Tumgik
#nanodevices
dentalucg · 9 months
Text
Tumblr media
Track 23: Nanotechnology and uses in Dentistry Submit your Abstract/research/presentation at the CME/CPD accredited International Dental, Advanced Dentistry, and Oral Health UCG Congress from July 29-30, 2024 in Dubai, UAE & Virtual. WhatsApp us at: https://wa.me/442033222718?text= Submit here: https://dental.universeconferences.com/submit-abstract/ Deadline: January 15, 2024.
0 notes
Text
Tumblr media
𝐍𝐚𝐧𝐨𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥𝐬: Nanoscience focuses on understanding the properties and behavior of nanomaterials, which can exhibit unique properties due to their small size and high surface area.
𝐈𝐧𝐭𝐞𝐫𝐝𝐢𝐬𝐜𝐢𝐩𝐥𝐢𝐧𝐚𝐫𝐲 𝐍𝐚𝐭𝐮𝐫𝐞: Nanoscience and nanotechnology draw from multiple disciplines, including physics, chemistry, biology, engineering, and materials science, to explore phenomena at the nanoscale.
Visit @ https://symbiosisonlinepublishing.com/nanoscience-technology/
1 note · View note
canisxx · 19 days
Text
Hey chat! I decided that I don't care if you care or not, I'll post it anyway. Because I'm a scientist nerd, and a TF2 fan.
So here you go, my theory on how the respawn machine actually works.
⚠️It'll be a lot of reading and you need half of a braincell to understand it.
The Respawn Machine can recreate a body within minutes, complete with all previous memories and personality, as if the person never died. We all know this, but I doubt many have thought about how it actually works.
Of course, such a thing is impossible in real life (at least for now), but we’re talking about a game where there’s magic and mutant bread, so it’s all good.
But being an autistic dork, I couldn’t help but start searching for logical and scientific explanations for how this machine might work. How the hell does it actually function? So, I spent hours of my life on yet another useless big brain time.
In the context of the Respawn Machine, the idea is that the technology can instantly create a new mercenary body, identical to the original. This body must be ready for use immediately after the previous one’s death. To achieve this, the cloning process, which in real life takes months or even years, would need to be significantly accelerated. This means the machine is probably powered by a freaking nuclear reactor, or maybe even Australium.
My theory is that this machine is essentially a massive 3D printer capable of printing biological tissues. But how? You see, even today, people can (or are trying to) recreate creatures that lived millions of years ago using DNA. By using the mercenary’s DNA, which was previously loaded into the system, the machine could recreate a perfect copy.
However, this method likely wouldn’t be able to perfectly recreate the exact personality and all the memories from the previous body. I believe the answer lies in neuroscience.
For the Respawn Machine to restore the mercenary’s consciousness and memories, it would need to be capable of recording and preserving the complete structure of the brain, including all neural connections, synapses, and activity that encode personality and memory. This process is known as brain mapping. After creating a brain map, this data could be stored digitally and then transferred to the new body.
“Okay, but how would you transfer memories that are dated right up until the moment of death? The mercenaries clearly remember everything about their previous death.”
Well, I have a theory about that too!
Neural interfaces! Inside each mercenary’s head could be an implant (a nanodevice) that reads brain activity before death and updates a digital copy of the memories. This system operates at the synaptic level, recording changes in the structure of neurons that occur as memories are formed. After death, this data could be instantly transferred to the new body via a quantum network.
Once the data is uploaded and the brain is synchronized with the new body, the mercenary’s consciousness "awakens." Ideally, the mercenary wouldn’t notice any break in consciousness and would remember everything that happened right up to the moment of death.
However… there are also questions regarding potential negative consequences.
Can the transfer of consciousness really preserve all aspects of personality, or is something inevitably lost in the process?
Unfortunately, nothing is perfect, and there’s a chance that some small memories might be lost—like those buried in the subconscious. Or the person’s personality might become distorted. Maybe that’s why they’re all crazy?
How far does the implant’s range extend? Does the distance between the mercenary and the machine affect the accuracy of data transfer?
My theory is that yes, it does. The greater the distance, the fewer memories are retained.
Could there be deviations in the creation of the body itself?
Yes, there could be. We saw this in "Emesis Blue," which led to a complete disaster. But let’s assume everything is fine, and the only deviations are at most an extra finger (or organ—not critical, Medic would only be happy about that).
Well, these are just my theories and nothing more. I’m not a scientist; I’m an amateur enthusiast with a lot of time on my hands. My theories have many holes that I can’t yet fill due to a lack of information.
73 notes · View notes
mindblowingscience · 6 months
Text
Evaporation is a natural process so ubiquitous that most of us take it for granted. In fact, roughly half of the solar energy that reaches the Earth drives evaporative processes. Since 2017, researchers have been working to harness the energy potential of evaporation via the hydrovoltaic (HV) effect, which allows electricity to be harvested when fluid is passed over the charged surface of a nanoscale device. Evaporation establishes a continuous flow within nanochannels inside these devices, which act as passive pumping mechanisms. This effect is also seen in the microcapillaries of plants, where water transport occurs thanks to a combination of capillary pressure and natural evaporation.
