#databricks artificial intelligence
Explore tagged Tumblr posts
Text
Unlocking the Potential of Databricks: Comprehensive Services and Solutions
In the fast-paced world of big data and artificial intelligence, Databricks services have emerged as a crucial component for businesses aiming to harness the full potential of their data. From accelerating data engineering processes to implementing cutting-edge AI models, Databricks offers a unified platform that integrates seamlessly with various business operations. In this article, we explore the breadth of Databricks solutions, the expertise of Databricks developers, and the transformative power of Databricks artificial intelligence capabilities.
Databricks Services: Driving Data-Driven Success
Databricks services encompass a wide range of offerings designed to enhance data management, analytics, and machine learning capabilities. These services are instrumental in helping businesses:
Streamline Data Processing: Databricks provides powerful tools to process large volumes of data quickly and efficiently, reducing the time required to derive actionable insights.
Enable Advanced Analytics: By integrating with popular analytics tools, Databricks allows organizations to perform complex analyses and gain deeper insights into their data.
Support Collaborative Development: Databricks fosters collaboration among data scientists, engineers, and business analysts, facilitating a more cohesive approach to data-driven projects.
Innovative Databricks Solutions for Modern Businesses
Databricks solutions are tailored to address the diverse needs of businesses across various industries. These solutions include:
Unified Data Analytics: Combining data engineering, data science, and machine learning into a single platform, Databricks simplifies the process of building and deploying data-driven applications.
Real-Time Data Processing: With support for streaming data, Databricks enables businesses to process and analyze data in real-time, ensuring timely and accurate decision-making.
Scalable Data Management: Databricks’ cloud-based architecture allows organizations to scale their data processing capabilities as their needs grow, without worrying about infrastructure limitations.
Integrated Machine Learning: Databricks supports the entire machine learning lifecycle, from data preparation to model deployment, making it easier to integrate AI into business processes.
Expertise of Databricks Developers: Building the Future of Data
Databricks developers are highly skilled professionals who specialize in leveraging the Databricks platform to create robust, scalable data solutions. Their roles include:
Data Engineering: Developing and maintaining data pipelines that transform raw data into usable formats for analysis and machine learning.
Machine Learning Engineering: Building and deploying machine learning models that can predict outcomes, automate tasks, and provide valuable business insights.
Analytics and Reporting: Creating interactive dashboards and reports that allow stakeholders to explore data and uncover trends and patterns.
Platform Integration: Ensuring seamless integration of Databricks with existing IT systems and workflows, enhancing overall efficiency and productivity.
Databricks Artificial Intelligence: Transforming Data into Insights
Databricks artificial intelligence capabilities enable businesses to leverage AI technologies to gain competitive advantages. Key aspects of Databricks AI include:
Automated Machine Learning: Databricks simplifies the creation of machine learning models with automated tools that help select the best algorithms and parameters.
Scalable AI Infrastructure: Leveraging cloud resources, Databricks can handle the intensive computational requirements of training and deploying complex AI models.
Collaborative AI Development: Databricks promotes collaboration among data scientists, allowing teams to share code, models, and insights seamlessly.
Real-Time AI Applications: Databricks supports the deployment of AI models that can process and analyze data in real-time, providing immediate insights and responses.
Data Engineering Services: Enhancing Data Value
Data engineering services are a critical component of the Databricks ecosystem, enabling organizations to transform raw data into valuable assets. These services include:
Data Pipeline Development: Building robust pipelines that automate the extraction, transformation, and loading (ETL) of data from various sources into centralized data repositories.
Data Quality Management: Implementing processes and tools to ensure the accuracy, consistency, and reliability of data across the organization.
Data Integration: Combining data from different sources and systems to create a unified view that supports comprehensive analysis and reporting.
Performance Optimization: Enhancing the performance of data systems to handle large-scale data processing tasks efficiently and effectively.
Databricks Software: Empowering Data-Driven Innovation
Databricks software is designed to empower businesses with the tools they need to innovate and excel in a data-driven world. The core features of Databricks software include:
Interactive Workspaces: Providing a collaborative environment where teams can work together on data projects in real-time.
Advanced Security and Compliance: Ensuring that data is protected with robust security measures and compliance with industry standards.
Extensive Integrations: Offering seamless integration with popular tools and platforms, enhancing the flexibility and functionality of data operations.
Scalable Computing Power: Leveraging cloud infrastructure to provide scalable computing resources that can accommodate the demands of large-scale data processing and analysis.
Leveraging Databricks for Competitive Advantage
To fully harness the capabilities of Databricks, businesses should consider the following strategies:
Adopt a Unified Data Strategy: Utilize Databricks to unify data operations across the organization, from data engineering to machine learning.
Invest in Skilled Databricks Developers: Engage professionals who are proficient in Databricks to build and maintain your data infrastructure.
Integrate AI into Business Processes: Use Databricks’ AI capabilities to automate tasks, predict trends, and enhance decision-making processes.
Ensure Data Quality and Security: Implement best practices for data management to maintain high-quality data and ensure compliance with security standards.
Scale Operations with Cloud Resources: Take advantage of Databricks’ cloud-based architecture to scale your data operations as your business grows.
The Future of Databricks Services and Solutions
As the field of data and AI continues to evolve, Databricks services and solutions will play an increasingly vital role in driving business innovation and success. Future trends may include:
Enhanced AI Capabilities: Continued advancements in AI will enable Databricks to offer more powerful and intuitive AI tools that can address complex business challenges.
Greater Integration with Cloud Ecosystems: Databricks will expand its integration capabilities, allowing businesses to seamlessly connect with a broader range of cloud services and platforms.
Increased Focus on Real-Time Analytics: The demand for real-time data processing and analytics will grow, driving the development of more advanced streaming data solutions.
Expanding Global Reach: As more businesses recognize the value of data and AI, Databricks will continue to expand its presence and influence across different markets and industries.
#databricks services#databricks solutions#databricks developers#databricks artificial intelligence#data engineering services#databricks software
0 notes
Text
Leveraging Databricks Services for Optimal Solutions
In today's rapidly evolving digital landscape, businesses are continually seeking Databricks services to streamline their operations and gain a competitive edge. Whether it's Databricks solutions for data engineering or harnessing the power of Databricks developers to propel artificial intelligence initiatives, the demand for top-tier services is at an all-time high.
Unleashing the Power of Databricks Solutions
Data Engineering Services: Building the Foundation for Success
Data engineering services form the backbone of any successful data-driven organization. With Databricks, businesses can unlock the full potential of their data by leveraging cutting-edge technologies and methodologies. From data ingestion to processing and visualization, Databricks offers a comprehensive suite of tools to streamline the entire data pipeline.
Harnessing Artificial Intelligence with Databricks
In the age of artificial intelligence, businesses that fail to adapt risk falling behind the competition. Databricks provides a robust platform for developing and deploying AI solutions at scale. By harnessing the power of machine learning and deep learning algorithms, organizations can gain valuable insights and drive innovation like never before.
Empowering Developers with Databricks
Enabling Collaboration and Innovation
Databricks developers play a pivotal role in driving innovation and accelerating time-to-market for new products and services. With Databricks, developers can collaborate seamlessly, share insights, and iterate rapidly to deliver high-quality solutions that meet the ever-changing needs of their organization and customers.
