#databricks artificial intelligence
Explore tagged Tumblr posts
Text
Unlocking the Potential of Databricks: Comprehensive Services and Solutions
In the fast-paced world of big data and artificial intelligence, Databricks services have emerged as a crucial component for businesses aiming to harness the full potential of their data. From accelerating data engineering processes to implementing cutting-edge AI models, Databricks offers a unified platform that integrates seamlessly with various business operations. In this article, we explore the breadth of Databricks solutions, the expertise of Databricks developers, and the transformative power of Databricks artificial intelligence capabilities.
Databricks Services: Driving Data-Driven Success
Databricks services encompass a wide range of offerings designed to enhance data management, analytics, and machine learning capabilities. These services are instrumental in helping businesses:
Streamline Data Processing: Databricks provides powerful tools to process large volumes of data quickly and efficiently, reducing the time required to derive actionable insights.
Enable Advanced Analytics: By integrating with popular analytics tools, Databricks allows organizations to perform complex analyses and gain deeper insights into their data.
Support Collaborative Development: Databricks fosters collaboration among data scientists, engineers, and business analysts, facilitating a more cohesive approach to data-driven projects.
Innovative Databricks Solutions for Modern Businesses
Databricks solutions are tailored to address the diverse needs of businesses across various industries. These solutions include:
Unified Data Analytics: Combining data engineering, data science, and machine learning into a single platform, Databricks simplifies the process of building and deploying data-driven applications.
Real-Time Data Processing: With support for streaming data, Databricks enables businesses to process and analyze data in real-time, ensuring timely and accurate decision-making.
Scalable Data Management: Databricks’ cloud-based architecture allows organizations to scale their data processing capabilities as their needs grow, without worrying about infrastructure limitations.
Integrated Machine Learning: Databricks supports the entire machine learning lifecycle, from data preparation to model deployment, making it easier to integrate AI into business processes.
Expertise of Databricks Developers: Building the Future of Data
Databricks developers are highly skilled professionals who specialize in leveraging the Databricks platform to create robust, scalable data solutions. Their roles include:
Data Engineering: Developing and maintaining data pipelines that transform raw data into usable formats for analysis and machine learning.
Machine Learning Engineering: Building and deploying machine learning models that can predict outcomes, automate tasks, and provide valuable business insights.
Analytics and Reporting: Creating interactive dashboards and reports that allow stakeholders to explore data and uncover trends and patterns.
Platform Integration: Ensuring seamless integration of Databricks with existing IT systems and workflows, enhancing overall efficiency and productivity.
Databricks Artificial Intelligence: Transforming Data into Insights
Databricks artificial intelligence capabilities enable businesses to leverage AI technologies to gain competitive advantages. Key aspects of Databricks AI include:
Automated Machine Learning: Databricks simplifies the creation of machine learning models with automated tools that help select the best algorithms and parameters.
Scalable AI Infrastructure: Leveraging cloud resources, Databricks can handle the intensive computational requirements of training and deploying complex AI models.
Collaborative AI Development: Databricks promotes collaboration among data scientists, allowing teams to share code, models, and insights seamlessly.
Real-Time AI Applications: Databricks supports the deployment of AI models that can process and analyze data in real-time, providing immediate insights and responses.
Data Engineering Services: Enhancing Data Value
Data engineering services are a critical component of the Databricks ecosystem, enabling organizations to transform raw data into valuable assets. These services include:
Data Pipeline Development: Building robust pipelines that automate the extraction, transformation, and loading (ETL) of data from various sources into centralized data repositories.
Data Quality Management: Implementing processes and tools to ensure the accuracy, consistency, and reliability of data across the organization.
Data Integration: Combining data from different sources and systems to create a unified view that supports comprehensive analysis and reporting.
Performance Optimization: Enhancing the performance of data systems to handle large-scale data processing tasks efficiently and effectively.
Databricks Software: Empowering Data-Driven Innovation
Databricks software is designed to empower businesses with the tools they need to innovate and excel in a data-driven world. The core features of Databricks software include:
Interactive Workspaces: Providing a collaborative environment where teams can work together on data projects in real-time.
