettl, who has said about the left’s silence on civil service reforms in the face of Schedule F: “You can’t fight something with nothing.” I hope to be part of proposing a something there, something that improves government’s ability to fill many open positions and to effectively and ethically manage the workforce. But we could succeed entirely at that and still fail to meet the challenges in front of us if the jobs we fill are the wrong jobs.
Another of my admittedly obvious and oversimplified principles of how to build state capacity is that there are really only three things you can do:
You can have more of the right people
You can focus them on the right things
You can burden them less.
There is obviously quite a lot to say about each of those things, and they are all deeply intertwined. A big reason we don’t have more of the right people is that we overburden both the people responsible for hiring and the applicants, focusing both on the wrong things. We overburden public servants generally because we have designed too many of their jobs to stop bad things instead of to enable the things we desperately need. We are too often asking if public servants are doing a good job instead of understanding and questioning the nature of the jobs they’ve been hired to do.
We need a much more robust understanding of how to fix the problem of hiring the right people to do the wrong jobs. We need wholesale strategies for tuning the dial between front of sub and back of sub, between stop and go, between brake and gas, and refocusing the job of public servants on the work that’s most directly meaningful towards the outcomes we want. We need staffers in agencies who act as if the climate crisis is the enemy plane that’s about to bomb us. We need transportation engineers whose actual job – as practiced on a daily basis, at scale – is to reduce congestion and pollution and improve and save lives. We need Secretaries of Education who have time in their day to look at the study on improving learning achievement, and maybe even take action on it. We need all of this now.
Imagine a world in which this — not just enforcing rules, not even just helping agencies fill open jobs, but ensuring that federal government fills the right jobs — was the mandate of an empowered and deeply collaborative Office of Personnel Management. They couldn’t do it alone, of course — it’s agencies that define the jobs they think they need and Congress that throws down law after law they must comply with, feeding the need for compliance. The White House Office of Management and Budget adds its own reporting and compliance burdens. Each would need to buy in on an agenda of building state capacity and do their part. But this is what workforce planning should really be, and in 2025, we will need it more than ever. If Biden gets a second term, this is the kind of ambitious agenda he should set.
1
Please read Dan Davies’ excellent new book The Unaccountability Machine for a lot more on Beer and why this is important.
2
The US has 12.8 traffic deaths per 100,000 people, the Netherland 3.6 per 100,0000.
3
I think this is a Guarino-ism… if I’m misattributing it, someone will correct me.
4
Some will point out that perverse incentives in the performance management practices can sometimes make it hard to give public sector employees poor ratings, which may skew the data. I don’t quite know how to evaluate that claim, but I also don’t think it’s all that relevant if you’re trying to
10 notes
·
View notes
Text
2D to 3D Drawing Conversion Services: Transforming Designs with Precision

2D to 3D Drawing Conversion Services: Transforming Designs with Precision
Introduction
In the modern design and engineering world, the transition from 2D to 3D drawings has become crucial for enhanced visualization, accuracy, and efficiency. At ADSBIM, we specialize in 2D to 3D drawing conversion, offering precision-driven solutions to transform flat drawings into comprehensive 3D models. Our expertise ensures seamless conversion, catering to industries like architecture, engineering, and manufacturing. We are recognized as the BEST 2D to 3D Drawing Conversion Services provider in Gurgaon, India, UK, Dubai, and USA.
The Process of Converting 2D Designs into 3D Models
The 2D to 3D drawing conversion process involves several meticulous steps to ensure accuracy and fidelity to the original design. Here’s how we do it:
Understanding Requirements: We analyze the 2D drawing, ensuring clarity in dimensions, annotations, and details.
Software Selection: Based on project needs, we choose the appropriate 2D to 3D drawing conversion software such as AutoCAD, SolidWorks, Revit, or CATIA.
Modeling the Geometry: Using advanced tools, we create a 3D representation of the 2D drawing while maintaining proportional accuracy.
Material and Texture Application: If required, materials, textures, and colors are applied to make the model more realistic.
Validation and Quality Check: The final 3D model is compared with the original 2D drawing to ensure precision and adherence to client requirements.
Final Delivery: The completed 2D drawing to 3D model is delivered in the required format, ready for use in design simulations, manufacturing, or visualization.