Streamlining Development Workflows
Databricks simplifies the development process by providing a unified environment for data engineering, data science, and machine learning. By eliminating the need to manage multiple tools and platforms, developers can focus on what they do best: writing code and building transformative solutions.
The Key to Success: Choosing the Right Partner
When it comes to Databricks services, choosing the right partner is essential. Look for a provider with a proven track record of success and a deep understanding of your industry and business needs. Whether you're embarking on a data engineering project or exploring the possibilities of artificial intelligence, partnering with a trusted Databricks provider can make all the difference.
Driving Success for the Digital Economy
Databricks services offer a myriad of opportunities for businesses looking to harness the power of data and Databricks artificial intelligence. From data engineering to machine learning, Databricks provides the tools and technologies needed to drive innovation and achieve success in today's digital economy. By partnering with a trusted provider, businesses can unlock new possibilities and stay ahead of the competition.
#databricks services#databricks solutions#databricks developers#databricks artificial intelligence#data engineering services
0 notes
Text
0 notes
Text
Databrick consulting services
Discover the transformative potential of Databricks with Xorbix Technologies, a leading Databricks consulting services provider. From AI and machine learning to data modernization and cloud migration, our certified Databricks engineers specialize in delivering custom solutions tailored to your unique business needs. Partner with us to leverage the Databricks Lakehouse Platform, Genie, and AutoML for streamlined analytics, seamless data governance, and actionable insights. Let us be your Databricks service provider company of choice!
0 notes
Text
From Data to Decisions: Empowering Teams with Databricks AI/BI
🚀 Unlock the Power of Data with Databricks AI/BI! 🚀 Imagine a world where your entire team can access data insights in real-time, without needing to be data experts. Databricks AI/BI is making this possible with powerful features like conversational AI
In today’s business world, data is abundant—coming from sources like customer interactions, sales metrics, and supply chain information. Yet many organizations still struggle to transform this data into actionable insights. Teams often face siloed systems, complex analytics processes, and delays that hinder timely, data-driven decisions. Databricks AI/BI was designed with these challenges in…
#AI/BI#artificial intelligence#BI tools#Business Intelligence#Conversational AI#Data Analytics#data democratization#Data Governance#Data Insights#Data Integration#Data Visualization#data-driven decisions#Databricks#finance#Genie AI assistant#healthcare#logistics#low-code dashboards#predictive analytics#self-service analytics
0 notes
Text
Unlock the Future of ML with Azure Databricks – Here's Why You Should Care
youtube
0 notes
Text
Tracking Large Language Models (LLM) with MLflow : A Complete Guide
New Post has been published on https://thedigitalinsider.com/tracking-large-language-models-llm-with-mlflow-a-complete-guide/
Tracking Large Language Models (LLM) with MLflow : A Complete Guide
As Large Language Models (LLMs) grow in complexity and scale, tracking their performance, experiments, and deployments becomes increasingly challenging. This is where MLflow comes in – providing a comprehensive platform for managing the entire lifecycle of machine learning models, including LLMs.
In this in-depth guide, we’ll explore how to leverage MLflow for tracking, evaluating, and deploying LLMs. We’ll cover everything from setting up your environment to advanced evaluation techniques, with plenty of code examples and best practices along the way.
Functionality of MLflow in Large Language Models (LLMs)
MLflow has become a pivotal tool in the machine learning and data science community, especially for managing the lifecycle of machine learning models. When it comes to Large Language Models (LLMs), MLflow offers a robust suite of tools that significantly streamline the process of developing, tracking, evaluating, and deploying these models. Here’s an overview of how MLflow functions within the LLM space and the benefits it provides to engineers and data scientists.
Tracking and Managing LLM Interactions
MLflow’s LLM tracking system is an enhancement of its existing tracking capabilities, tailored to the unique needs of LLMs. It allows for comprehensive tracking of model interactions, including the following key aspects:
Parameters: Logging key-value pairs that detail the input parameters for the LLM, such as model-specific parameters like top_k and temperature. This provides context and configuration for each run, ensuring that all aspects of the model’s configuration are captured.
Metrics: Quantitative measures that provide insights into the performance and accuracy of the LLM. These can be updated dynamically as the run progresses, offering real-time or post-process insights.
Predictions: Capturing the inputs sent to the LLM and the corresponding outputs, which are stored as artifacts in a structured format for easy retrieval and analysis.
Artifacts: Beyond predictions, MLflow can store various output files such as visualizations, serialized models, and structured data files, allowing for detailed documentation and analysis of the model’s performance.
This structured approach ensures that all interactions with the LLM are meticulously recorded, providing a comprehensive lineage and quality tracking for text-generating models.
Evaluation of LLMs
Evaluating LLMs presents unique challenges due to their generative nature and the lack of a single ground truth. MLflow simplifies this with specialized evaluation tools designed for LLMs. Key features include:
Versatile Model Evaluation: Supports evaluating various types of LLMs, whether it’s an MLflow pyfunc model, a URI pointing to a registered MLflow model, or any Python callable representing your model.
Comprehensive Metrics: Offers a range of metrics tailored for LLM evaluation, including both SaaS model-dependent metrics (e.g., answer relevance) and function-based metrics (e.g., ROUGE, Flesch Kincaid).
Predefined Metric Collections: Depending on the use case, such as question-answering or text-summarization, MLflow provides predefined metrics to simplify the evaluation process.
Custom Metric Creation: Allows users to define and implement custom metrics to suit specific evaluation needs, enhancing the flexibility and depth of model evaluation.
Evaluation with Static Datasets: Enables evaluation of static datasets without specifying a model, which is useful for quick assessments without rerunning model inference.
Deployment and Integration
MLflow also supports seamless deployment and integration of LLMs:
MLflow Deployments Server: Acts as a unified interface for interacting with multiple LLM providers. It simplifies integrations, manages credentials securely, and offers a consistent API experience. This server supports a range of foundational models from popular SaaS vendors as well as self-hosted models.
Unified Endpoint: Facilitates easy switching between providers without code changes, minimizing downtime and enhancing flexibility.
Integrated Results View: Provides comprehensive evaluation results, which can be accessed directly in the code or through the MLflow UI for detailed analysis.
MLflow is a comprehensive suite of tools and integrations makes it an invaluable asset for engineers and data scientists working with advanced NLP models.
Setting Up Your Environment
Before we dive into tracking LLMs with MLflow, let’s set up our development environment. We’ll need to install MLflow and several other key libraries:
pip install mlflow>=2.8.1 pip install openai pip install chromadb==0.4.15 pip install langchain==0.0.348 pip install tiktoken pip install 'mlflow[genai]' pip install databricks-sdk --upgrade
After installation, it’s a good practice to restart your Python environment to ensure all libraries are properly loaded. In a Jupyter notebook, you can use:
import mlflow import chromadb print(f"MLflow version: mlflow.__version__") print(f"ChromaDB version: chromadb.__version__")
This will confirm the versions of key libraries we’ll be using.
Understanding MLflow’s LLM Tracking Capabilities
MLflow’s LLM tracking system builds upon its existing tracking capabilities, adding features specifically designed for the unique aspects of LLMs. Let’s break down the key components:
Runs and Experiments
In MLflow, a “run” represents a single execution of your model code, while an “experiment” is a collection of related runs. For LLMs, a run might represent a single query or a batch of prompts processed by the model.