Advanced Security and Compliance: Ensuring that data is protected with robust security measures and compliance with industry standards.
Extensive Integrations: Offering seamless integration with popular tools and platforms, enhancing the flexibility and functionality of data operations.
Scalable Computing Power: Leveraging cloud infrastructure to provide scalable computing resources that can accommodate the demands of large-scale data processing and analysis.
Leveraging Databricks for Competitive Advantage
To fully harness the capabilities of Databricks, businesses should consider the following strategies:
Adopt a Unified Data Strategy: Utilize Databricks to unify data operations across the organization, from data engineering to machine learning.
Invest in Skilled Databricks Developers: Engage professionals who are proficient in Databricks to build and maintain your data infrastructure.
Integrate AI into Business Processes: Use Databricks’ AI capabilities to automate tasks, predict trends, and enhance decision-making processes.
Ensure Data Quality and Security: Implement best practices for data management to maintain high-quality data and ensure compliance with security standards.
Scale Operations with Cloud Resources: Take advantage of Databricks’ cloud-based architecture to scale your data operations as your business grows.
The Future of Databricks Services and Solutions
As the field of data and AI continues to evolve, Databricks services and solutions will play an increasingly vital role in driving business innovation and success. Future trends may include:
Enhanced AI Capabilities: Continued advancements in AI will enable Databricks to offer more powerful and intuitive AI tools that can address complex business challenges.
Greater Integration with Cloud Ecosystems: Databricks will expand its integration capabilities, allowing businesses to seamlessly connect with a broader range of cloud services and platforms.
Increased Focus on Real-Time Analytics: The demand for real-time data processing and analytics will grow, driving the development of more advanced streaming data solutions.
Expanding Global Reach: As more businesses recognize the value of data and AI, Databricks will continue to expand its presence and influence across different markets and industries.
#databricks services#databricks solutions#databricks developers#databricks artificial intelligence#data engineering services#databricks software
0 notes
Text
Leveraging Databricks Services for Optimal Solutions
In today's rapidly evolving digital landscape, businesses are continually seeking Databricks services to streamline their operations and gain a competitive edge. Whether it's Databricks solutions for data engineering or harnessing the power of Databricks developers to propel artificial intelligence initiatives, the demand for top-tier services is at an all-time high.
Unleashing the Power of Databricks Solutions
Data Engineering Services: Building the Foundation for Success
Data engineering services form the backbone of any successful data-driven organization. With Databricks, businesses can unlock the full potential of their data by leveraging cutting-edge technologies and methodologies. From data ingestion to processing and visualization, Databricks offers a comprehensive suite of tools to streamline the entire data pipeline.
Harnessing Artificial Intelligence with Databricks
In the age of artificial intelligence, businesses that fail to adapt risk falling behind the competition. Databricks provides a robust platform for developing and deploying AI solutions at scale. By harnessing the power of machine learning and deep learning algorithms, organizations can gain valuable insights and drive innovation like never before.
Empowering Developers with Databricks
Enabling Collaboration and Innovation
Databricks developers play a pivotal role in driving innovation and accelerating time-to-market for new products and services. With Databricks, developers can collaborate seamlessly, share insights, and iterate rapidly to deliver high-quality solutions that meet the ever-changing needs of their organization and customers.
Streamlining Development Workflows
Databricks simplifies the development process by providing a unified environment for data engineering, data science, and machine learning. By eliminating the need to manage multiple tools and platforms, developers can focus on what they do best: writing code and building transformative solutions.
The Key to Success: Choosing the Right Partner
When it comes to Databricks services, choosing the right partner is essential. Look for a provider with a proven track record of success and a deep understanding of your industry and business needs. Whether you're embarking on a data engineering project or exploring the possibilities of artificial intelligence, partnering with a trusted Databricks provider can make all the difference.
Driving Success for the Digital Economy
Databricks services offer a myriad of opportunities for businesses looking to harness the power of data and Databricks artificial intelligence. From data engineering to machine learning, Databricks provides the tools and technologies needed to drive innovation and achieve success in today's digital economy. By partnering with a trusted provider, businesses can unlock new possibilities and stay ahead of the competition.