Continue Reading.
83 notes · View notes
Tumblr media
Aligned array of nanotubes
Processing Chemical vapour deposition onto a quartz substrate, using a fine solution of ferrocene dissolved in toluene Applications Such architectures may be of interest as nanocomposites for use in nanodevices. More generally, carbon nanotubes may be used for hydrogen storage or for fuel cell applications Sample preparation The specimen has been sputter-coated with gold to avoid charging in the SEM Technique Scanning electron microscopy (SEM) Length bar 25 μm Further information Chemical vapour deposition (CVD) allows the synthesis of high purity nanotubes of controlled length and diameter. The nanotubes in this specimen were deposited on quartz using ferrocene dissolved in toluene. They are approximately 40 nm in diameter and 60 microns long. Contributor C Singh Organisation Department of Materials Science and Metallurgy, University of Cambridge
Source.
22 notes · View notes
inazumafocus · 1 year
Text
Inazuma Chara Daily n.80
Tumblr media Tumblr media
Name: Boofuu
Gender: Male
Series: IE GO Chrono Stone
Team: Giru
Role: Goalkeeper
Number: 1
Element: Wind
Personality: //
"To enable him to save more goals, he installed a nanodevice into his eye."
4 notes · View notes
trendingreportz · 1 month
Text
Nanotechnology Market - Forecast(2024 - 2030)
Nanotechnology Market Overview
Nanotechnology market size is forecast to reach USD 189.39 billion by 2030, after growing at a CAGR of 14.10% during the forecast period 2024-2030.  The growth of the global nanotechnology market is driven by factors such as the rise in nanotechnology adoption in medical diagnosis & imaging and technological advances in nanotechnology devices. The Nanotechnology market though well established, it is one of the fastest-growing markets in chemicals and materials. The market has evolved significantly over a period of time primarily due to incessant development and integration of technologies. The nanotechnology is deployed in various industry verticals, such as Electronics and Semiconductor, Biotechnology, Diagnostics, Cosmetics, Aerospace, Pharmaceuticals, Textile, Military, Healthcare, Food and Agriculture, Automobile, Telecom and Information Technology and Other industries because of their tremendous adaptability and ability to change their physiochemical characteristics. Nanotechnology refers to a wide range of technologies conducted on functional systems (physical, chemical, and biological systems) at the nanometer scale (atomic, molecular, and macromolecular scale). In a broader sense, it can be said that nanotechnology is the ability that can be projected to construct items either using the bottom-up approach or using the top-down approach, whereby top-down nanotechnology is considered to be the most well-established form of nanotechnology.
Report Coverage: 
The report “Nanotechnology Market – Forecast (2024-2030)”, by IndustryARC, covers an in-depth analysis of the following segments of the recycled polyethylene terephthalate market.
By Type: Nanocomposites, Nanomaterials, Nanodevices, Nanotools, Others
By Applications: Medicine and Healthcare Diagnosis, Environment, Energy, ICT, Nano-EHS
By End-Use Industry: Electronics and Semiconductor, Biotechnology , Cosmetics , Pharmaceuticals , Textile , Military , Healthcare , Food and Agriculture , Automobile , Telecom and Information Technology , Aerospace ,Others
By Geography:  North America, South America, Europe, APAC, and RoW.
Request Sample
Key Takeaways
• In 2022, Nanosys, a firm based in the United States, has announced the development of a new type of nanotechnology-based display technology that may be utilised in electronic devices such as smartphones and tablets. The technique is expected to make displays brighter and more energy- efficient.
• In 2020, Nanox, an Israeli startup, has announced the development of a new type of X-ray technology that uses nanotechnology to cut the cost of medical imaging. The technique is projected to increase access to medical imaging for people all around the world. 
• ICT dominated the Nanotechnology Market in 2022 and is estimated to reach $92.94 Billion in 2028, with a CAGR of 17.03% during the forecast period 2023- 2028. This growth has mainly driven factors such to increase data storage capacity and processing speeds. Nanotechnology has prospective applications for display devices, such as the replacement of cathode ray tube (CRT) technology. 