Key Tracking Components
Parameters: These are input configurations for your LLM, such as temperature, top_k, or max_tokens. You can log these using mlflow.log_param() or mlflow.log_params().
Metrics: Quantitative measures of your LLM’s performance, like accuracy, latency, or custom scores. Use mlflow.log_metric() or mlflow.log_metrics() to track these.
Predictions: For LLMs, it’s crucial to log both the input prompts and the model’s outputs. MLflow stores these as artifacts in CSV format using mlflow.log_table().
Artifacts: Any additional files or data related to your LLM run, such as model checkpoints, visualizations, or dataset samples. Use mlflow.log_artifact() to store these.
Let’s look at a basic example of logging an LLM run:
This example demonstrates logging parameters, metrics, and the input/output as a table artifact.
import mlflow import openai def query_llm(prompt, max_tokens=100): response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=max_tokens ) return response.choices[0].text.strip() with mlflow.start_run(): prompt = "Explain the concept of machine learning in simple terms." # Log parameters mlflow.log_param("model", "text-davinci-002") mlflow.log_param("max_tokens", 100) # Query the LLM and log the result result = query_llm(prompt) mlflow.log_metric("response_length", len(result)) # Log the prompt and response mlflow.log_table("prompt_responses", "prompt": [prompt], "response": [result]) print(f"Response: result")
Deploying LLMs with MLflow
MLflow provides powerful capabilities for deploying LLMs, making it easier to serve your models in production environments. Let’s explore how to deploy an LLM using MLflow’s deployment features.
Creating an Endpoint
First, we’ll create an endpoint for our LLM using MLflow’s deployment client:
import mlflow from mlflow.deployments import get_deploy_client # Initialize the deployment client client = get_deploy_client("databricks") # Define the endpoint configuration endpoint_name = "llm-endpoint" endpoint_config = "served_entities": [ "name": "gpt-model", "external_model": "name": "gpt-3.5-turbo", "provider": "openai", "task": "llm/v1/completions", "openai_config": "openai_api_type": "azure", "openai_api_key": "secrets/scope/openai_api_key", "openai_api_base": "secrets/scope/openai_api_base", "openai_deployment_name": "gpt-35-turbo", "openai_api_version": "2023-05-15", , , ], # Create the endpoint client.create_endpoint(name=endpoint_name, config=endpoint_config)
This code sets up an endpoint for a GPT-3.5-turbo model using Azure OpenAI. Note the use of Databricks secrets for secure API key management.
Testing the Endpoint
Once the endpoint is created, we can test it:
<div class="relative flex flex-col rounded-lg"> response = client.predict( endpoint=endpoint_name, inputs="prompt": "Explain the concept of neural networks briefly.","max_tokens": 100,,) print(response)
This will send a prompt to our deployed model and return the generated response.
Evaluating LLMs with MLflow
Evaluation is crucial for understanding the performance and behavior of your LLMs. MLflow provides comprehensive tools for evaluating LLMs, including both built-in and custom metrics.
Preparing Your LLM for Evaluation
To evaluate your LLM with mlflow.evaluate(), your model needs to be in one of these forms:
An mlflow.pyfunc.PyFuncModel instance or a URI pointing to a logged MLflow model.
A Python function that takes string inputs and outputs a single string.
An MLflow Deployments endpoint URI.
Set model=None and include model outputs in the evaluation data.
Let’s look at an example using a logged MLflow model:
import mlflow import openai with mlflow.start_run(): system_prompt = "Answer the following question concisely." logged_model_info = mlflow.openai.log_model( model="gpt-3.5-turbo", task=openai.chat.completions, artifact_path="model", messages=[ "role": "system", "content": system_prompt, "role": "user", "content": "question", ], ) # Prepare evaluation data eval_data = pd.DataFrame( "question": ["What is machine learning?", "Explain neural networks."], "ground_truth": [ "Machine learning is a subset of AI that enables systems to learn and improve from experience without explicit programming.", "Neural networks are computing systems inspired by biological neural networks, consisting of interconnected nodes that process and transmit information." ] ) # Evaluate the model results = mlflow.evaluate( logged_model_info.model_uri, eval_data, targets="ground_truth", model_type="question-answering", ) print(f"Evaluation metrics: results.metrics")
This example logs an OpenAI model, prepares evaluation data, and then evaluates the model using MLflow’s built-in metrics for question-answering tasks.
Custom Evaluation Metrics
MLflow allows you to define custom metrics for LLM evaluation. Here’s an example of creating a custom metric for evaluating the professionalism of responses:
from mlflow.metrics.genai import EvaluationExample, make_genai_metric professionalism = make_genai_metric( name="professionalism", definition="Measure of formal and appropriate communication style.", grading_prompt=( "Score the professionalism of the answer on a scale of 0-4:n" "0: Extremely casual or inappropriaten" "1: Casual but respectfuln" "2: Moderately formaln" "3: Professional and appropriaten" "4: Highly formal and expertly crafted" ), examples=[ EvaluationExample( input="What is MLflow?", output="MLflow is like your friendly neighborhood toolkit for managing ML projects. It's super cool!", score=1, justification="The response is casual and uses informal language." ), EvaluationExample( input="What is MLflow?", output="MLflow is an open-source platform for the machine learning lifecycle, including experimentation, reproducibility, and deployment.", score=4, justification="The response is formal, concise, and professionally worded." ) ], model="openai:/gpt-3.5-turbo-16k", parameters="temperature": 0.0, aggregations=["mean", "variance"], greater_is_better=True, ) # Use the custom metric in evaluation results = mlflow.evaluate( logged_model_info.model_uri, eval_data, targets="ground_truth", model_type="question-answering", extra_metrics=[professionalism] ) print(f"Professionalism score: results.metrics['professionalism_mean']")
This custom metric uses GPT-3.5-turbo to score the professionalism of responses, demonstrating how you can leverage LLMs themselves for evaluation.
Advanced LLM Evaluation Techniques
As LLMs become more sophisticated, so do the techniques for evaluating them. Let’s explore some advanced evaluation methods using MLflow.
Retrieval-Augmented Generation (RAG) Evaluation
RAG systems combine the power of retrieval-based and generative models. Evaluating RAG systems requires assessing both the retrieval and generation components. Here’s how you can set up a RAG system and evaluate it using MLflow:
from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.llms import OpenAI # Load and preprocess documents loader = WebBaseLoader(["https://mlflow.org/docs/latest/index.html"]) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) # Create vector store embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(texts, embeddings) # Create RAG chain llm = OpenAI(temperature=0) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever(), return_source_documents=True ) # Evaluation function def evaluate_rag(question): result = qa_chain("query": question) return result["result"], [doc.page_content for doc in result["source_documents"]] # Prepare evaluation data eval_questions = [ "What is MLflow?", "How does MLflow handle experiment tracking?", "What are the main components of MLflow?" ] # Evaluate using MLflow with mlflow.start_run(): for question in eval_questions: answer, sources = evaluate_rag(question) mlflow.log_param(f"question", question) mlflow.log_metric("num_sources", len(sources)) mlflow.log_text(answer, f"answer_question.txt") for i, source in enumerate(sources): mlflow.log_text(source, f"source_question_i.txt") # Log custom metrics mlflow.log_metric("avg_sources_per_question", sum(len(evaluate_rag(q)[1]) for q in eval_questions) / len(eval_questions))
This example sets up a RAG system using LangChain and Chroma, then evaluates it by logging questions, answers, retrieved sources, and custom metrics to MLflow.
