#8 bit microcontrollers software
Explore tagged Tumblr posts
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/ez80f91az050ek-zilog-8131964
Embedded microcontroller, microcontroller board, lcd microcontrollers
eZ80F91 Series 256 kB Flash 8 kB RAM 50 MHz 8-Bit Microcontroller - LQFP-144
#Microcontrollers#8 bit#EZ80F91AZ050EK#Zilog#embedded microcontroller#microcontroller board#lcd#8 bit microcontrollers software#programmable pic#Wireless microcontroller#usb microcontroller#microcontroller raspberry pi
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic18f4520-i-pt-microchip-3154588
low power 8 bit microcontrollers, lcd microcontrollers, Microcontroller software
PIC18F Series 32 KB Flash 1.5 kB RAM 40 MHz 8-Bit Microcontroller - TQFP-44
#Microchip#PIC18F4520-I/PT#Microcontrollers#8 bit#low power#lcd microcontrollers#software#Programming microcontroller#Embedded controller#What is an 8 bit Microcontroller#Engine control systems#Pic microcontrollers
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/atmega128l-8au-microchip-2038197
What is 8 bit microcontroller, lcd microcontrollers, low power microcontrollers
ATmega Series 128 KB Flash 4 KB SRAM 8 MHz 8-Bit Microcontroller - TQFP-64
#Microcontrollers#8 bit#ATMEGA128L-8AU#Microchip#lcd microcontrollers#low power#flash memory#microcontroller manufacturers#programming microcontroller#Wireless microcontroller Cypress#8 bit embedded microcontrollers software
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic16lf877a-i-ml-microchip-5373501
Embedded microcontrollers, microcontroller programming, USB microcontroller
PIC16 Series 14 kB Flash 368 B RAM 20 MHz 8-Bit Microcontroller - QFN-44
#Microcontrollers#8 bit#PIC16LF877A-I/ML#Microchip#embedded#programming#USB#MCUs#Pic microcontrollers#software#Low power#lcd microcontrollers#8 bit programmable microcontrollers#microcontroller wireless
0 notes
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/atmega128l-8au-microchip-2038197
lcd microcontrollers, Low power microcontroller, microcontroller software
ATmega Series 128 KB Flash 4 KB SRAM 8 MHz 8-Bit Microcontroller - TQFP-64
#Microchip#ATMEGA128L-8AU#Microcontrollers#8 bit#lcd microcontrollers#Low power microcontroller#software#8 bit embedded microcontroller manufacturers#programmable#What is a microcontroller#USB microcontroller#Pic microcontrollers wireless
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic18f6520-i-pt-microchip-7337520
8-bit microprocessor, 8 bit embedded microcontroller, Low power microcontroller
PIC18F Series 32 kB Flash 2 kB RAM 40 MHz 8-Bit Microcontroller - TQFP-64
#Microchip#PIC18F6520-I/PT#Microcontrollers#8 bit#microprocessor#8 bit embedded#Low power microcontroller#What is 8 bit microprocessor#Low power microcontrollers software#8-bit computing#8-bit image#lcd#Wireless
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic16c73b-04-sp-microchip-1274299
Microcontrollers, 8 bit, PIC16C73B-04/SP, Microchip
PIC16 Series 192 B RAM 4 K x 14 Bit EPROM 8-Bit CMOS Microcontroller - SPDIP-28
#Microcontrollers#8 bit#PIC16C73B-04/SP#Microchip#lcd microcontrollers#Pic#Programming microcontroller#Embedded 8 bit controller#software microcontrollers#applications processing#Low power microcontroller
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic16c73b-04i-so-microchip-9673831
lcd microcontrollers, Microcontrollers software, Wireless microcontroller
PIC16 Series 192 B RAM 4 K x 14 Bit EPROM 8-Bit CMOS Microcontroller - SPDIP-28
#Microchip#PIC16C73B-041/SO#Microcontrollers#8 bit#manufacturers#8 bit embedded microcontrollers#lcd microcontrollers#Microcontrollers software#Wireless#low power microcontroller#What is microcontroller