By Product - Segment Analysis
ICT dominated the Nanotechnology Market in 2023 and is estimated to reach $240 Billion in 2030, with a CAGR of 17.03 % during the forecast period 2024- 2030. This growth has mainly driven factors such to increase data storage capacity and processing speeds. Nanotechnology has prospective applications for display devices, such as the replacement of cathode ray tube (CRT) technology. Environment is also analyzed to witness the second fastest growth, around a CAGR of 14.10% during the forecast period 2024-2030. Nano-remediation is a novel strategy for the safe and long-term removal of POPs (persistent organic pollutants) also called nano- photocatalysis and nano sensing. Nano-sensing techniques require nano sensors that are capable to facilitate the efficient detection of radioactive substances in the body, which is another factor assessed to drive the growth of the market
Inquiry Before Buying
By End Use Industry - Segment Analysis
Electronics & Semiconductor dominated the Nanotechnology Market in 2023 and is estimated to reach $58.04 Billion in 2030, with a CAGR of 14.46% during the forecast period 2024-2030. Increasing use of nanotechnology in many electronic devices such as laptops, computers, cell phones, television, and digital cameras as also polymeric nano-films such as organic light-emitting diodes (OLEDs) is the major factor that drives the growth of Nanotechnology in the electronics & semiconductor industry.
Textile Industry is analyzed to witness the fastest growth, around a CAGR of 18.59% during the forecast period 2023-2028. The growth in this industry is mainly attributed to adoption of smart fabrics which posses' antimicrobial, ultraviolet resistant, electrically conductive, optical, hydrophobic and flame-retardant properties
By Geography - Segment Analysis
APAC dominated the Nanotechnology Market in 2023 and is estimated to reach $73.50 Billion in 2030, with a CAGR of 17.42% during the forecast period 2024-2030. This growth has mainly driven the factors such as the increasing demand for nanomaterials for a wide range of applications in major industries such as agriculture, pharmaceuticals, electronics & semiconductors, and healthcare among others.
Buy Now
Drivers – Nanotechnology Market
• Increasing adoption of nanomaterials in drug delivery and medical devices propels the market growth
The increasing demand for efficient & cost-effective healthcare treatment & diagnostics is accelerating the adoption of nanomaterials in drug delivery and medical devices. The increasing use of large-sized materials in drug delivery poses significant challenges which include in-vivo instability, poor absorption in the body, issues with target-specific delivery and tonic effectiveness, poor bioavailability, poor solubility, and probable adverse effects of drugs. Therefore, nanotechnology plays a significant role in advanced medicine and drug formulations. Moreover, Nanotechnology helps in reducing transport costs and even the required dosages by improving shelf-life, thermo-stability, and resistance to changes in the humidity of existing drugs. As a result, the demand for nanotechnology is increasing for more efficient and effective drug delivery.
• The increasing demand for Nanotechnology in the paint & coating industry is set to drive the Nanotechnology market growth forward
The rise in demand for Nanotechnology in the paint & coating industry to provide coatings for essential components or products that need to be highly resistant to potential environmental effects like corrosion or dust build-up is set to drive the Nanotechnology market growth forward.
Challenges – Nanotechnology Market  
Schedule a Call
Issues and concerns in nanotech product development
Issues & concerns in nanotech product development have become a major factor that acts as a major constraint restraining the market growth of Nanotechnology globally. The major challenges to the marketing of these nanotechnology products can be the following factors such as inadequate regulatory framework; lack of support and acceptance by the public, practicing physicians, and industry; developmental considerations like scalability, reproducibility, characterization, quality control, and suitable translation; toxicological issues and safety profiles; lack of available multidisciplinary platforms and poor intellectual property protection. Lack of standard for evaluation and Bureaucratic delays limits the market growth. The lack of performance evaluation standards at different stages of research is a major obstacle to the development of nano-products. Because of this, there is a lack of standardizing standards by which nanotechnologies can be evaluated which affects the process of patenting. In addition, patent policies take up to thirty-six months to respond to a single application, a serious problem when even a slight delay can be detrimental. This is due to the lack of a coherent policy on technology transfer from universities to start-up businesses. Therefore, these factors are restricting the nanotechnology market growth. Such factors are hampering the adoption of nanotech products and thus restraining the market growth of nanotechnology.
Market Landscape
Technology launches, acquisitions, and R&D activities are key strategies adopted by players in the Nanotechnology market. in 2022, The major players in the Nanotechnology market are Bayer AG , Showa Denko K.K, Agilent Technologies,Evonik industries AG , Samsung, Dupont Company ,UBE Group, Aashi Kasei Corporation , Nitto Denko Corporation, Abbott Laboratories.
Developments:
 The premier provider of microLED and quantum dot technology for high-definition displays, Nanosys, has announced that it has raised more than $50 million in Series B stock and debt investment. Fortress, Centerbridge, and Kilonova are leading growth investments that promote the development of quantum dots for LCDs and hasten the commercialization of microLED and nanoLED display technologies.
 In October 2022, Zyvex Labs released a new technology product, the ZyvexLitho1 system, claiming it to be the "world's highest-resolution lithography system." This allows for more precise, automated patterning at sub- nanometer resolution. It has also resulted in $28 million in funding from agencies such as DARPA.