The way you chunk your documents can significantly impact RAG performance. MLflow can help you evaluate different chunking strategies:
This script evaluates different combinations of chunk sizes, overlaps, and splitting methods, logging the results to MLflow for easy comparison.
MLflow provides various ways to visualize your LLM evaluation results. Here are some techniques:
You can create custom visualizations of your evaluation results using libraries like Matplotlib or Plotly, then log them as artifacts:
This function creates a line plot comparing a specific metric across multiple runs and logs it as an artifact.
#2023#ai#AI Tools 101#Analysis#API#approach#Artificial Intelligence#azure#azure openai#Behavior#code#col#Collections#communication#Community#comparison#complexity#comprehensive#computing#computing systems#content#credentials#custom metrics#data#data science#databricks#datasets#deploying#deployment#development
0 notes
Text
Dive into the world of DBRX, a state-of-the-art open Large Language Model. With its unique architecture and extensive training data, DBRX is revolutionizing the field of AI. Discover how DBRX is excelling in various tasks and benchmarks, outshining both open and proprietary models.
#DBRX#Databricks#AI#OpenSource#LLM#MoEArchitecture#datascience#machinelearning#artificial intelligence#open source#machine learning#coding#llms#large language model
1 note
·
View note
Text
Real-time Model Oversight: Amazon SageMaker vs Databricks ML Monitoring Features
Model monitoring is crucial in the lifecycle of machine learning models, especially for models deployed in production environments. Model monitoring is not just a "nice-to-have" but is essential to ensure the models' robustness, accuracy, fairness, and reliability in real-world applications. Without monitoring, model predictions can be unreliable, or even detrimental to the business or end-users. As a model builder, how often have you thought about how models’ behavior will change over time? In my professional life, I have seen many production systems managing model retraining life cycle using heuristic, gut feel or scheduled basis, either leading to the wastage of precious resources or performing retraining too late.
This is a ripe problem space as many models have been deployed in production. Hence there are many point solutions such as Great Expectations, Neptune.ai, Fiddler.ai who all boast really cool features either in terms of automatic metrics computation, differentiated statistical methods or Responsible AI hype that has become a real need of time (Thanks to ChatGPT and LLMs). In this Op-ed, I would like to touch upon two systems that I am familiar with and are widely used.
Amazon SageMaker Model Monitor
Amazon SageMaker is AWS’s flagship fully managed ML service to Build, Train, Deploy & “Monitor” Machine Learning models. The service provides click through experience for set up using SageMaker Studio or API experience using SageMaker SDK. SageMaker assumes you to have clean datasets for training and can capture inference request/response based on user defined time interval. The system works for model monitoring if models are the problem, BUT What if Data that is fed to the model is a problem or a pipeline well upstream in ETL pipeline is a problem. AWS provides multiple Data Lake architectures and patterns to stitch end-2-end data and AI systems together but tracking data lineage is easy if not impossible.
The monitoring solution is flexible thanks to SageMaker processing job which is underlying mechanism to execute underlying metrics. SageMaker processing also lets you build your custom container. SageMaker model monitoring is integrated with Amazon SageMaker Clarify and can provide Bias Drift which is important for Responsible AI. Overall SageMaker monitoring does a decent job of alerting when model drifts.
Databricks Lakehouse Monitoring
Let's look at the second contender. Databricks is a fully managed Data and AI platform available across all major clouds and also boasts millions of downloads of MLFlow OSS. I have recently come across Databricks Lakehouse Monitoring which IMO is a really cool paradigm of Monitoring your Data assets.
Let me explain why you should care if you are an ML Engineer or Data Scientist?
Let's say you have built a cool customer segmentation model and deployed it in production. You have started monitoring the model using one of the cool bespoke tools I mentioned earlier which may pop up an alert blaming a Data field. Now What?
✔ How do you track where that field came from cobweb of data ETL pipeline?
✔ How do you find the root cause of the drift?
✔ How do you track where that field came from cobweb of data ETL pipeline?
Here comes Databricks Lakehouse Monitoring to the rescue. Databricks Lakehouse Monitoring lets you monitor all of the tables in your account. You can also use it to track the performance of machine learning models and model-serving endpoints by monitoring inference tables created by the model’s output.
Let's put this in perspective, Data Layer is a foundation of AI. When teams across data and AI portfolios work together in a single platform, productivity of ML Teams, Access to Data assets and Governance is much superior compared to siloed or point solution.
The Vision below essentially captures an ideal Data and Model Monitoring solution. The journey starts with raw data with Bronze -> Silver -> Golden layers. Moreover, Features are also treated as another table (That’s refreshing and new paradigm, Goodbye feature stores). Now you get down to ML brass tacks by using Golden/Feature Tables for Model training and serve that model up.
Databricks recently launched in preview awesome Inference table feature. Imagine all your requests/responses captured as a table than raw files in your object store. Possibilities are limitless if the Table can scale. Once you have ground truth after the fact, just start logging it in Groundtruth Table. Since all this data is being ETLed using Databricks components, the Unity catalog offers nice end-2-end data lineage similar to Delta Live Tables.
Now you can turn on Monitors, and Databricks start computing metrics. Any Data Drift or Model Drift can be root caused to upstream ETL tables or source code. Imagine that you love other tools in the market for monitoring, then just have them crawl these tables and get your own insights.

Looks like Databricks want to take it up the notch by extending��Expectations framework in DLT to extend to any Delta Table. Imagine the ability to set up column level constraints and instructing jobs to fail, rollback or default. So, it means problems can be pre-empted before they happen. Can't wait to see this evolution in the next few months.

To summarize, I came up with the following comparison between SageMaker and Databricks Model Monitoring.CapabilityWinnerSageMakerDatabricksRoot cause AnalysisDatabricksConstraint and violations due to concept and model driftExtends RCA to upstream ETL pipelines as lineage is maintainedBuilt-in statisticsSageMakerUses Deque Spark library and SageMaker Clarify for Bias driftUnderlying metrics library is not exposed but most likely Spark libraryDashboardingDatabricksAvailable using SageMaker Studio so it is a mustRedash dashboards are built and can be customized or use your favorite BI tool.AlertingDatabricksNeeds additional configuration using Event BridgeBuilt in alertingCustomizabilityBothUses Processing jobs so customization of your own metricsMost metrics are built-in, but dashboards can be customizedUse case coverageSageMakerCoverage for Tabular and NLP use casesCoverage for tabular use casesEase of UseDatabricksOne-click enablementOne-click enablement but bonus for monitoring upstream ETL tables
Hope you enjoyed the quick read. Hope you can engage Propensity Labs for your next Machine Learning project no matter how hard the problem is, we have a solution. Keep monitoring.
0 notes
Text
What EDAV does:
Connects people with data faster. It does this in a few ways. EDAV:
Hosts tools that support the analytics work of over 3,500 people.
Stores data on a common platform that is accessible to CDC's data scientists and partners.
Simplifies complex data analysis steps.
Automates repeatable tasks, such as dashboard updates, freeing up staff time and resources.