#databricks services#databricks solutions#databricks developers#databricks artificial intelligence#data engineering services
0 notes
Text
Databrick consulting services
Discover the transformative potential of Databricks with Xorbix Technologies, a leading Databricks consulting services provider. From AI and machine learning to data modernization and cloud migration, our certified Databricks engineers specialize in delivering custom solutions tailored to your unique business needs. Partner with us to leverage the Databricks Lakehouse Platform, Genie, and AutoML for streamlined analytics, seamless data governance, and actionable insights. Let us be your Databricks service provider company of choice!
0 notes
Text
From Data to Decisions: Empowering Teams with Databricks AI/BI
🚀 Unlock the Power of Data with Databricks AI/BI! 🚀 Imagine a world where your entire team can access data insights in real-time, without needing to be data experts. Databricks AI/BI is making this possible with powerful features like conversational AI
In today’s business world, data is abundant—coming from sources like customer interactions, sales metrics, and supply chain information. Yet many organizations still struggle to transform this data into actionable insights. Teams often face siloed systems, complex analytics processes, and delays that hinder timely, data-driven decisions. Databricks AI/BI was designed with these challenges in…
#AI/BI#artificial intelligence#BI tools#Business Intelligence#Conversational AI#Data Analytics#data democratization#Data Governance#Data Insights#Data Integration#Data Visualization#data-driven decisions#Databricks#finance#Genie AI assistant#healthcare#logistics#low-code dashboards#predictive analytics#self-service analytics
0 notes
Text
Unlock the Future of ML with Azure Databricks – Here's Why You Should Care
youtube
0 notes
Text
Tracking Large Language Models (LLM) with MLflow : A Complete Guide
New Post has been published on https://thedigitalinsider.com/tracking-large-language-models-llm-with-mlflow-a-complete-guide/
Tracking Large Language Models (LLM) with MLflow : A Complete Guide
As Large Language Models (LLMs) grow in complexity and scale, tracking their performance, experiments, and deployments becomes increasingly challenging. This is where MLflow comes in – providing a comprehensive platform for managing the entire lifecycle of machine learning models, including LLMs.
In this in-depth guide, we’ll explore how to leverage MLflow for tracking, evaluating, and deploying LLMs. We’ll cover everything from setting up your environment to advanced evaluation techniques, with plenty of code examples and best practices along the way.
Functionality of MLflow in Large Language Models (LLMs)
MLflow has become a pivotal tool in the machine learning and data science community, especially for managing the lifecycle of machine learning models. When it comes to Large Language Models (LLMs), MLflow offers a robust suite of tools that significantly streamline the process of developing, tracking, evaluating, and deploying these models. Here’s an overview of how MLflow functions within the LLM space and the benefits it provides to engineers and data scientists.
Tracking and Managing LLM Interactions
MLflow’s LLM tracking system is an enhancement of its existing tracking capabilities, tailored to the unique needs of LLMs. It allows for comprehensive tracking of model interactions, including the following key aspects:
Parameters: Logging key-value pairs that detail the input parameters for the LLM, such as model-specific parameters like top_k and temperature. This provides context and configuration for each run, ensuring that all aspects of the model’s configuration are captured.
Metrics: Quantitative measures that provide insights into the performance and accuracy of the LLM. These can be updated dynamically as the run progresses, offering real-time or post-process insights.
Predictions: Capturing the inputs sent to the LLM and the corresponding outputs, which are stored as artifacts in a structured format for easy retrieval and analysis.
Artifacts: Beyond predictions, MLflow can store various output files such as visualizations, serialized models, and structured data files, allowing for detailed documentation and analysis of the model’s performance.
This structured approach ensures that all interactions with the LLM are meticulously recorded, providing a comprehensive lineage and quality tracking for text-generating models.