0 notes
telkomuniversityputi · 2 months
Text
Silikon Dioksida: Rahasia Perangkat Elektronik yang Lebih Kecil dan Lebih Dingin
Para peneliti di Universitas Tokyo menunjukkan peningkatan perpindahan panas radiasi melalui celah antara dua pelat silikon berukuran mikro dengan melapisinya dengan lapisan silikon dioksida, yang dapat meningkatkan manajemen panas komputer secara signifikan. Kredit: Institut Ilmu Industri, Universitas Tokyo Peneliti Jepang telah meningkatkan pembuangan panas dalam nanodevices dengan menambahkan…
0 notes
studyari · 3 months
Text
I'm just going to put it out there because why not! Next summer, I want to do research at NIST or MIT. Quantum measurements, nanodevices, quantum electromagnetics, circuits, etc! Please universe!
0 notes
sunaleisocial · 4 months
Text
Eleven from MIT awarded 2024 Fulbright fellowships
New Post has been published on https://sunalei.org/news/eleven-from-mit-awarded-2024-fulbright-fellowships/
Eleven from MIT awarded 2024 Fulbright fellowships
Tumblr media
Eleven MIT undergraduates, graduate students, and alumni have won Fulbright grants to embark on projects overseas in the 2024-25 grant cycle. Two other students were offered awards but declined them to pursue other opportunities.
Funded by the U.S. Department of State, the Fulbright U.S. Student Program offers year-long opportunities for American citizen students and recent alumni to conduct independent research, pursue graduate studies, or teach English in over 140 countries.
MIT has been a Fulbright Top-Producing Institution for five years in a row. MIT students and alumni interested in applying to the Fulbright U.S. Student Program should contact Julia Mongo, MIT Fulbright program advisor, in the Office of Distinguished Fellowships in Career Advising and Professional Development.
April Cheng is a junior studying physics with a minor in mathematics and is fast-tracked to graduate this spring. They will take their Fulbright research grant to the Max Planck Institute for Gravitational Physics in Potsdam, Germany, where they will study different statistical techniques to infer the expansion rate of the universe from gravitational waves. They first developed an interest in gravitational waves and black holes at the MIT LIGO and Caltech LIGO labs, but their research spans a wide range of topics in astrophysics, including cosmology and fast radio bursts. Cheng is passionate about physics education and is heavily involved in developing educational materials for high school Science Olympiads. At MIT, they are a member of the Physics Values Committee, the physics mentorship program, and the MIT Lion Dance team. After Fulbright, Cheng will pursue a PhD in astrophysics at Princeton University, where they have received the President’s Fellowship.
Grace McMillan is a senior majoring in literature and mechanical engineering with a concentration in Russian language. As a Fulbright English Teaching Assistant Award recipient, she will teach at a university in Kazakhstan. McMillan’s interest in Central Asia was sparked by a Russian language immersion program she participated in during her sophomore summer in Bishkek, Kyrgyzstan, funded by MIT International Science and Technology Initiatives (MISTI). She is excited to help her students learn English to foster integration into the global academic community. During her time at MIT, McMillan has conducted research with faculty in nuclear science; earth, atmospheric, and planetary sciences; and the Digital Humanities Lab. Outside of academics, she has been an active member of her sorority, Sigma Kappa, and has served on the MIT Health Consumers’ Advisory Council for two years. After Fulbright, McMillan hopes to attend law school, focusing on education reform.
Ryan McTigue will graduate this spring with a BS in physics and mathematics and a concentration in Spanish. With a Fulbright award to Spain, he will do research at the University of Valencia’s Institute of Molecular Science focusing on the physics of two-dimensional multiferroic nanodevices. He is looking forward to improving his Spanish and getting the opportunity to live abroad. At MIT, McTigue became interested in condensed matter physics research with the Checkelsky group, where he focused on engineering materials with flat bands that exhibited correlated electron effects. Outside of research, McTigue has been a mentor in the physics department’s mentoring program and a member of the heavyweight men’s crew team. After his Fulbright grant, McTigue will begin a PhD in physics at Princeton University.
Keith Murray ’22 graduated from MIT with a BS in computation and cognition and linguistics and philosophy. He will receive his MEng degree in computation and cognition this spring. As a Fulbright Hungary research grantee at the HUN-REN Wigner Research Centre for Physics, Murray will design generative AI models inspired by the primary visual cortex with the goal of making AI models more interpretable. At MIT, Murray’s research experiences spanned from training mice to perform navigation tasks in virtual reality to theorizing about how neurons might compute modular arithmetic. He was also a member of the men’s heavyweight crew team and the Phi Delta Theta fraternity. After Fulbright, Murray will pursue a PhD in neuroscience at Princeton University.
Maaya Prasad ’22 completed her undergraduate education at MIT with degrees in both electrical engineering and creative writing and will graduate this month with an MS in mechanical and ocean engineering. Her thesis research focuses on microplastic detection using optical sensing. Prasad’s Fulbright fellowship will take her to Mauritius, an East African island country located in the Indian Ocean. Here, she will continue her master’s research at the University of Mauritius and will work with local researchers to implement a microplastic survey system. While at MIT, Prasad joined the varsity sailing team with no prior experience. Her time spent on the water led her to pursue marine research at MIT Sea Grant, and she eventually earned an honorable mention to the 2023 All-American Sailing Team. After Fulbright, Prasad hopes to pursue a PhD in applied ocean engineering.