Keeps data secure. Data represent people, and the privacy of people's information is critically important to CDC. EDAV is hosted on CDC's Cloud to ensure data are shared securely and that privacy is protected.
Saves time and money. EDAV services can quickly and easily scale up to meet surges in demand for data science and engineering tools, such as during a disease outbreak. The services can also scale down quickly, saving funds when demand decreases or an outbreak ends.
Trains CDC's staff on new tools. EDAV hosts a Data Academy that offers training designed to help our workforce build their data science skills, including self-paced courses in Power BI, R, Socrata, Tableau, Databricks, Azure Data Factory, and more.
Changes how CDC works. For the first time, EDAV offers CDC's experts a common set of tools that can be used for any disease or condition. It's ready to handle "big data," can bring in entirely new sources of data like social media feeds, and enables CDC's scientists to create interactive dashboards and apply technologies like artificial intelligence for deeper analysis.
4 notes
·
View notes
Text
Google Cloud’s BigQuery Autonomous Data To AI Platform

BigQuery automates data analysis, transformation, and insight generation using AI. AI and natural language interaction simplify difficult operations.
The fast-paced world needs data access and a real-time data activation flywheel. Artificial intelligence that integrates directly into the data environment and works with intelligent agents is emerging. These catalysts open doors and enable self-directed, rapid action, which is vital for success. This flywheel uses Google's Data & AI Cloud to activate data in real time. BigQuery has five times more organisations than the two leading cloud providers that just offer data science and data warehousing solutions due to this emphasis.
Examples of top companies:
With BigQuery, Radisson Hotel Group enhanced campaign productivity by 50% and revenue by over 20% by fine-tuning the Gemini model.
By connecting over 170 data sources with BigQuery, Gordon Food Service established a scalable, modern, AI-ready data architecture. This improved real-time response to critical business demands, enabled complete analytics, boosted client usage of their ordering systems, and offered staff rapid insights while cutting costs and boosting market share.
J.B. Hunt is revolutionising logistics for shippers and carriers by integrating Databricks into BigQuery.
General Mills saves over $100 million using BigQuery and Vertex AI to give workers secure access to LLMs for structured and unstructured data searches.
Google Cloud is unveiling many new features with its autonomous data to AI platform powered by BigQuery and Looker, a unified, trustworthy, and conversational BI platform:
New assistive and agentic experiences based on your trusted data and available through BigQuery and Looker will make data scientists, data engineers, analysts, and business users' jobs simpler and faster.
Advanced analytics and data science acceleration: Along with seamless integration with real-time and open-source technologies, BigQuery AI-assisted notebooks improve data science workflows and BigQuery AI Query Engine provides fresh insights.
Autonomous data foundation: BigQuery can collect, manage, and orchestrate any data with its new autonomous features, which include native support for unstructured data processing and open data formats like Iceberg.
Look at each change in detail.
User-specific agents
It believes everyone should have AI. BigQuery and Looker made AI-powered helpful experiences generally available, but Google Cloud now offers specialised agents for all data chores, such as:
Data engineering agents integrated with BigQuery pipelines help create data pipelines, convert and enhance data, discover anomalies, and automate metadata development. These agents provide trustworthy data and replace time-consuming and repetitive tasks, enhancing data team productivity. Data engineers traditionally spend hours cleaning, processing, and confirming data.
The data science agent in Google's Colab notebook enables model development at every step. Scalable training, intelligent model selection, automated feature engineering, and faster iteration are possible. This agent lets data science teams focus on complex methods rather than data and infrastructure.
Looker conversational analytics lets everyone utilise natural language with data. Expanded capabilities provided with DeepMind let all users understand the agent's actions and easily resolve misconceptions by undertaking advanced analysis and explaining its logic. Looker's semantic layer boosts accuracy by two-thirds. The agent understands business language like “revenue” and “segments” and can compute metrics in real time, ensuring trustworthy, accurate, and relevant results. An API for conversational analytics is also being introduced to help developers integrate it into processes and apps.
In the BigQuery autonomous data to AI platform, Google Cloud introduced the BigQuery knowledge engine to power assistive and agentic experiences. It models data associations, suggests business vocabulary words, and creates metadata instantaneously using Gemini's table descriptions, query histories, and schema connections. This knowledge engine grounds AI and agents in business context, enabling semantic search across BigQuery and AI-powered data insights.
All customers may access Gemini-powered agentic and assistive experiences in BigQuery and Looker without add-ons in the existing price model tiers!
Accelerating data science and advanced analytics
BigQuery autonomous data to AI platform is revolutionising data science and analytics by enabling new AI-driven data science experiences and engines to manage complex data and provide real-time analytics.
First, AI improves BigQuery notebooks. It adds intelligent SQL cells to your notebook that can merge data sources, comprehend data context, and make code-writing suggestions. It also uses native exploratory analysis and visualisation capabilities for data exploration and peer collaboration. Data scientists can also schedule analyses and update insights. Google Cloud also lets you construct laptop-driven, dynamic, user-friendly, interactive data apps to share insights across the organisation.
This enhanced notebook experience is complemented by the BigQuery AI query engine for AI-driven analytics. This engine lets data scientists easily manage organised and unstructured data and add real-world context—not simply retrieve it. BigQuery AI co-processes SQL and Gemini, adding runtime verbal comprehension, reasoning skills, and real-world knowledge. Their new engine processes unstructured photographs and matches them to your product catalogue. This engine supports several use cases, including model enhancement, sophisticated segmentation, and new insights.
Additionally, it provides users with the most cloud-optimized open-source environment. Google Cloud for Apache Kafka enables real-time data pipelines for event sourcing, model scoring, communications, and analytics in BigQuery for serverless Apache Spark execution. Customers have almost doubled their serverless Spark use in the last year, and Google Cloud has upgraded this engine to handle data 2.7 times faster.
BigQuery lets data scientists utilise SQL, Spark, or foundation models on Google's serverless and scalable architecture to innovate faster without the challenges of traditional infrastructure.
An independent data foundation throughout data lifetime
An independent data foundation created for modern data complexity supports its advanced analytics engines and specialised agents. BigQuery is transforming the environment by making unstructured data first-class citizens. New platform features, such as orchestration for a variety of data workloads, autonomous and invisible governance, and open formats for flexibility, ensure that your data is always ready for data science or artificial intelligence issues. It does this while giving the best cost and decreasing operational overhead.
For many companies, unstructured data is their biggest untapped potential. Even while structured data provides analytical avenues, unique ideas in text, audio, video, and photographs are often underutilised and discovered in siloed systems. BigQuery instantly tackles this issue by making unstructured data a first-class citizen using multimodal tables (preview), which integrate structured data with rich, complex data types for unified querying and storage.
Google Cloud's expanded BigQuery governance enables data stewards and professionals a single perspective to manage discovery, classification, curation, quality, usage, and sharing, including automatic cataloguing and metadata production, to efficiently manage this large data estate. BigQuery continuous queries use SQL to analyse and act on streaming data regardless of format, ensuring timely insights from all your data streams.
Customers utilise Google's AI models in BigQuery for multimodal analysis 16 times more than last year, driven by advanced support for structured and unstructured multimodal data. BigQuery with Vertex AI are 8–16 times cheaper than independent data warehouse and AI solutions.