Challenges in 2D to 3D Drawing Conversion
While converting 2D drawings to 3D models, several challenges can arise:
Loss of Information: Some 2D drawings lack depth-related data, requiring intelligent interpretation.
Complex Geometries: Intricate designs may need additional modifications to ensure a smooth 3D transformation.
Scale and Accuracy: Ensuring precise measurements during conversion is crucial to avoid design flaws.
Software Compatibility: Different clients use varied software, requiring expertise in multiple platforms.
How ADSBIM Provides the Best Solutions
At ADSBIM, we tackle these challenges with expertise and cutting-edge technology:
Experienced Team: Our skilled professionals have extensive experience in 2D to 3D drawing conversion across multiple industries.
Advanced Software Tools: We use industry-leading 2D to 3D drawing conversion software, including:
AutoCAD
SolidWorks
Revit
CATIA
SketchUp
Custom Solutions: We tailor our approach to match specific project needs, ensuring maximum accuracy.
Quality Assurance: Rigorous quality checks ensure error-free 2D drawing to 3D model conversion.
Fast Turnaround: Our efficient process ensures timely delivery without compromising quality.
Why Choose ADSBIM for 2D to 3D Drawing Conversion?
BEST 2D to 3D Drawing Conversion Services COMPANY IN GURGAON and globally recognized in India, UK, Dubai, and USA.
Precision and Accuracy: Our models maintain the highest standards of accuracy.
Affordable Solutions: We provide competitive pricing while maintaining high quality.
Comprehensive Support: From consultation to post-conversion support, we ensure seamless collaboration.
Multi-Industry Expertise: We cater to architecture, engineering, manufacturing, and more.
FAQs for 2D to 3D Drawing Conversion Services
What is the benefit of converting 2D drawings to 3D models?Converting 2D to 3D drawing enhances visualization, accuracy, and efficiency, making designs easier to understand and modify.
Which industries require 2D to 3D drawing conversion services?Industries like architecture, engineering, manufacturing, automotive, and product design benefit from BEST 2D to 3D Drawing Conversion Services.
Which software is used for 2D to 3D drawing conversion?We use AutoCAD, SolidWorks, Revit, CATIA, and SketchUp for 2D to 3D drawing conversion software solutions.
How much time does it take to transform a 2D drawing into a 3D model?The time required depends on the complexity of the drawing and project specifications, but we ensure fast turnaround times.
Do you provide 2D to 3D drawing conversion services globally?Yes, ADSBIM offers BEST 2D to 3D Drawing Conversion Services in India, UK, Dubai, USA, and beyond.
Conclusion
The transition from 2D drawing to 3D is essential for better visualization, accuracy, and manufacturing efficiency. With ADSBIM’s 2D to 3D drawing conversion services, businesses can seamlessly transform their designs into high-quality 3D models. Whether for prototyping, construction, or product development, we provide precise, reliable, and cost-effective solutions tailored to your needs.
Looking for expert 2D to 3D drawing conversion services? Contact ADSBIM today and let us bring your designs to life!
#adsbim#2Dto3DConversion#2Dto3DServices#DrawingConversion#CADConversion#3DModeling#AutoCAD#SolidWorks#Revit#CATIA#SketchUp#ArchitectureDesign#EngineeringDesign#ManufacturingDesign#ProductDesign#2Dto3DModeling#DesignVisualization#ADSBIM#Gurgaon#India#UK#Dubai#USA#CADExperts#TechnicalDesign#3DRendering#EngineeringSolutions
3 notes
·
View notes
Text
Architectural 2D CAD Drafting & Design Services: Ensuring Precision and Quality
Architectural 2D CAD Drafting
Architectural 2D CAD drafting is the backbone of modern design workflows, offering precise and detailed technical drawings for projects of all scales. Whether it’s floor plans, elevations, or technical drawings, Architectural 2D CAD Drafting & Design Services ensure every detail is accurately represented, eliminating errors and streamlining construction processes.
With advanced tools like AutoCAD and Revit, these services allow architects, engineers, and contractors to work collaboratively, achieving precision and efficiency in their designs.

Importance of 2D CAD Drafting in Modern Architecture
2D CAD drafting services have become an integral part of architectural workflows, helping professionals overcome traditional design challenges. Here's why they are indispensable in modern architecture:
Precision: Every detail, from measurements to layouts, is highly accurate.