Anusha Puri is a senior majoring in biological engineering. Her Fulbright award will take her to Lausanne, Switzerland, where she will conduct cancer immunology research at the Swiss Institute for Experimental Cancer Research. At MIT, Puri’s work in the Weinberg Lab focused on understanding mechanisms that drive resistance of breast cancer to immunotherapy. On campus, she founded and serves as president of MIT’s premiere stand-up comedy group, Stand-Up CoMITy, leads MIT’s Bhangra dance team, and is the editor-in-chief of the MIT Undergraduate Research Journal. She looks forward to engaging with teaching outreach and practicing her French in Switzerland. After her Fulbright grant, she plans to pursue a PhD in biomedical science.
Olivia Rosenstein will graduate this spring with a BS in physics and a minor in French. Her Fulbright will take her to ENS Paris-Saclay in Palaiseau, France, where she’ll deepen her education in atomic, molecular, and optical (AMO) physics. At MIT, Rosenstein has worked in Professor Mark Vogelsberger’s group researching models of galaxy formation and the early universe, and in Professor Richard Fletcher’s group on an erbium-lithium experiment to investigate quantum many-body dynamics in a degenerate mixture. In France, she will expand on the skills she developed in Fletcher’s lab by contributing to a project using optical tweezer arrays to study dipolar interactions. After Fulbright, Rosenstein plans to return to the United States to pursue a PhD in experimental AMO at Caltech.
Jennifer Schug will receive this spring an MEng degree in the Climate, Environment, and Sustainability track within the MIT Department of Civil and Environmental Engineering. During her Fulbright year in Italy, she will conduct research on carbon storage in the Venice lagoon at the University of Padua. Schug is excited to build upon her research with the Terrer Lab at MIT, where she is currently investigating the effectiveness of forestation as a carbon sequestration strategy. She also looks forward to improving her Italian language skills and learning about Italian history and culture. Before beginning Fulbright this fall, Schug will study ecological preservation in Sicily this summer through an MIT-Italy collaboration with the University of Catania. After Fulbright, she hopes to continue researching nature-based solutions as climate change mitigation strategies.
Vaibhavi Shah ’21 earned a BS in biological engineering and in science, technology, and society at MIT, where she was named a Goldwater Scholar. She is now a medical student at Stanford University. As a Fulbright-Fogarty Fellow in Public Health, Shah will use both her computational and humanities backgrounds to investigate sociocultural factors underlying traumatic surgical injuries in Nepal. While at MIT, she was on the executive board of GlobeMed and the Society of Women Engineers, and she hopes to use those experiences to amplify diverse voices in medicine while on her journey to becoming a neurosurgeon-scientist. After Fulbright, Shah will complete her final year of medical school.
Charvi Sharma is a senior studying computer science and molecular biology with a minor in theater arts. As a Fulbright English teaching assistant in Spain, she is excited to engage in cross-cultural exchange while furthering her skills as a teacher and as a leader. In addition to teaching, Sharma looks forward to immersing herself in the country’s vibrant traditions, improving her Spanish proficiency, and delving into the local arts and dance scene. At MIT, through Global Teaching Labs Spain and her roles as a dynaMIT mentor, an associate advisor, and a captain and president of her dance teams Mirchi and Nritya, Sharma has served as a teacher of both STEM and dance. Her passion for making a difference in her community is also evident through her work with Boston Medical Center’s Autism Program through the PKG Public Service Center and as an undergraduate cancer researcher in the Yaffe Lab. After Fulbright, Sharma plans to pursue an MD and, ultimately, a career as a clinician-scientist.
Isabella Witham is a senior majoring in biological engineering. As a recipient of the Fulbright U.S.-Korea Presidential STEM Initiative Award, she will conduct research at Seoul National University’s Biomimetic Materials and Stem Cell Engineering Lab. Her work will involve creating biomimetic scaffolds for pancreatic cell transplantation to treat type I diabetes. While in South Korea, Witham aims to improve her language skills and explore cultural sites and cities. At MIT, she worked in the Belcher Lab on nanoparticle formulations, was a tutor for MIT’s Women’s Technology Program, and volunteered as a Medlink. After her Fulbright fellowship, she plans to pursue a PhD in biological engineering.
0 notes
jcmarchi · 4 months
Text
Eleven from MIT awarded 2024 Fulbright fellowships
New Post has been published on https://thedigitalinsider.com/eleven-from-mit-awarded-2024-fulbright-fellowships/
Eleven from MIT awarded 2024 Fulbright fellowships
Tumblr media Tumblr media
Eleven MIT undergraduates, graduate students, and alumni have won Fulbright grants to embark on projects overseas in the 2024-25 grant cycle. Two other students were offered awards but declined them to pursue other opportunities.