Google Cloud maintains open ecology. BigQuery tables for Apache Iceberg combine BigQuery's performance and integrated capabilities with the flexibility of an open data lakehouse to link Iceberg data to SQL, Spark, AI, and third-party engines in an open and interoperable fashion. This service provides adaptive and autonomous table management, high-performance streaming, auto-AI-generated insights, practically infinite serverless scalability, and improved governance. Cloud storage enables fail-safe features and centralised fine-grained access control management in their managed solution.
Finaly, AI platform autonomous data optimises. Scaling resources, managing workloads, and ensuring cost-effectiveness are its competencies. The new BigQuery spend commit unifies spending throughout BigQuery platform and allows flexibility in shifting spend across streaming, governance, data processing engines, and more, making purchase easier.
Start your data and AI adventure with BigQuery data migration. Google Cloud wants to know how you innovate with data.
#technology#technews#govindhtech#news#technologynews#BigQuery autonomous data to AI platform#BigQuery#autonomous data to AI platform#BigQuery platform#autonomous data#BigQuery AI Query Engine
2 notes
·
View notes
Text
PART TWO
The six men are one part of the broader project of Musk allies assuming key government positions. Already, Musk’s lackeys—including more senior staff from xAI, Tesla, and the Boring Company—have taken control of the Office of Personnel Management (OPM) and General Services Administration (GSA), and have gained access to the Treasury Department’s payment system, potentially allowing him access to a vast range of sensitive information about tens of millions of citizens, businesses, and more. On Sunday, CNN reported that DOGE personnel attempted to improperly access classified information and security systems at the US Agency for International Development and that top USAID security officials who thwarted the attempt were subsequently put on leave. The Associated Press reported that DOGE personnel had indeed accessed classified material.“What we're seeing is unprecedented in that you have these actors who are not really public officials gaining access to the most sensitive data in government,” says Don Moynihan, a professor of public policy at the University of Michigan. “We really have very little eyes on what's going on. Congress has no ability to really intervene and monitor what's happening because these aren't really accountable public officials. So this feels like a hostile takeover of the machinery of governments by the richest man in the world.”Bobba has attended UC Berkeley, where he was in the prestigious Management, Entrepreneurship, and Technology program. According to a copy of his now-deleted LinkedIn obtained by WIRED, Bobba was an investment engineering intern at the Bridgewater Associates hedge fund as of last spring and was previously an intern at both Meta and Palantir. He was a featured guest on a since-deleted podcast with Aman Manazir, an engineer who interviews engineers about how they landed their dream jobs, where he talked about those experiences last June.
Coristine, as WIRED previously reported, appears to have recently graduated from high school and to have been enrolled at Northeastern University. According to a copy of his résumé obtained by WIRED, he spent three months at Neuralink, Musk’s brain-computer interface company, last summer.Both Bobba and Coristine are listed in internal OPM records reviewed by WIRED as “experts” at OPM, reporting directly to Amanda Scales, its new chief of staff. Scales previously worked on talent for xAI, Musk’s artificial intelligence company, and as part of Uber’s talent acquisition team, per LinkedIn. Employees at GSA tell WIRED that Coristine has appeared on calls where workers were made to go over code they had written and justify their jobs. WIRED previously reported that Coristine was added to a call with GSA staff members using a nongovernment Gmail address. Employees were not given an explanation as to who he was or why he was on the calls.
Farritor, who per sources has a working GSA email address, is a former intern at SpaceX, Musk’s space company, and currently a Thiel Fellow after, according to his LinkedIn, dropping out of the University of Nebraska—Lincoln. While in school, he was part of an award-winning team that deciphered portions of an ancient Greek scroll.AdvertisementKliger, whose LinkedIn lists him as a special adviser to the director of OPM and who is listed in internal records reviewed by WIRED as a special adviser to the director for information technology, attended UC Berkeley until 2020; most recently, according to his LinkedIn, he worked for the AI company Databricks. His Substack includes a post titled “The Curious Case of Matt Gaetz: How the Deep State Destroys Its Enemies,” as well as another titled “Pete Hegseth as Secretary of Defense: The Warrior Washington Fears.”Killian, also known as Cole Killian, has a working email associated with DOGE, where he is currently listed as a volunteer, according to internal records reviewed by WIRED. According to a copy of his now-deleted résumé obtained by WIRED, he attended McGill University through at least 2021 and graduated high school in 2019. An archived copy of his now-deleted personal website indicates that he worked as an engineer at Jump Trading, which specializes in algorithmic and high-frequency financial trades.Shaotran told Business Insider in September that he was a senior at Harvard studying computer science and also the founder of an OpenAI-backed startup, Energize AI. Shaotran was the runner-up in a hackathon held by xAI, Musk’s AI company. In the Business Insider article, Shaotran says he received a $100,000 grant from OpenAI to build his scheduling assistant, Spark.
Are you a current or former employee with the Office of Personnel Management or another government agency impacted by Elon Musk? We’d like to hear from you. Using a nonwork phone or computer, contact Vittoria Elliott at [email protected] or securely at velliott88.18 on Signal.“To the extent these individuals are exercising what would otherwise be relatively significant managerial control over two very large agencies that deal with very complex topics,” says Nick Bednar, a professor at University of Minnesota’s school of law, “it is very unlikely they have the expertise to understand either the law or the administrative needs that surround these agencies.”Sources tell WIRED that Bobba, Coristine, Farritor, and Shaotran all currently have working GSA emails and A-suite level clearance at the GSA, which means that they work out of the agency’s top floor and have access to all physical spaces and IT systems, according a source with knowledge of the GSA’s clearance protocols. The source, who spoke to WIRED on the condition of anonymity because they fear retaliation, says they worry that the new teams could bypass the regular security clearance protocols to access the agency’s sensitive compartmented information facility, as the Trump administration has already granted temporary security clearances to unvetted people.This is in addition to Coristine and Bobba being listed as “experts” working at OPM. Bednar says that while staff can be loaned out between agencies for special projects or to work on issues that might cross agency lines, it’s not exactly common practice.“This is consistent with the pattern of a lot of tech executives who have taken certain roles of the administration,” says Bednar. “This raises concerns about regulatory capture and whether these individuals may have preferences that don’t serve the American public or the federal government.”
These men just stole the personal information of everyone in America AND control the Treasury. Link to article.
Akash Bobba
Edward Coristine
Luke Farritor
Gautier Cole Killian
Gavin Kliger
Ethan Shaotran
Spread their names!
#freedom of the press#elon musk#elongated muskrat#american politics#politics#news#america#trump administration
149K notes
·
View notes
Text
microsoft azure ai engineer associate certification

Top Career Opportunities After Earning Azure AI Engineer Associate Certification
In today’s ever-evolving tech world, Artificial Intelligence (AI) is no longer just a buzzword — it’s a full-blown career path. With organizations embracing AI to improve operations, customer service, and innovation, professionals are rushing to upskill themselves. Among the top choices, the Microsoft Azure AI Engineer Associate Certification is gaining significant attention.
If you’re serious about making a mark in AI, then the Microsoft Azure AI certification pathway can be your golden ticket. This article dives deep into the top career opportunities after earning Azure AI Engineer Associate Certification, how this certification boosts your job prospects, and the roles you can aim for.
Why Choose the Azure AI Engineer Associate Certification?