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic16c73b-20i-so-microchip-8276131
8 bit Embedded microcontrollers, 8 bit Wireless microcontrollers, programming
PIC16 Series 192 B RAM 4 K x 14 Bit EPROM 8-Bit CMOS Microcontroller - SPDIP-28
#Microchip#PIC16C73B-04/SP#Microcontrollers#8 bit#USB microcontroller#software microcontroller#8 bit Embedded microcontrollers#8 bit Wireless microcontrollers#programming#Pic#low power microcontroller#Programming
1 note
·
View note
Text
https://www.futureelectronics.com/p/semiconductors--microcontrollers--8-bit/pic16lf877a-i-ml-microchip-5373501
Embedded microcontrollers, microcontroller programming, USB microcontroller
PIC16 Series 14 kB Flash 368 B RAM 20 MHz 8-Bit Microcontroller - QFN-44
#Microcontrollers#8 bit#PIC16LF877A-I/ML#Microchip#embedded#programming#USB#MCUs#Pic microcontrollers#software#Low power#lcd microcontrollers#8 bit programmable microcontrollers#microcontroller wireless
1 note
·
View note
Text
Pic microcontroller, Programmable lcd microcontrollers, embedded microcontroller
PIC16F Series 1.75 kB Flash 224 B RAM 20 MHz 8-Bit Microcontroller - SOIC-18
#Microcontrollers#8 bit#PIC16F627A-I/SO#Microchip#Low power microcontroller 8 bit#MCUs#software#Pic microcontroller#Programmable lcd microcontrollers#embedded microcontroller#What is a#programming microcontroller#Input and output devices
1 note
·
View note
Text
Microcontroller manufacturers, Wireless microcontrollers
PIC16 Series 14 KB Flash 512 B RAM 32 MHz 8-Bit Microcontroller - TQFP-44
#Microcontrollers#8 bit#PIC16LF1937-I/PT#Microchip#manufacturers#Wireless microcontrollers#what is a microcontroller#8 bit programming microcontroller software#8 bit Embedded microcontrollers#Low power
1 note
·
View note
Text
What is a 8 bit microcontroller, lcd microcontroller, low power microcontroller
PIC18F Series 32 kB Flash 2 kB RAM 40 MHz 8-Bit Microcontroller - TQFP-64
#Microcontrollers#8 bit#PIC18F6520-I/PT#Microchip#What is a 8 bit microcontroller#lcd microcontroller#low power microcontroller#manufacturers#programming microcontroller#programmable pic#Wireless#8 embedded microcontrollers software
1 note
·
View note
Text
Open source 24-channel USB high-voltage driver
When it comes to automation and control systems, there's often a need for multiple digitally controlled output terminals with high-voltage handling capabilities. Many existing modules are bulky, expensive, or require numerous additional components to function. To address this gap, I've developed a fully open-source, USB-controlled 24-channel high-voltage driver. This device provides precise, flexible control in a compact and user-friendly package. The project is open hardware, released under the CERN-OHL-W license, ensuring transparency from hardware schematics to firmware code. The driver module communicates via USB using a simple virtual COM port, eliminating the need for special drivers and complex setups.

At the core of the system are three TPIC6B595 shift registers, each supplying eight open-drain outputs that can handle up to 50V and sink currents of up to 150mA per channel. These registers are daisy-chained to achieve a total of 24 outputs. The outputs are designed for low-side switching and include integrated clamping diodes, making them suitable for driving inductive loads such as relays and solenoids. Data is clocked into the registers through serial input from a microcontroller, allowing for fast and reliable state updates across all channels with just a few lines of code.