Funded by the U.S. Department of State, the Fulbright U.S. Student Program offers year-long opportunities for American citizen students and recent alumni to conduct independent research, pursue graduate studies, or teach English in over 140 countries.
MIT has been a Fulbright Top-Producing Institution for five years in a row. MIT students and alumni interested in applying to the Fulbright U.S. Student Program should contact Julia Mongo, MIT Fulbright program advisor, in the Office of Distinguished Fellowships in Career Advising and Professional Development.
April Cheng is a junior studying physics with a minor in mathematics and is fast-tracked to graduate this spring. They will take their Fulbright research grant to the Max Planck Institute for Gravitational Physics in Potsdam, Germany, where they will study different statistical techniques to infer the expansion rate of the universe from gravitational waves. They first developed an interest in gravitational waves and black holes at the MIT LIGO and Caltech LIGO labs, but their research spans a wide range of topics in astrophysics, including cosmology and fast radio bursts. Cheng is passionate about physics education and is heavily involved in developing educational materials for high school Science Olympiads. At MIT, they are a member of the Physics Values Committee, the physics mentorship program, and the MIT Lion Dance team. After Fulbright, Cheng will pursue a PhD in astrophysics at Princeton University, where they have received the President’s Fellowship.
Grace McMillan is a senior majoring in literature and mechanical engineering with a concentration in Russian language. As a Fulbright English Teaching Assistant Award recipient, she will teach at a university in Kazakhstan. McMillan’s interest in Central Asia was sparked by a Russian language immersion program she participated in during her sophomore summer in Bishkek, Kyrgyzstan, funded by MIT International Science and Technology Initiatives (MISTI). She is excited to help her students learn English to foster integration into the global academic community. During her time at MIT, McMillan has conducted research with faculty in nuclear science; earth, atmospheric, and planetary sciences; and the Digital Humanities Lab. Outside of academics, she has been an active member of her sorority, Sigma Kappa, and has served on the MIT Health Consumers’ Advisory Council for two years. After Fulbright, McMillan hopes to attend law school, focusing on education reform.
Ryan McTigue will graduate this spring with a BS in physics and mathematics and a concentration in Spanish. With a Fulbright award to Spain, he will do research at the University of Valencia’s Institute of Molecular Science focusing on the physics of two-dimensional multiferroic nanodevices. He is looking forward to improving his Spanish and getting the opportunity to live abroad. At MIT, McTigue became interested in condensed matter physics research with the Checkelsky group, where he focused on engineering materials with flat bands that exhibited correlated electron effects. Outside of research, McTigue has been a mentor in the physics department’s mentoring program and a member of the heavyweight men’s crew team. After his Fulbright grant, McTigue will begin a PhD in physics at Princeton University.
Keith Murray ’22 graduated from MIT with a BS in computation and cognition and linguistics and philosophy. He will receive his MEng degree in computation and cognition this spring. As a Fulbright Hungary research grantee at the HUN-REN Wigner Research Centre for Physics, Murray will design generative AI models inspired by the primary visual cortex with the goal of making AI models more interpretable. At MIT, Murray’s research experiences spanned from training mice to perform navigation tasks in virtual reality to theorizing about how neurons might compute modular arithmetic. He was also a member of the men’s heavyweight crew team and the Phi Delta Theta fraternity. After Fulbright, Murray will pursue a PhD in neuroscience at Princeton University.
Maaya Prasad ’22 completed her undergraduate education at MIT with degrees in both electrical engineering and creative writing and will graduate this month with an MS in mechanical and ocean engineering. Her thesis research focuses on microplastic detection using optical sensing. Prasad’s Fulbright fellowship will take her to Mauritius, an East African island country located in the Indian Ocean. Here, she will continue her master’s research at the University of Mauritius and will work with local researchers to implement a microplastic survey system. While at MIT, Prasad joined the varsity sailing team with no prior experience. Her time spent on the water led her to pursue marine research at MIT Sea Grant, and she eventually earned an honorable mention to the 2023 All-American Sailing Team. After Fulbright, Prasad hopes to pursue a PhD in applied ocean engineering.
Anusha Puri is a senior majoring in biological engineering. Her Fulbright award will take her to Lausanne, Switzerland, where she will conduct cancer immunology research at the Swiss Institute for Experimental Cancer Research. At MIT, Puri’s work in the Weinberg Lab focused on understanding mechanisms that drive resistance of breast cancer to immunotherapy. On campus, she founded and serves as president of MIT’s premiere stand-up comedy group, Stand-Up CoMITy, leads MIT’s Bhangra dance team, and is the editor-in-chief of the MIT Undergraduate Research Journal. She looks forward to engaging with teaching outreach and practicing her French in Switzerland. After her Fulbright grant, she plans to pursue a PhD in biomedical science.