Collaboration: CAD files are easily shareable, ensuring all stakeholders are aligned.
Efficiency: Compared to manual drafting, CAD tools significantly reduce the time required to produce drawings.
By integrating 2D drafting and 3D BIM Modeling Services, architects and engineers can move seamlessly from conceptual design to execution while maintaining accuracy and consistency.
Benefits of 2D CAD Drafting for Professionals
For architects, engineers, and contractors, architectural 2D drafting offers numerous benefits, including:
Enhanced PrecisionAccurate drafting reduces errors during construction, ensuring smooth project execution.
Streamlined WorkflowWith 2D drafting and Architectural Design Visualization Services, teams can transition from design to documentation more effectively.
Cost EfficiencyOutsourcing 2D CAD drafting services reduces overhead costs, as there’s no need for maintaining an in-house drafting team.
Flexibility and ScalabilityProjects often require revisions and updates. CAD drafting ensures that modifications are quick and hassle-free without disrupting the entire workflow.
Professionals across industries leverage these benefits to optimize their design and construction processes.
Applications of 2D CAD Drafting
Architectural 2D drafting services have a wide range of applications in design and construction, including:
Floor Plans: Clearly defined layouts for residential, commercial, and industrial buildings.
Elevations: Detailed visual representations of exterior facades for presentations and approvals.
Technical Drawings: Accurate documentation that provides contractors and engineers with essential construction details.
To cater to complex design needs, Architectural CAD Design and Drafting Services provide tailored solutions for architects and engineers, enabling seamless integration of technical precision with creative concepts.
Industries Benefiting from 2D CAD Drafting
Several industries rely on architectural 2D CAD drafting services for achieving project success. Here’s a closer look:
ConstructionPrecise drafting reduces on-site errors, saving time and money during construction. Contractors depend on 2D drafting for creating accurate blueprints.
Interior DesignInterior designers use CAD drafting to create detailed layouts for furniture placement, lighting design, and more.
Real EstateReal estate developers benefit from professional drafting services to create detailed property layouts for presentations and marketing materials.
By relying on Architectural Documentation Services, these industries achieve precision, professionalism, and timely project delivery.
Leveraging Professional CAD Drafting Services
Outsourcing 2D CAD drafting services to experienced professionals can significantly optimize project outcomes. Here’s how:
Expertise: Professional drafters bring years of experience in handling complex drafting requirements.
Cost Savings: Avoid the expenses of maintaining in-house resources by outsourcing CAD drafting tasks.
Scalability: Services are tailored to meet specific project needs, ensuring flexibility and adaptability.
By leveraging Paper to CAD Conversion Services, architects, engineers, and contractors can focus on core project responsibilities while ensuring that designs are accurate and construction-ready.
Conclusion
Architectural 2D CAD drafting services are indispensable for achieving precision, efficiency, and collaboration in modern design projects. From floor plans to elevations and technical drawings, these services provide a solid foundation for successful project execution.
If you're looking to enhance your project outcomes with professional drafting services, get in touch today to see how we can help bring your vision to life.
2 notes
·
View notes
Text
So as it turns out learning to 3D model using fucking AutoCAD because they had the student version being handed out back in high schools means my brain is now wired to use fucking AutoCAD.
I tried using Blender today and man. wow. very different. I STILL cannot get things to rotate correctly AT ALL because I am so used to the rigid AutoCAD style of view rotation.
Trying out some various free CAD type software to see if those work better for me, starting with yonder free Autodesk software (my first was Inventor, which has an absolutely staggeringly high price,,, as a SUBSCRIPTION of all things if you are not a 17 yr old attending a basic engineering class), Fusion 360 (personal use version)
very happy immediately to see the fucking sketch option and that familiar, familiar POV cube
However it also apparently has some kind of active document limit, which is set to 10??? sounds scuffed but I guess I'll give it chance in between searching for other softwares
24 notes
·
View notes
Text
Crafting Brisbane's Future: The Vital Role of Civil Engineering Draftspersons
In the heart of Australia's bustling metropolis, Brisbane, the intricate blueprints that shape its skyline are drawn by a dedicated team of professionals: Civil Engineering Draftspersons Brisbane. These unsung heroes play a pivotal role in transforming architectural visions into tangible realities, ensuring that the city's infrastructure is not just functional but aesthetically pleasing and sustainable.