The logic and communication for this module are managed by the STC15W204S microcontroller, a cost-effective yet powerful 8051-based MCU with enhanced UART performance and an integrated oscillator. This chip is paired with a CH340N USB-to-UART bridge, which presents the device as a standard virtual COM port to the host PC. Upon connection, the microcontroller listens for a set of AT-style commands sent over the serial connection. These commands are straightforward and user-friendly, for example, "ON=65280" activates the middle 8 outputs, "CLR" turns off all channels, and "VER" retrieves the firmware version. Additionally, there is a command to save the current output state to the built-in EEPROM, enabling the system to restore its output to a known state after power cycles. This interface design is perfect for scripting, automation, or integration with software tools such as Python, LabVIEW, or custom control GUIs.
The PCB is designed using KiCad and features a 2-layer layout measuring 75.25mm × 33.75mm. It includes 2.54mm pitch headers for output connections and is equipped with a USB Type-C connector. Power can be supplied through either USB or an external regulated 5V source, which can be selected via onboard jumper settings. The layout ensures clean signal routing and minimizes crosstalk or interference, even when switching high-voltage loads. Careful decoupling and protection components provide robustness for real-world applications.

The PCB for this module was fabricated by PCBWay, who generously sponsored this project. PCBWay offers high-quality PCB manufacturing and assembling services. Also, they offer CNC and 3D printing services. The PCB of this module is available to order from PCBWay. Check out the PCBWay website for its manufacturing capabilities and pricing.
The firmware for the STC15W204S is written in C using SDCC. It is easy to expand the command set, introduce new communication modes, or add timed control logic as needed. The current implementation allows full 24-bit output control using a base 10 numerical mask, making it both scriptable and human-readable. Thanks to the preloaded bootloader of the STC15W204S, firmware updates can be performed through the same serial interface. Details about this process are covered in the project documentation. Like the hardware, the firmware is released under the MIT License and is available in the project repository.
The system has been tested with a variety of 12V and 24V inductive and resistive loads, including relay banks, solenoids, and LED arrays. Since the outputs are open-drain, external voltages up to 50V can be safely switched on each channel making it ideal for a range of industrial, laboratory, or artistic applications. Output timing is reliable, with clean edge transitions observed during scope testing, and no signal integrity issues even during full 24-channel toggling. It is recommended to use individual heatsinks for the driver ICs when driving high-current inductive loads with this module. While the printed circuit board has heat transfer traces, the addition of individual heatsinks can increase the durability of the module.

Potential use cases for this module include automated test benches, home automation systems, signal routing for instrumentation, nixie tube multiplexing, and other high-voltage control tasks. The command-based protocol makes it easy to script operations or integrate this module into a larger system.
For those who wish to explore the schematics, command protocol, design rationale, and usage examples in greater depth, I have published comprehensive documentation and resources in the project wiki. This includes detailed assembly instructions, firmware flashing guidance, and tips on customizing the firmware for enhanced functionality.
All source files - including schematics, PCB layout, firmware code, and the bill of materials - are freely available at https://github.com/dilshan/24ch-usb-high-voltage-driver.
0 notes
Text
Intel Quartus Prime Pro Edition 25.1 Optimized for Agilex 3

Altera Launches Quartus Prime Pro Edition 25.1 for Agilex 3 FPGAs
Now available is Quartus Prime Pro 25.1, which supports Agilex 3, the latest Agilex release. Developers may design high-performing, power-efficient edge and embedded programs with this update.
Comprehensive Agilex 3 FPGA support
Agilex 3 FPGA family offers cost optimisation, high performance, and power efficiency for edge and embedded applications. This version lets you develop, test, and implement solutions faster with Agilex 3 higher-speed transceivers, on-chip dual Cortex-A55 ARM CPUs, and increased memory support, including LPDDR4.
For small board space applications, Agilex 3 uses Intel's variable pitch BGA packaging to design more efficiently and compactly. With this technology, developers can maintain performance and power efficiency while adding functionality to smaller spaces.
Security is essential for FPGA applications to protect sensitive data and IP. Agilex 3's physical security, authentication, and encryption capabilities strengthen designs' manipulation and assault resistance.