Evaluation of LLMs
Evaluating LLMs presents unique challenges due to their generative nature and the lack of a single ground truth. MLflow simplifies this with specialized evaluation tools designed for LLMs. Key features include:
Versatile Model Evaluation: Supports evaluating various types of LLMs, whether it’s an MLflow pyfunc model, a URI pointing to a registered MLflow model, or any Python callable representing your model.
Comprehensive Metrics: Offers a range of metrics tailored for LLM evaluation, including both SaaS model-dependent metrics (e.g., answer relevance) and function-based metrics (e.g., ROUGE, Flesch Kincaid).
Predefined Metric Collections: Depending on the use case, such as question-answering or text-summarization, MLflow provides predefined metrics to simplify the evaluation process.
Custom Metric Creation: Allows users to define and implement custom metrics to suit specific evaluation needs, enhancing the flexibility and depth of model evaluation.
Evaluation with Static Datasets: Enables evaluation of static datasets without specifying a model, which is useful for quick assessments without rerunning model inference.
Deployment and Integration
MLflow also supports seamless deployment and integration of LLMs:
MLflow Deployments Server: Acts as a unified interface for interacting with multiple LLM providers. It simplifies integrations, manages credentials securely, and offers a consistent API experience. This server supports a range of foundational models from popular SaaS vendors as well as self-hosted models.
Unified Endpoint: Facilitates easy switching between providers without code changes, minimizing downtime and enhancing flexibility.
Integrated Results View: Provides comprehensive evaluation results, which can be accessed directly in the code or through the MLflow UI for detailed analysis.
MLflow is a comprehensive suite of tools and integrations makes it an invaluable asset for engineers and data scientists working with advanced NLP models.
Setting Up Your Environment
Before we dive into tracking LLMs with MLflow, let’s set up our development environment. We’ll need to install MLflow and several other key libraries:
pip install mlflow>=2.8.1 pip install openai pip install chromadb==0.4.15 pip install langchain==0.0.348 pip install tiktoken pip install 'mlflow[genai]' pip install databricks-sdk --upgrade
After installation, it’s a good practice to restart your Python environment to ensure all libraries are properly loaded. In a Jupyter notebook, you can use:
import mlflow import chromadb print(f"MLflow version: mlflow.__version__") print(f"ChromaDB version: chromadb.__version__")
This will confirm the versions of key libraries we’ll be using.
Understanding MLflow’s LLM Tracking Capabilities
MLflow’s LLM tracking system builds upon its existing tracking capabilities, adding features specifically designed for the unique aspects of LLMs. Let’s break down the key components:
Runs and Experiments
In MLflow, a “run” represents a single execution of your model code, while an “experiment” is a collection of related runs. For LLMs, a run might represent a single query or a batch of prompts processed by the model.
Key Tracking Components
Parameters: These are input configurations for your LLM, such as temperature, top_k, or max_tokens. You can log these using mlflow.log_param() or mlflow.log_params().
Metrics: Quantitative measures of your LLM’s performance, like accuracy, latency, or custom scores. Use mlflow.log_metric() or mlflow.log_metrics() to track these.
Predictions: For LLMs, it’s crucial to log both the input prompts and the model’s outputs. MLflow stores these as artifacts in CSV format using mlflow.log_table().
Artifacts: Any additional files or data related to your LLM run, such as model checkpoints, visualizations, or dataset samples. Use mlflow.log_artifact() to store these.
Let’s look at a basic example of logging an LLM run:
This example demonstrates logging parameters, metrics, and the input/output as a table artifact.
import mlflow import openai def query_llm(prompt, max_tokens=100): response = openai.Completion.create( engine="text-davinci-002", prompt=prompt, max_tokens=max_tokens ) return response.choices[0].text.strip() with mlflow.start_run(): prompt = "Explain the concept of machine learning in simple terms." # Log parameters mlflow.log_param("model", "text-davinci-002") mlflow.log_param("max_tokens", 100) # Query the LLM and log the result result = query_llm(prompt) mlflow.log_metric("response_length", len(result)) # Log the prompt and response mlflow.log_table("prompt_responses", "prompt": [prompt], "response": [result]) print(f"Response: result")
Deploying LLMs with MLflow
MLflow provides powerful capabilities for deploying LLMs, making it easier to serve your models in production environments. Let’s explore how to deploy an LLM using MLflow’s deployment features.