The Art and Science of Draftsmanship
Civil engineering draftspersons are more than just technical artists; they are skilled professionals who bridge the gap between architects and engineers. They possess a deep understanding of engineering principles, construction techniques, and architectural aesthetics. Their ability to translate complex technical drawings into precise and detailed plans is essential for the successful execution of any civil engineering project.
Key Responsibilities of a Civil Engineering Draftsperson
Preparing Detailed Drawings: Draftspersons create accurate and comprehensive drawings, including floor plans, elevations, sections, and details, ensuring that all stakeholders have a clear understanding of the project's design.
Coordinating with Engineers and Architects: They collaborate closely with engineers and architects to ensure that the design aligns with structural requirements, building codes, and aesthetic preferences.
Using Advanced Software: Proficiency in AutoCAD, Revit, and other specialized software is essential for producing high-quality and error-free drawings.
Maintaining Accuracy and Precision: Draftspersons must pay meticulous attention to detail, ensuring that dimensions, materials, and specifications are accurate and consistent throughout the project.
Staying Updated with Industry Trends: The field of civil engineering is constantly evolving, and draftspersons must stay abreast of new technologies, materials, and design methodologies to remain competitive.
Brisbane's Growing Demand for Civil Engineering Draftspersons
As Brisbane continues to expand and develop, the demand for skilled Civil Engineering Draftspersons is on the rise. The city's ambitious infrastructure projects, including new residential developments, commercial buildings, and transportation systems, require the expertise of draftspersons to ensure that these projects are executed efficiently and effectively.
Career Opportunities in Brisbane
Brisbane offers a vibrant and dynamic job market for civil engineering draftspersons. Opportunities can be found in various sectors, including:
Consulting Firms: Working on a wide range of projects for both public and private clients.
Government Agencies: Contributing to the development of essential infrastructure, such as roads, bridges, and public buildings.
Construction Companies: Supporting large-scale construction projects, from residential complexes to industrial facilities.
Conclusion
The role of Civil Engineering Draftspersons Brisbane is indispensable in shaping the future of Brisbane. Their skills and expertise are essential for ensuring that the city's infrastructure is both functional and aesthetically pleasing. As Brisbane continues to grow and evolve, the demand for talented draftspersons will only increase, making it a rewarding and exciting career path.
2 notes
·
View notes
Note
you are learning CAD and you know Solidwork? U are probably the only person I came across in my years in all fandoms that know what those are. I know so many many talented and smart people in fandoms but never shared this 😭
im doing mechanical engineering so yeah! I know AutoCAD, Solidworks, a little bit of Ansys.
Same anon same! I also dont know anyone who uses them cuz it would be great for tricks and tips you know? 😭😭
which ones do you know? Catia? Siemens NX?
also, my professor has told to me learn Creo in a week and "sharpen" my Ansys as well.
i was going to learn Photoshop this week and a half but oh well, fuck that now. Dont got time with all other revision i have to do 😭😭
3 notes
·
View notes
Text
September 7th, Saturday
Moi!
My day started late today because I overslept. I've written a new chapter and cleaned my desktop files.
I was planning to uninstall my unused apps. While I was intending to uninstall autocad, I felt a pang in my chest. Autocad is one of the apps that I heavily used when I was still an engineering student. I had fun using it. Engineering Drawing was one of my fav subjects back then.
Looking at its icon now instantly took me back to 2020. The days when I'm basically in the software all day doing my plates. I was a whole different person back then. 2020 Tris was still convinced that she's actually going to be an engineer.
There's probably an alternate universe where I'm a graduating engineering student, donning a toga with an orange collar instead of white. She's probably cooler and stronger than I am because heck, engineering is fucking difficult!
Just when I thought I've already moved on from my "past life", turns out it still visits me on random days like an old friend. Most of the time, that nostalgia turns into a train of "what ifs". Maybe things turned out just fine even if I didn't change my bachelor's degree. At most, maybe we're still together if I didn't think of shifting.
Whether I shifted or not I still feel like a loser at the end of the day anyway /j 💀
3 notes
·
View notes
Text
Me, an actual engineer who can use AutoCAD, MATLAB, and knows Python.
Me, using the Starfield ship builder:
3 notes
·
View notes
Text
We all love to complain about useless classes at school, but none of y'all had fucking "technical schematics drawing" as a dedicated subject.