The Azure AI Engineer Associate Certification is offered by Microsoft, a global leader in cloud computing and AI. It verifies your ability to use Azure Cognitive Services, Azure Machine Learning, and conversational AI to build and deploy AI solutions.
Professionals holding this certification demonstrate hands-on skills and are preferred by companies that want ready-to-deploy AI talent.
Benefits of the Azure AI Engineer Associate Certification
Let’s understand why more professionals are choosing this certification to strengthen their careers:
1. Industry Recognition
Companies worldwide trust Microsoft technologies. Getting certified adds credibility to your resume.
2. Cloud-Centric Skillset
The demand for cloud-based AI solutions is skyrocketing. This certification proves your expertise in building such systems.
3. Competitive Salary Packages
Certified professionals are often offered higher salaries due to their validated skills.
4. Global Opportunities
Whether you're in India, the USA, or Europe, Azure AI certification opens doors globally.
Top Career Opportunities After Earning Azure AI Engineer Associate Certification
The top career opportunities after earning Azure AI Engineer Associate Certification span across various industries, from healthcare and finance to retail and logistics. Below are the most promising roles you can pursue:
AI Engineer
As an AI Engineer, you’ll build, test, and deploy AI models. You'll work with machine learning algorithms and integrate Azure Cognitive Services. This is one of the most common and direct roles after certification.
Machine Learning Engineer
You’ll design and implement machine learning models in real-world applications. You'll be responsible for model training, evaluation, and fine-tuning on Azure ML Studio or Azure Databricks.
Data Scientist
This role involves data analysis, visualization, and model building. Azure tools like Machine Learning Designer make your job easier. Data scientists with Azure skills are in massive demand across all sectors.
AI Solutions Architect
Here, you’ll lead the design of AI solutions for enterprise applications. You need to combine business understanding with deep technical expertise in AI and Azure services.
Cloud AI Consultant
Companies hire consultants to guide their AI strategy. Your Azure certification gives you the tools to advise clients on how to build scalable AI systems using cloud services.
Business Intelligence Developer
BI developers use AI to gain insights from business data. With Azure’s AI tools, you can automate reporting, forecast trends, and build smart dashboards.
AI Product Manager
This role is perfect if you love tech and strategy. As a product manager, you’ll plan the AI product roadmap and ensure Azure services align with customer needs.
Chatbot Developer
With expertise in Azure Bot Services and Language Understanding (LUIS), you’ll create conversational AI that enhances customer experiences across websites, apps, and support systems.
Automation Engineer
You’ll design intelligent automation workflows using Azure AI and RPA tools. From customer onboarding to document processing, AI is the key.
Azure Developer with AI Focus
A developer well-versed in .NET or Python and now skilled in Azure AI can build powerful applications that utilize computer vision, NLP, and predictive models.
Industries Hiring Azure AI Certified Professionals
The top career opportunities after earning Azure AI Engineer Associate Certification are not limited to IT companies. Here’s where you’re likely to be hired:
Healthcare: AI-driven diagnostics and patient care
Finance: Fraud detection and predictive analytics
Retail: Customer behavior analysis and chatbots
Logistics: Smart inventory and route optimization
Education: Personalized learning platforms
Demand Outlook and Salary Trends
Let’s take a look at what the future holds:
AI Engineer: ₹10–25 LPA in India / $120K+ in the US
ML Engineer: ₹12–30 LPA in India / $130K+ in the US
Data Scientist: ₹8–22 LPA in India / $110K+ in the US
Companies like Microsoft, Accenture, Infosys, Deloitte, and IBM are actively hiring Azure AI-certified professionals. Job listings on platforms like LinkedIn and Indeed reflect growing demand.
Skills Gained from the Certification
The Azure AI Engineer Associate Certification equips you with:
Knowledge of Azure Cognitive Services
Skills in NLP, speech, vision, and language understanding
Proficiency in Azure Bot Services
Hands-on with Machine Learning pipelines
Use of Azure ML Studio and Notebooks
You don’t just become a certificate holder—you become a problem solver.
Career Growth After the Certification
As you progress in your AI journey, the certification lays the foundation for:
Mid-level roles after 2–3 years: Lead AI Engineer, AI Consultant
Senior roles after 5+ years: AI Architect, Director of AI Solutions
Leadership after 10+ years: Chief Data Officer, Head of AI
Real-World Projects That Get You Hired
Employers love practical knowledge. The certification encourages project-based learning, such as:
Sentiment analysis using Azure Cognitive Services
Building chatbots for e-commerce
Predictive analytics models for healthcare
Language translation tools
Automated document processing using Azure Form Recognizer
Completing and showcasing such projects makes your portfolio job-ready.
Middle of the Article Keyword Usage
If you're aiming to future-proof your tech career, then exploring the top career opportunities after earning Azure AI Engineer Associate Certification is one of the smartest moves you can make. It not only adds to your credentials but directly connects you to real-world AI roles.
Who Should Pursue This Certification?
This certification is ideal for:
Freshers with Python/AI interest
Software developers entering AI
Data professionals upskilling
Cloud engineers expanding into AI
Technical leads managing AI projects
How to Prepare for the Certification
Tips to ace the exam:
Take official Microsoft learning paths
Join instructor-led training programs
Practice with Azure sandbox labs
Study real-world use cases
Attempt mock exams
Final Thoughts
The top career opportunities after earning Azure AI Engineer Associate Certification are not only growing—they’re evolving. This certification doesn’t just give you knowledge; it opens doors to meaningful, high-paying, and future-ready roles. Whether you aim to be an AI engineer, a consultant, or a product manager, this certification lays the perfect foundation for your next big move in the AI industry.
FAQs
What are the prerequisites for taking the Azure AI certification exam?
You should have a basic understanding of Python, machine learning concepts, and experience with Microsoft Azure.
Is it necessary to have prior AI experience?
No, but having foundational knowledge in AI and cloud computing will make the learning curve easier.
How long does it take to prepare for the exam?
On average, candidates spend 4–6 weeks preparing with structured study plans and hands-on practice.
Is this certification useful for non-developers?
Yes! Even business analysts and managers with tech interest can benefit, especially in AI product management and consulting roles.
Can I get a job immediately after certification?
It depends on your background, but certification significantly boosts your chances of landing interviews and roles.
Does this certification expire?
Yes, typically after one year. Microsoft provides updates and renewal paths to keep your skills current.
What tools should I master for this certification?
Azure Machine Learning, Azure Cognitive Services, Azure Bot Service, and Python are key tools to learn.
What is the exam format like?
It usually consists of 40–60 questions including MCQs, case studies, and practical scenarios.
Can I do this certification online?
Yes, you can take the exam online with proctoring or at an authorized test center.
How is it different from other cloud certifications?
This certification focuses specifically on AI implementation using Azure, unlike general cloud certifications that cover infrastructure and DevOps.
1 note
·
View note
Text
Snowflake to Acquire Crunchy Data in Strategic Move to Advance AI Agent Capabilities
Source: www.infoworld.com
Snowflake Postgres has announced its intent to acquire Crunchy Data, a move aimed at reinforcing its capabilities in building and deploying artificial intelligence (AI) agents and applications. The acquisition, which is still pending regulatory approval and standard closing conditions, is expected to significantly bolster Snowflake’s AI Data Cloud by incorporating Crunchy Data’s expertise in open-source PostgreSQL technology.
