Tumgik
#cancer immunotherapy
harmcityherald · 3 months
Text
New Co-STAR T cells show promise for treating cancers in laboratory study
The very building where I received all my treatments and the superhero care team at johns hopkins who continue to extend my glorious, yet sometimes questionable existence on this little pebble we call earth. I couldn't be any luckier than I am to have the Immunotherapy experts on the leading edge of that science on my side. Its like being able to say you've got your own personal doctor mcCoy as your doctor. I read into my personal oncologist's college research papers and she is a dynamo on immunology, which is what my fight with cancer has boiled down to. A battle of cells and mutations in my blood that can only be waged chemically. Her intellect makes mine want to crawl back under a primordial rock. Add to that the fact that hopkins is a research and teaching hospital which allows my fight to have the possibility of helping others in the future. Yesterday's visit I allowed my oncologist to have an intern sit in on our consultation, explaining how strange my ankles are with the cancer driven leukocytoclastic vasilitis (luke-skywalker-vasilitis because I cannot force my brain to spell that.)and how that will always be a weak spot we must keep an eye on. I am an interesting specimen that is glad to be part of this study of a rare medical aspect of my horrors that may ease the horrors of another in the future. Perhaps a child. that can help make your horrors... less horrible, in a relative perception.
I'm very lucky, very privileged, and very grateful to be where I am, with who I am blessed to have as my superhero team. They hate when I call them that, but they do blush a bit when I do.
0 notes
healthcare-updates · 3 months
Text
0 notes
techtoio · 3 months
Text
Biotech Breakthroughs: Cutting-Edge Innovations That Will Change Health Care
Introduction
The field of biotechnology is at the forefront of some of the most groundbreaking advancements in healthcare. With new discoveries and innovations emerging at an unprecedented rate, biotech is poised to transform the way we approach health care. From revolutionary treatments to personalized medicine, the potential of biotech to improve lives is immense. In this article, we’ll delve into the most significant biotech breakthroughs and how they are set to change health care as we know it. Read to continue
1 note · View note
cbirt · 8 months
Link
Predicting the immunogenicity of peptide antigens attached to major histocompatibility complex (MHC) molecules is critical for developing new immunotherapies and better understanding human immune responses. While existing techniques rely on simple sequence representations, they neglect the complex chemical mechanisms that drive peptide recognition. Researchers from Cleveland Clinic and IBM collaborated to create supervised and unsupervised AI to expose the molecular properties of peptide antigens, which are tiny fragments of protein molecules that immune cells employ to identify threats. The study led by researchers from the Cleveland Clinic and IBM sheds light on the intricate interplay of peptide structure, kinetics, and MHC interactions that influence T-cell recognition. This greater understanding has enormous implications for refining T-cell-based immunotherapies and developing more effective therapeutic T-cell receptors.
The immune system’s ability to recognize and kill foreign invaders is dependent on its ability to identify peptide antigens presented by MHC molecules on cell surfaces. This identification induces T-cell activation, a key stage in adaptive immune responses, and recognition is based on the presentation of peptide antigens linked to MHC molecules on cell surfaces. Accurately forecasting the immunogenicity of MHC-peptide complexes is thus critical for creating successful immunotherapies for cancer and other illnesses. Traditional methods for estimating immunogenicity are mainly reliant on peptide sequencing. While these approaches provide some insight into immunogenic aspects, they only capture some of the complexity of peptide-MHC interactions, which include subtle structural and dynamic features.
Continue Reading
1 note · View note
harmeet-saggi · 11 months
Text
Can Immunotherapy Revolutionize Cancer Treatment?
Cancer is a relentless foe, affecting millions of lives worldwide. Conventional cancer treatments like chemotherapy and radiation therapy have been the primary choices for years, but they often come with severe side effects and limitations. Is there a more effective and less invasive way to combat this deadly disease? That's where cancer immunotherapy comes into play. In this comprehensive guide, we will explore the groundbreaking advances in cancer immunotherapy and the challenges it faces, as well as how online resources can enhance the cancer therapy process.
0 notes
mathewbaron · 1 year
Text
Cancer Patient's Experience with Immunotherapy Treatment
youtube
Immunotherapy has brought about transformative changes in the landscape of cancer treatment, offering hope and improved outcomes for many patients. Here, we delve into a cancer patient's experience with immunotherapy treatment, highlighting the journey, challenges, and potential rewards.