AutoCad was already out and we were still fucking around with pencils and rulers and learning how to do that fucking script you can only do with a ruler
Our teacher didn't believe in pencil sharpeners and forced us to use box cutters to sharpen pencils
This was in the early 00s
I don't think a single one of my classmates became an engineer or an architect
What a goddamn waste of everyone's time
16 notes
·
View notes
Text
Step-by-Step Guide to Land Survey Drafting for Beginners
Land survey drafting is a crucial aspect of real estate development, construction, and civil engineering projects. Accurate survey drafting ensures that all parties involved have a clear understanding of the land's dimensions, boundaries, and features. For beginners, navigating this intricate process can be challenging. This step-by-step guide will provide you with the essential knowledge and skills to get started with land survey drafting.
Step 1: Understanding the Basics of Land Surveying
Before diving into the drafting process, it’s essential to understand what land surveying entails. Land surveying involves measuring and mapping the land's surface to determine boundaries, elevations, and features. Surveyors use various tools and techniques to collect data, which is then translated into a detailed map or plan.
Step 2: Gather Necessary Tools and Equipment
To begin land survey drafting, you'll need the following tools and equipment:
Total Station or Theodolite: For precise angle and distance measurements.
GPS Receiver: For accurate positioning.
Measuring Tape: For manual measurements.
Surveying Tripod: To stabilize your instruments.
Drafting Software: AutoCAD, Civil 3D, or other CAD software for drafting.
Field Notebook: To record measurements and observations.
Step 3: Conduct a Reconnaissance Survey
Before starting the actual survey, conduct a reconnaissance survey. This preliminary survey helps you understand the site conditions, identify any obstacles, and plan your surveying strategy. Walk the site, take notes, and mark significant points of interest.
Step 4: Establish Control Points
Control points are fixed points on the ground used as references for your survey. They provide a framework for the entire survey area. Use your total station or GPS receiver to accurately establish and record these points. Ensure they are easily identifiable and accessible.
Step 5: Measure Angles and Distances
Using your total station or theodolite, measure the angles and distances between control points and other significant features on the land. Record these measurements in your field notebook. Be meticulous, as accuracy is crucial for the integrity of your survey.
Step 6: Record Elevations
If your survey requires elevation data, use a leveling instrument to measure the height differences between points. Record these elevations accurately, as they are essential for creating topographic maps and understanding the land's terrain.
Step 7: Transfer Data to Drafting Software
With all your field data collected, it’s time to transfer it to your drafting software. Input the control points, angles, distances, and elevations into the software. AutoCAD, Civil 3D, and other CAD programs are widely used for this purpose. They allow you to create precise and detailed survey maps.
Step 8: Create the Survey Draft
Using the data in your drafting software, create the initial survey draft. Start by plotting the control points and then draw lines connecting them according to your measurements. Add other features such as buildings, roads, and natural elements. Ensure all dimensions and angles are accurate.
Step 9: Review and Edit the Draft
Review your initial draft for any errors or discrepancies. Cross-check the measurements and angles with your field notes. Make necessary corrections and refinements to ensure the draft is accurate and comprehensive.
Step 10: Finalize and Present the Survey
Once you are confident in the accuracy of your survey draft, finalize the document. Add necessary labels, legends, and notes to make the map easily understandable. Present the final survey to the relevant stakeholders, ensuring it meets all legal and project-specific requirements.
Tips for Successful Land Survey Drafting
Double-Check Measurements: Accuracy is paramount. Always double-check your measurements and calculations.
Stay Organized: Keep your field notes, sketches, and data well-organized for easy reference.
Learn CAD Software: Proficiency in CAD software is essential for creating professional survey drafts. Invest time in learning and practicing.
Understand Legal Requirements: Be aware of the legal standards and regulations governing land surveys in your area.
Conclusion
Land survey drafting is a vital skill in many industries, and mastering it can open doors to various career opportunities. By following this step-by-step guide, beginners can develop a solid foundation in land survey drafting. Remember, accuracy, organization, and continuous learning are key to becoming proficient in this field. Happy surveying!
#Land Survey Drafting#Land Survey CAD Drafting#Land Survey Drafting Services#Land Survey#real estate developers#builders#Contractors#Architects#engineers
2 notes
·
View notes