The acquisition will introduce a new product, Snowflake Postgres, into the company’s growing AI ecosystem. PostgreSQL, commonly known as Postgres, is a widely adopted open-source relational database system, used by nearly half of the world’s developers, according to the company’s statement released on June 2. This strategic addition will allow Snowflake customers to work more efficiently with AI agents by leveraging the flexible and powerful features of Postgres within the Snowflake platform.
Snowflake’s Senior Vice President of Engineering, Vivek Raghunathan, emphasized the scale of the opportunity, noting that the company is targeting a $350 billion market. He stated that bringing Postgres into the fold will allow customers to accelerate development and streamline operations within the Snowflake AI Data Cloud.
Postgres Integration to Enhance Mission-Critical Workloads
Crunchy Data, known for its security-first approach and compliance in regulated industries, brings valuable assets to Snowflake’s portfolio. Co-founder Paul Laurence highlighted the synergy between the two companies, particularly in offering enhanced capabilities for organizations that already rely on Postgres for handling sensitive and mission-critical workloads.
With the integration of Crunchy Data’s technology, Snowflake aims to support its customers, especially those operating in tightly regulated sectors, with tools that offer both scalability and confidence. The Snowflake Postgres product is expected to help users launch AI-driven applications faster while maintaining strict standards for data integrity and security.
The move reflects a broader trend in the tech industry where database technologies are being adapted to meet the rising demands of AI development, particularly in the area of autonomous agents. Snowflake’s platform, known for its robust data management capabilities, is increasingly positioning itself as a go-to solution for enterprises navigating the intersection of data and artificial intelligence.
AI Competition Heats Up with Database-Centric Acquisitions
Snowflake’s announcement follows similar activity from its competitors. On May 14, Databricks revealed its own acquisition of Neon, a database startup also focused on enhancing AI agent workflows. Databricks described Neon as purpose-built for agentic operations, offering developers a serverless Postgres environment aligned with the speed and economics required for AI development.
In February, Snowflake Postgres opened a new AI hub in Silicon Valley to support developers, startups, and enterprise clients in their pursuit of advanced AI applications. This latest acquisition of Crunchy Data builds on that momentum, reinforcing the company’s commitment to providing comprehensive AI solutions that integrate deeply with trusted, open-source technologies.
As the AI space rapidly evolves, acquisitions like these signal a critical shift in how enterprise platforms are adapting to support AI workloads, leveraging familiar tools like Postgres in novel and powerful ways.
Read Also: The Rise of Artificial Intelligence in Warfare: Transforming the Battlefield
0 notes
Text
Emerging Energy Technologies: Data, AI, and Digital Solutions Reshaping the Industry
The energy industry is undergoing a revolutionary transformation, driven by cutting-edge technologies that are reshaping how energy operations are managed. With advancements like autonomous robotics, AI, and real-time data analytics, these innovations are solving key challenges and setting new benchmarks for efficiency and sustainability.
Key Developments in Emerging Energy Technologies
Energy Digital Transformation is more than just a trend — it’s a necessity. The integration of advanced tools and strategies is enabling energy companies to overcome barriers, optimize processes, and unlock new possibilities for growth and sustainability. Below, we outline key developments that are shaping this transformation.
Learn more on Future of Oil & Gas in 2025: Key trends
1. Automation and Real-Time Insights
Advanced automation and real-time data solutions are transforming energy operations. These innovations are making operations safer, faster, and more efficient.
Autonomous Robotics: Tools like ANYbotics are automating inspections in hazardous environments, reducing the risk of human error.
Edge Computing: Solutions like IOTech (AcuNow) enable faster and more responsive decision-making by processing data at the edge.
Key Statistics:
The automation adoption in the energy sector is projected to increase by 15–20% in 2025.
Autonomous robotics in hazardous environments is expected to reduce inspection time by 30%.
2. Harnessing the Power of Data
Energy Data Analytics is becoming increasingly critical for energy companies. By harnessing real-time data, companies can optimize performance and make better decisions.
Digital Twin Technology: The KDI Kognitwin integrates with AcuSeven to offer predictive maintenance and improve operational efficiency.
Data Analytics: Platforms like Databricks, AcuPrism enable real-time data analysis to drive better decision-making.
Key Statistics:
Energy sector spending on data analytics is expected to grow by 10–15% annually over the next five years.
The implementation of digital twins is expected to improve maintenance efficiency by 20–25%.
Watch the Webinar Recording
To explore these innovations in more detail, watch the recorded version of SYNERGY FOR ENERGY. Gain exclusive insights into how these trends and technologies are shaping the future of the energy sector.
Click here to watch
3. AI-Driven Energy Optimization
Artificial Intelligence is transforming how energy companies manage operations in the Energy Sector, from predictive maintenance to forecasting. AI is predicted to play a central role in optimizing energy usage and reducing costs.
Generative AI: AI-driven applications enhance forecasting, predictive maintenance, and optimization of energy consumption.
Energy Efficiency Tools: AI-based tools help organizations achieve sustainability goals by reducing waste and optimizing consumption.
Key Statistics:
AI-driven solutions are expected to account for 25–30% of energy management by 2025.
Energy efficiency tools can reduce consumption by 15% across industries.
4. Streamlining Digital Transformation
The shift to digital tools is vital for staying competitive in the fast-evolving energy industry. Digital transformation is helping companies modernize legacy systems and enhance data management.
Custom Digital Applications: Acuvate’s solutions streamline the deployment of digital tools to enhance operational efficiency.
Modernizing Legacy Systems: Solutions like Microsoft Fabric and AcuWeave simplify the migration from outdated systems, improving scalability and performance.
Read more about Top 4 Emerging Technologies Shaping Digital Transformation in 2025
Key Statistics:
Digital adoption in the energy sector is expected to increase by 20% by 2025.
The use of Microsoft Fabric has reduced migration costs by 20–30%.
Looking Ahead: Key Trends for 2025
As we are in 2025, several key trends will further influence the energy sector:
Increased Focus on Renewable Energy: The International Energy Agency predicts that over a third of global electricity will come from renewable sources.
AI’s Growing Demand: The computational needs of AI will significantly drive electricity demand, necessitating a focus on sustainable energy sources.
Nuclear Energy Renaissance: A renewed societal acceptance of nuclear power as part of the energy transition is gaining momentum.
Continued R&D Investment: Ongoing investments in research and development will spur innovation across clean energy technologies.
Conclusion
The ongoing transformation within the energy sector underscores the critical role of innovation in driving efficiency and sustainability. As automation, data analytics, AI, and digital transformation continue to evolve, they will collectively shape a more resilient and environmentally friendly energy landscape. Engaging with these advancements through initiatives like webinars and industry reports will provide valuable insights into navigating this dynamic environment effectively.
For More Insightful Webinars
For more insightful webinars like SYNERGY FOR ENERGY, visit our website. We host a variety of sessions designed to provide in-depth insights into the latest innovations shaping industries worldwide. Stay informed and explore the future of technology and business.
Check out our upcoming webinars here.
#autonomous robots#Advanced automation#real-time data solutions#data analytics#generative ai#Artificial Intelligence#AI-driven applications#Microsoft Fabric#Digital transformation#predictive maintenance
0 notes