Olivia Rosenstein will graduate this spring with a BS in physics and a minor in French. Her Fulbright will take her to ENS Paris-Saclay in Palaiseau, France, where she’ll deepen her education in atomic, molecular, and optical (AMO) physics. At MIT, Rosenstein has worked in Professor Mark Vogelsberger’s group researching models of galaxy formation and the early universe, and in Professor Richard Fletcher’s group on an erbium-lithium experiment to investigate quantum many-body dynamics in a degenerate mixture. In France, she will expand on the skills she developed in Fletcher’s lab by contributing to a project using optical tweezer arrays to study dipolar interactions. After Fulbright, Rosenstein plans to return to the United States to pursue a PhD in experimental AMO at Caltech.
Jennifer Schug will receive this spring an MEng degree in the Climate, Environment, and Sustainability track within the MIT Department of Civil and Environmental Engineering. During her Fulbright year in Italy, she will conduct research on carbon storage in the Venice lagoon at the University of Padua. Schug is excited to build upon her research with the Terrer Lab at MIT, where she is currently investigating the effectiveness of forestation as a carbon sequestration strategy. She also looks forward to improving her Italian language skills and learning about Italian history and culture. Before beginning Fulbright this fall, Schug will study ecological preservation in Sicily this summer through an MIT-Italy collaboration with the University of Catania. After Fulbright, she hopes to continue researching nature-based solutions as climate change mitigation strategies.
Vaibhavi Shah ’21 earned a BS in biological engineering and in science, technology, and society at MIT, where she was named a Goldwater Scholar. She is now a medical student at Stanford University. As a Fulbright-Fogarty Fellow in Public Health, Shah will use both her computational and humanities backgrounds to investigate sociocultural factors underlying traumatic surgical injuries in Nepal. While at MIT, she was on the executive board of GlobeMed and the Society of Women Engineers, and she hopes to use those experiences to amplify diverse voices in medicine while on her journey to becoming a neurosurgeon-scientist. After Fulbright, Shah will complete her final year of medical school.
Charvi Sharma is a senior studying computer science and molecular biology with a minor in theater arts. As a Fulbright English teaching assistant in Spain, she is excited to engage in cross-cultural exchange while furthering her skills as a teacher and as a leader. In addition to teaching, Sharma looks forward to immersing herself in the country’s vibrant traditions, improving her Spanish proficiency, and delving into the local arts and dance scene. At MIT, through Global Teaching Labs Spain and her roles as a dynaMIT mentor, an associate advisor, and a captain and president of her dance teams Mirchi and Nritya, Sharma has served as a teacher of both STEM and dance. Her passion for making a difference in her community is also evident through her work with Boston Medical Center’s Autism Program through the PKG Public Service Center and as an undergraduate cancer researcher in the Yaffe Lab. After Fulbright, Sharma plans to pursue an MD and, ultimately, a career as a clinician-scientist.
Isabella Witham is a senior majoring in biological engineering. As a recipient of the Fulbright U.S.-Korea Presidential STEM Initiative Award, she will conduct research at Seoul National University’s Biomimetic Materials and Stem Cell Engineering Lab. Her work will involve creating biomimetic scaffolds for pancreatic cell transplantation to treat type I diabetes. While in South Korea, Witham aims to improve her language skills and explore cultural sites and cities. At MIT, she worked in the Belcher Lab on nanoparticle formulations, was a tutor for MIT’s Women’s Technology Program, and volunteered as a Medlink. After her Fulbright fellowship, she plans to pursue a PhD in biological engineering.
1 note · View note
Nanomedicines Market Growth and Status Explored in a New Research Report
The Insight Partners recently announced the release of the market research titled Nanomedicines Market Outlook to 2030 | Share, Size, and Growth. The report is a stop solution for companies operating in the Nanomedicines market. The report involves details on key segments, market players, precise market revenue statistics, and a roadmap that assists companies in advancing their offerings and preparing for the upcoming decade. Listing out the opportunities in the market, this report intends to prepare businesses for the market dynamics in an estimated period.
Is Investing in the Market Research Worth It?
Some businesses are just lucky to manage their performance without opting for market research, but these incidences are rare. Having information on longer sample sizes helps companies to eliminate bias and assumptions. As a result, entrepreneurs can make better decisions from the outset. Nanomedicines Market report allows business to reduce their risks by offering a closer picture of consumer behavior, competition landscape, leading tactics, and risk management.
A trusted market researcher can guide you to not only avoid pitfalls but also help you devise production, marketing, and distribution tactics. With the right research methodologies, The Insight Partners is helping brands unlock revenue opportunities in the Nanomedicines market.
If your business falls under any of these categories – Manufacturer, Supplier, Retailer, or Distributor, this syndicated Nanomedicines market research has all that you need.
What are Key Offerings Under this Nanomedicines Market Research?