0 notes
candrol-hospital · 2 years
Text
Immunotherapy & How does It Works | Cancer immunotherapy By candrol
Immunotherapy is considered a revolutionary breakthrough in cancer therapy. Candrol is a center of cancer immunotherapy with a world-class facility. Cancer immunotherapy treatment is designed in such a way that it harnesses the body’s ability to combat infection by fighting diseases. In this therapy, biological substances known as biological response modifiers are used.
0 notes
sparkgroup11 · 2 years
Link
0 notes
shittyamdaily · 4 months
Note
AM supporting pride month
Day 122
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
116 notes · View notes
science-lover33 · 1 year
Text
The Power of Immunotherapy: A Deep Dive into Cancer Treatment
Immunotherapy, a groundbreaking approach in cancer treatment, has been making waves in the medical world. 🌟 But what exactly is it, and how does it work? Let's delve into the intricacies of this cutting-edge therapy. 💉
Immunotherapy at a Glance: 🔬 Immunotherapy, or immuno-oncology, is a therapeutic strategy that harnesses the body's immune system to combat cancer cells. Unlike traditional treatments like chemotherapy, which target both healthy and cancerous cells, immunotherapy is highly targeted, making it a game-changer in the fight against cancer.
Key Players in Immunotherapy: 🦠
Tumor Antigens are molecules found on cancer cells that act as red flags, signaling the immune system to attack. 👥
T Cells: The immune system's soldiers. They are trained to recognize and destroy threats, including cancer cells.
💡 Checkpoint Inhibitors: Proteins that, when blocked, enhance the immune response against cancer. 🧬
CAR-T Cell Therapy: Genetic engineering to supercharge T cells for precision attacks on tumors.
How Does Immunotherapy Work? Immunotherapy comes in various forms, but they all aim to accomplish one goal: boost the immune system's ability to recognize and eradicate cancer cells. Whether through checkpoint inhibitors, vaccines, or CAR-T cell therapy, the goal remains: empower the immune system's fighters!
Immunotherapy is a testament to the power of science and innovation, offering new hope to cancer patients worldwide. 🌍
Let's continue to explore, research, and advance this remarkable field to improve the lives of those affected by cancer.
References:
Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33(17), 1974–1982. doi:10.1200/jco.2014.59.4358
Rosenberg, S. A., Yang, J. C., & Restifo, N. P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nature Medicine, 10(9), 909–915. doi:10.1038/nm1100
June, C. H., & Sadelain, M. (2018). Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 379(1), 64–73. doi:10.1056/nejmra1706164
Tumblr media
58 notes · View notes
science-sculpt · 7 months
Text
Tumblr media
The T Cell Landscape
T cells, a critical component of the adaptive immune system, stand as the body's elite force in combatting infections and diseases. These specialized lymphocytes boast remarkable diversity, each type playing a distinct role in orchestrating a targeted and effective immune response.
T cells, like all blood cells, originate from hematopoietic stem cells residing in the bone marrow. However, their training ground lies within the thymus, a specialized organ located in the chest. Here, they undergo a rigorous selection process known as thymocyte education. During this process, immature T cells, called thymocytes, are presented with self-antigens (molecules unique to the body) by special cells. Thymocytes that bind too strongly to these self-antigens are eliminated, preventing them from attacking healthy tissues later. Only thymocytes that demonstrate the ability to recognize foreign invaders while exhibiting tolerance to self are released into the bloodstream as mature T cells.
Following this rigorous training, mature T cells exit the thymus and embark on their patrol, circulating throughout the bloodstream and lymphatic system. They remain vigilant, constantly scanning for their specific targets – antigens. Antigens are foreign molecules, such as fragments of viruses, bacteria, or even cancerous cells, that trigger the immune response.
The hallmark of a T cell is its T cell receptor (TCR), a highly specialized protein complex embedded on its surface. This receptor acts like a lock, uniquely shaped to fit a specific antigen, the "key." Each T cell develops a unique TCR capable of recognizing only a single antigen, enabling a highly specific immune response.
But how do T cells encounter these hidden antigens lurking within infected or cancerous cells? This critical role is played by antigen-presenting cells (APCs). APCs, such as macrophages and dendritic cells, engulf pathogens or abnormal cells, break them down into smaller fragments (peptides), and present them on their surface complexed with major histocompatibility complex (MHC) molecules. MHC molecules act as identification tags, allowing T cells to distinguish between "self" and "non-self." When a T cell's TCR encounters its specific antigen bound to an MHC molecule on an APC, a dance of activation begins. The T cell becomes stimulated, and a cascade of signaling events is triggered. This leads to the T cell's proliferation, producing an army of clones specifically tailored to combat the recognized threat.