Nios V Soft Processor Enhancements
Nios V is vital for embedded applications and improves efficiency and performance. These improvements allow developers to make smaller, more efficient embedded devices.
Improved Nios V/g Core Performance Improved work completion and overall performance.
Nios V/c Core Area reduction saves 8% space, leading in smaller designs.
The Ashling RISCFree IDE's Visual Studio Code plugin simplifies Nios V software development.
TinyML Example Design with Nios V Application Note lets developers add machine learning (ML) to FPGA designs utilising microcontrollers.
Features of Embed Software
FPGA-based embedded applications need strong OS and virtualisation support. By adding Linux, RTOS, and hypervisor support, Quartus Prime Pro 25.1 lets developers build scalable, real-time, and virtualised embedded systems.
Linux Hardware Reference Designs Regular and standard editions for Linux development.
To support Xen, developers can virtualise FPGA programs.
RTOS supports Zephyr and Bare Metal, and FreeRTOS will arrive in Q2 (May).
Installer Improvements: Faster, flexible configuration
FPGA software should install and adapt easily. Quartus Prime Pro 25.1 improves installation with parallel processing, configurable component selection, and file management.
Installation in Parallel speeds up setup by installing many components simultaneously.
By letting users choose just the bits they need, Dynamic Components decrease installation time and disc space.
Troubleshoot hardware quickly with streaming debugging
Effective debugging reduces development cycles. The Streaming Debug IP for Signal Tap helps engineers debug FPGA designs by capturing real-time, high-bandwidth data.
Hardware debugging streaming allows real-time data flow for analysis.
Configurable streaming via STP Signal Tap Logic Analyser configures streaming and selects a debug host.
Simulation Enhancements
Quartus Prime Pro 25.1 improves integration, long-term support, and simulation with new native Altera AXI4 Bus Functional Models (BFMs).
Optimised for Quartus simulation workflows, native Altera AXI4 BFMs increase performance and compatibility.
Smooth Change With better toolchain integration, customers may switch to Altera AXI4 BFMs without substantial modifications.
Quartus Prime Pro 25.1 improves simulation performance, notably for transceiver protocol IP, enabling faster debugging and verification.
Better Transceiver Protocol IP simulation enhances PCIe, Ethernet, Serial Lite, JESD, and other transceiver protocols.
25.1 Beta Models The new simulation models for this edition focus on Ethernet and PCIe and are under beta testing.
Improved Efficiency Usually, 50% or more improvements speed up verification and reduce simulation time.
These simulation additions improve Quartus Prime Pro 25.1's transceiver-based FPGA design capabilities by speeding up simulations and reducing verification time.
Extra Quartus Prime Pro 25.1 Updates
QPDS Standard & Pro Containerised Images Docker Hub offers Quartus Prime Standard and Pro Editions containerised, simplifying deployment and improving cloud and CI/CD compatibility.
Separating timed closure data from Design Assistant results simplifies failure classification in Summary of Design Closure.
SDC Relative File Paths improve portability and script management for Synopsys Design Constraints (SDC) reports.
MTBF improvements It lets users adjust instance toggling rates to improve MTBF when default toggle rates are not suitable.
Static timing analysis improvements in Quartus Prime Pro 25.1 speed up timing problem identification and resolution.
Synthesis supports basic Quad-Port RAM. Automatic quad-port RAM inference expands memory design flexibility.
Complete Support for Byte Enable Inference in Synthesis: This adds 8-bit byte enables and supports 5, 8, 9, and 10-bit combinations, matching hardware capabilities.
Correcter Management Users can now write individual bytes within a word using the byte enable control signal to increase memory access and performance.
Better RAM inference lets designers use FPGA memory more readily.
FPGA AI Suite: Improved Usability and AI
As AI advances, FPGA-based inference systems must be more flexible and effective. This release includes better performance estimation, model support, and Agilex FPGA integration.
Support Agilex 3 Beta FPGA AI Suite beta supports Agilex 3 FPGAs. Build in Quartus with Agilex 3 and generate Inference IP targeting Agilex 5 in the architectural configuration file.