Global Nanomedicines market summary, current and future Nanomedicines market size
Market Competition in Terms of Key Market Players, their Revenue, and their Share
Economic Impact on the Industry
Production, Revenue (value), Price Trend
Cost Investigation and Consumer Insights
Industrial Chain, Raw Material Sourcing Strategy, and Downstream Buyers
Production, Revenue (Value) by Geographical Segmentation
Marketing Strategy Comprehension, Distributors and Traders
Global Nanomedicines Market Forecast
Study on Market Research Factors
Who are the Major Market Players in the Nanomedicines Market?
Nanomedicines market is all set to accommodate more companies and is foreseen to intensify market competition in coming years. Companies focus on consistent new launches and regional expansion can be outlined as dominant tactics. Nanomedicines market giants have widespread reach which has favored them with a wide consumer base and subsequently increased their Nanomedicines market share.
Report Attributes
Details
Segmental Coverage
Product
Therapeutics
Regenerative Medicine
In-Vitro Diagnostics
In-Vivo Diagnostics
and Vaccines
Application
Clinical Oncology
Infectious Diseases
Clinical Cardiology
Orthopedics
and Other Applications
Type
Nanoparticles
Nanoshells
Nanotubes
and Nanodevices
Regional and Country Coverage
North America (US, Canada, Mexico)
Europe (UK, Germany, France, Russia, Italy, Rest of Europe)
Asia Pacific (China, India, Japan, Australia, Rest of APAC)
South / South & Central America (Brazil, Argentina, Rest of South/South & Central America)
Middle East & Africa (South Africa, Saudi Arabia, UAE, Rest of MEA)
Market Leaders and Key Company Profiles
AstraZeneca
Cristal Therapeutics
Ablynx (A Subsidiary Of Sanofi Company)
BlueWillow Biologics
Pfizer Inc.
CYTIMMUNE SCIENCES, INC.
NANOBIOTIX
Sirnaomics, Inc.
Starpharma Holdings Limited
Taiwan Liposome Company, Ltd.
Other key companies 
What are Perks for Buyers?
The research will guide you in decisions and technology trends to adopt in the projected period.
Take effective Nanomedicines market growth decisions and stay ahead of competitors
Improve product/services and marketing strategies.
Unlock suitable market entry tactics and ways to sustain in the market
Knowing market players can help you in planning future mergers and acquisitions
Visual representation of data by our team makes it easier to interpret and present the data further to investors, and your other stakeholders.
Do We Offer Customized Insights? Yes, We Do!
The The Insight Partners offer customized insights based on the client’s requirements. The following are some customizations our clients frequently ask for:
The Nanomedicines market report can be customized based on specific regions/countries as per the intention of the business
The report production was facilitated as per the need and following the expected time frame
Insights and chapters tailored as per your requirements.
Depending on the preferences we may also accommodate changes in the current scope.
Author’s Bio:
Sunil Jadhav
Senior Market Research Expert at The Insight Partners
0 notes
Text
Tumblr media
𝐇𝐞𝐚𝐥𝐭𝐡𝐜𝐚𝐫𝐞: Nanoparticles can be used to deliver drugs to specific parts of the body, to diagnose diseases, and to create new medical devices. 𝐄𝐧𝐞𝐫𝐠𝐲: Nanotechnology can be used to create new solar cells, batteries, and fuel cells. 𝐈𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝐭𝐞𝐜𝐡𝐧𝐨𝐥𝐨𝐠𝐲: Nanotechnology can be used to create new computer chips, sensors, and displays.
Visit: https://symbiosisonlinepublishing.com/nanoscience-technology/
0 notes
tsmom1219 · 5 months
Text
Nanodevices can produce energy from evaporating tap or seawater
Read the full story from Ecole Polytechnique Fédérale de Lausanne. Researchers have discovered that nanoscale devices harnessing the hydroelectric effect can harvest electricity from the evaporation of fluids with higher ion concentrations than purified water, revealing a vast untapped energy potential.
View On WordPress
0 notes
y2fear · 6 months
Photo
Tumblr media
Nanodevices can produce energy from evaporating tap or seawater
0 notes
Tumblr media
Researchers demonstrate enhanced radiative heat transfer for nanodevices
Researchers from Japan have been working hard to keep their cool—or at least—keep their nanodevices from overheating. By adding a tiny coating of silicon dioxide to micro-sized silicon structures, they were able to show a significant increase in the rate of heat dissipated. This work may lead to smaller and cheaper electronic devices that can pack in more microcircuits. As consumer electronics become ever more compact, while still boasting increased processing power, the need to manage waste heat from microcircuits has grown to become a major concern. Some scientific instruments and nanoscale machines require careful consideration of how localized heat will be shunted out of the device in order to prevent damage. Some cooling occurs when heat is radiated away as electromagnetic waves—similar to how the sun's power reaches the Earth through the vacuum of space. However, the rate of energy transfer can be too slow to protect the performance of sensitive and densely packed integrated electronic circuits.
Read more.
9 notes · View notes