T cells are not a single, monolithic entity. They comprise a diverse population, each type with a specialized function:
Helper T Cells (Th Cells):
Helper T cells, often abbreviated as Th cells, play a central role in coordinating immune responses. They express the CD4 surface marker and can recognize antigens presented by major histocompatibility complex class II (MHC-II) molecules. Subtypes of helper T cells include Th1, Th2, Th17, and regulatory T cells (Tregs), each with distinct functions and cytokine profiles.
Th1 cells mediate cellular immunity by activating macrophages and cytotoxic T cells, crucial for defense against intracellular pathogens.
Th2 cells are involved in humoral immunity, promoting B cell activation and antibody production, thus aiding in defense against extracellular parasites.
Th17 cells contribute to the immune response against extracellular bacteria and fungi, producing pro-inflammatory cytokines. Regulatory T cells (Tregs) maintain immune tolerance and prevent autoimmunity by suppressing excessive immune responses.
Cytotoxic T Cells (Tc Cells):
Cytotoxic T cells, also known as Tc cells or CD8+ T cells, are effector cells responsible for directly killing infected or aberrant cells. They recognize antigens presented by MHC class I molecules on the surface of target cells. Upon activation, cytotoxic T cells release perforin and granzymes, inducing apoptosis in target cells and eliminating the threat.
Memory T Cells:
Memory T cells are a long-lived subset of T cells that persist after the clearance of an infection. They provide rapid and enhanced immune responses upon re-exposure to the same antigen, conferring immunological memory. Memory T cells can be either central memory T cells (TCM), residing in lymphoid organs, or effector memory T cells (TEM), circulating in peripheral tissues.
γδ T Cells:
Unlike conventional αβ T cells, γδ T cells express a distinct T cell receptor (TCR) composed of γ and δ chains. They recognize non-peptide antigens, such as lipids and metabolites, and are involved in immune surveillance at epithelial barriers and responses to stress signals.
Beyond the Battlefield: The Expanding Roles of T Cells: The remarkable capabilities of T cells have opened doors for several groundbreaking applications in medicine:
Vaccines: By presenting weakened or inactivated forms of pathogens, vaccines "train" the immune system to generate memory T cells. This prepares the body to recognize and rapidly eliminate the real pathogen upon future exposure, preventing disease.
Cancer immunotherapy: CAR T-cell therapy, a revolutionary approach, genetically engineers a patient's own T cells to express chimeric antigen receptors (CARs) that recognize and target specific cancer cells. These "supercharged" T cells are then reintroduced into the patient, unleashing a potent attack against the tumor.
Autoimmune disease treatment: Researchers are exploring ways to manipulate T cells to suppress harmful immune responses that underlie autoimmune diseases like rheumatoid arthritis and multiple sclerosis.
The diverse array of T cells underscores the immune system's complexity and adaptability in mounting tailored responses against a myriad of threats. From orchestrating immune reactions to maintaining tolerance and establishing long-term immunity, T cells play multifaceted roles in safeguarding the body's health. Understanding the intricacies of T cell biology not only sheds light on immune-mediated diseases but also paves the way for developing novel therapeutic strategies harnessing the power of the immune system.
T cells represent a fascinating aspect of immunology, with their diversity and specificity driving the complexity of immune responses. As research advances, further insights into T cell biology promise to revolutionize immunotherapy and enhance our ability to combat diseases ranging from infections to cancer. By understanding and harnessing their power, we can unlock new avenues for protecting and improving human health.
11 notes · View notes
bpod-bpod · 7 months
Text
Tumblr media
Tumour Environment Effects
Combined immunotherapy (GVAX + anti-PD1) and targeted radiotherapy for pancreatic cancer not only promotes anti-cancer T cells but also immunosuppressive macrophages – insight for skewing therapy towards greater anti-tumour effects
Read the published research article here
Image from work by Junke Wang and Jessica Gai, and colleagues
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Image originally published with a Creative Commons Attribution 4.0 International (CC BY-NC 4.0)
Published in Science Advances, February 2024
You can also follow BPoD on Instagram, Twitter and Facebook
13 notes · View notes
barbi3-bitches · 7 months
Text
Please please help if you can,
Anything will be greatly appreciated!! ❤️
Please share as well, thank you for your kindness in this tough time
6 notes · View notes
innonurse · 4 months
Text
Researchers create AI tool to forecast cancer patients' responses to immunotherapy
Tumblr media
- By InnoNurse Staff -
NIH scientists have developed an AI tool that uses routine clinical data to predict cancer patients' responses to immunotherapy, potentially aiding in treatment decisions.