The RPM and DEB packages are now called “altera-fpga-ai-suite-” and the AI Suite is installed in “/opt/altera” instead of “/opt/intel”.
YoloV7 Model Support enables high-accuracy object recognition in robotics, surveillance, and industrial quality control.
Agilex 5 FPGA E-Series Example Design Support New Agilex 5 FPGA E-Series 065B Modular Development Kit sample designs are available.
This SoC example uses an ARM host CPU for AI inference. AI Inference IP and a novel layout transform enable folding and run-time configurability to improve AI model performance and usability.
Example of Hostless JTAG-Attach Design A system console linked to the Inference IP via JTAG allows users to setup and control IP functionality step-by-step.
Performance Estimator Uses Memory Bandwidth Users may now define external memory bandwidth when designing for memory-limited devices like Agilex 5 and Agilex 3, improving accuracy.
OpenVINO 2024.6 Integration FPGA AI Suite 25.1 uses the latest OpenVINO 2024.6 for stability and maintainability.
For two years, Quartus Prime Pro versions will only include the Long-Term Support AI Suite, which uses new optimisations and performance improvements.
FPGA AI Suite 25.1 simplifies FPGA AI inference with faster performance, more example designs, and greater model support.
Quartus Prime Pro 25.1 IP Features
After adding Agilex 3 IP cores and upgrading Agilex 5, Quartus Prime Pro 25.1 delivers real-time data processing, flexible memory access, and rapid connectivity for many applications.
Agilex 3 IPs
Agilex 3 has a wide range of memory, processor, and connectivity IPs for low-cost applications:
1.25 Gbps LVDS and MIPI D-PHY high-voltage and fast adaptable I/O Assistance interfaces.
PCIe 3.0, 10GE Hard IP, and 12.5Gbps transceivers ensure high-bandwidth applications.
LPDDR4 provides cost-effective embedded memory up to 2133 Mbps.
HPS EMIF ensures tight ARM Cortex integration.
HD Image and Video Processing Our VVP package accelerates video and vision processing applications.
JESD204B for Synchronising Data Converters synchronises 12.5Gbps multi-channels accurately.
The Transceiver Toolkit for Advanced Debugging improved transceiver link testing and debugging.
Agilex 5 IP updates
Performance and flexibility enhancements to Agilex 5 series IP include:
PMA-Direct real-time adaptive reconfiguration of multiple configurations
PCIe 3.0/4.0 Multi-Channel DMA supports x2/x4 Root Port (RP) and Endpoint (EP) modes.
Agilex 5 D Series enabled 12.5 Gbps per serial channel in Interlaken for scalable data transport.
Transceiver Toolkit 17.16 Gbps JESD204B Advanced Debugging ensures rapid, accurate data flow.
Dual-Simplex Mode Protocol JESD204C expands high-speed ADC/DAC interface for more advanced signal processing.
O-RAN IP: Supports 15–240 KHz subcarrier frequencies and real-time spacing changes via control messages. Scalable and conserved digital power.
The Agilex 3 and Agilex 5 FPGAs are ideal for embedded, networking, and AI-driven applications due to their performance, efficiency, and adaptability.
Conclusion
Quartus Prime Pro 25.1 improves Agilex 3 support, debugging tools, AI acceleration, IP cores, and usability. Optimisation for embedded apps, high-speed interfaces, or AI workloads is faster, more efficient, and more flexible with this version.
#technology#technews#govindhtech#news#technologynews#Quartus Prime Pro#Agilex 3 FPGAs#Agilex 3#Agilex 5#Agilex 5 FPGAs#Quartus Prime Pro Edition 25.1#Quartus Prime Pro Edition
0 notes
Text
Microcontroller programming, what is a microcontroller, microcontroller software
PIC12F Series 1.75 kB Flash 64 B SRAM SMT 8-Bit Microcontroller - SOIC-8
0 notes