Read more at National Institutes of Health (NIH)
///
Other recent news and insights
New analytical tool enhances comprehension of heritable human traits and diseases (University of Oslo/Medical Xpress)
2 notes · View notes
cbirt · 1 year
Link
A recent publication in Nature Journal has presented the TNBC (Triple Negative Breast Cancer) ICI (Immune Checkpoint Inhibitors) response predictive classifier (TNBC-ICI) integrating gene expression profiles of TNBC specimens and artificial intelligence, which has demonstrated a significant performance in identifying TNBC patients who would potentially achieve pCR (Pathological Complete Response) to the chemotherapy treatment supplemented with ICI, opening an avenue to improve the decision making and disease management of patients diagnosed with primary TNBC.
Researchers from the Health Research Institute of the Balearic Islands (IdISBa), Spain, have implemented a random forest machine learning algorithm to construct and evaluate gene expression-based signatures to efficiently predict Pathological Complete Response (pCR) to Immune Checkpoint Inhibitors (ICI) therapy assisted with chemotherapy in patients with primary TNBC treated in the phase II/III I-SPY2 clinical trial that includes clinical and gene expression data. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy.
Here, patients who achieved a pCR or absence of invasive cancer in the breast and regional nodes at the time of surgery were classified as ‘responders,’ whereas those who had residual disease were considered ‘non-responders’ during the classifier construction. The algorithm is applied to select the most informative gene combinations to predict response to ICI in primary TNBC tumors.
Continue Reading
42 notes · View notes
eretzyisrael · 1 year
Text
Good News From Israel
In the 18th Jun 23 edition of Israel’s good news, the highlights include:
An Israeli startup can train the brain to filter out chronic pain.
Children with psychological problems receive therapy from Israeli dolphins.
3 Israeli startups have independently developed solutions to cure insomnia.
It’s official - another major Israeli natural gas discovery.
Israel beat Korea to come 3rd in the Under 20 Soccer World Cup.
An Israeli kidney donor ran a marathon alongside the transplant recipient.
Read More: Good News From Israel
Tumblr media
This week's theme is "together". Having just returned from celebrating together with my family, it was uplifting to read so many news articles of Israelis working together, and also with global partners. Ben Gurion Uni is working together with Israel's OncoHost on a cancer biosensor; Tel Aviv Uni has got together with UCLA to treat memory loss; Israel's BioNanoSim is marketing its eye disease treatments together with a Greek manufacturer; and the world's first AI chatbot for cancer patients is called "Beating Cancer Together" from Israel's Belong.Life. Yad Sarah volunteers have together saved Israel billions by providing ancillary medical services; the International Fellowship of Christians & Jews is celebrating 40 years of uniting Jews together with their homeland; for over 30 years, Israeli children have been receiving emotional therapy by swimming together with dolphins. And recently, a record 1,127 Birthright participants enjoyed Shabbat together at Jerusalem's Western Wall. Rarely publicized examples of "togetherness" include Jewish residents of Judea who frequently save the lives of their Palestinian Arab neighbors; the annual Veteran Games between injured UK and Israeli soldiers; and International legislators coming to Israel to strengthen bilateral ties. Israel and Japan have been connecting together at the Israel-Japan Conference in Tokyo; The latest stage of Israel's National Drone network is testing hundreds of commercial UAVs flying together; and Israel's Steakholder Foods and Singapore's Unami Meats are cultivating no-fish fish together. Finally, Israelis have attained some incredible teamwork achievements. The IDF's Special In Uniform Band just performed their 500th show together; Israel's Under 20 soccer team came 3rd in the World Cup; and two Israelis can be considered "joined at the hip" having just completed a unique marathon race together - one of them was a kidney donor, and the other was the recipient of her kidney. The photo is one single poster on the wall of the arrivals hallway at Tel Aviv's Ben Gurion International airport. The two images together show two of the multi-faceted sides of little Israel - busy innovating, while conserving and improving the environment.
14 notes · View notes