Creating an Endpoint
First, we’ll create an endpoint for our LLM using MLflow’s deployment client:
import mlflow from mlflow.deployments import get_deploy_client # Initialize the deployment client client = get_deploy_client("databricks") # Define the endpoint configuration endpoint_name = "llm-endpoint" endpoint_config = "served_entities": [ "name": "gpt-model", "external_model": "name": "gpt-3.5-turbo", "provider": "openai", "task": "llm/v1/completions", "openai_config": "openai_api_type": "azure", "openai_api_key": "secrets/scope/openai_api_key", "openai_api_base": "secrets/scope/openai_api_base", "openai_deployment_name": "gpt-35-turbo", "openai_api_version": "2023-05-15", , , ], # Create the endpoint client.create_endpoint(name=endpoint_name, config=endpoint_config)
This code sets up an endpoint for a GPT-3.5-turbo model using Azure OpenAI. Note the use of Databricks secrets for secure API key management.
Testing the Endpoint
Once the endpoint is created, we can test it:
<div class="relative flex flex-col rounded-lg"> response = client.predict( endpoint=endpoint_name, inputs="prompt": "Explain the concept of neural networks briefly.","max_tokens": 100,,) print(response)
This will send a prompt to our deployed model and return the generated response.
Evaluating LLMs with MLflow
Evaluation is crucial for understanding the performance and behavior of your LLMs. MLflow provides comprehensive tools for evaluating LLMs, including both built-in and custom metrics.
Preparing Your LLM for Evaluation
To evaluate your LLM with mlflow.evaluate(), your model needs to be in one of these forms:
An mlflow.pyfunc.PyFuncModel instance or a URI pointing to a logged MLflow model.
A Python function that takes string inputs and outputs a single string.
An MLflow Deployments endpoint URI.
Set model=None and include model outputs in the evaluation data.
Let’s look at an example using a logged MLflow model:
import mlflow import openai with mlflow.start_run(): system_prompt = "Answer the following question concisely." logged_model_info = mlflow.openai.log_model( model="gpt-3.5-turbo", task=openai.chat.completions, artifact_path="model", messages=[ "role": "system", "content": system_prompt, "role": "user", "content": "question", ], ) # Prepare evaluation data eval_data = pd.DataFrame( "question": ["What is machine learning?", "Explain neural networks."], "ground_truth": [ "Machine learning is a subset of AI that enables systems to learn and improve from experience without explicit programming.", "Neural networks are computing systems inspired by biological neural networks, consisting of interconnected nodes that process and transmit information." ] ) # Evaluate the model results = mlflow.evaluate( logged_model_info.model_uri, eval_data, targets="ground_truth", model_type="question-answering", ) print(f"Evaluation metrics: results.metrics")
This example logs an OpenAI model, prepares evaluation data, and then evaluates the model using MLflow’s built-in metrics for question-answering tasks.
Custom Evaluation Metrics
MLflow allows you to define custom metrics for LLM evaluation. Here’s an example of creating a custom metric for evaluating the professionalism of responses:
from mlflow.metrics.genai import EvaluationExample, make_genai_metric professionalism = make_genai_metric( name="professionalism", definition="Measure of formal and appropriate communication style.", grading_prompt=( "Score the professionalism of the answer on a scale of 0-4:n" "0: Extremely casual or inappropriaten" "1: Casual but respectfuln" "2: Moderately formaln" "3: Professional and appropriaten" "4: Highly formal and expertly crafted" ), examples=[ EvaluationExample( input="What is MLflow?", output="MLflow is like your friendly neighborhood toolkit for managing ML projects. It's super cool!", score=1, justification="The response is casual and uses informal language." ), EvaluationExample( input="What is MLflow?", output="MLflow is an open-source platform for the machine learning lifecycle, including experimentation, reproducibility, and deployment.", score=4, justification="The response is formal, concise, and professionally worded." ) ], model="openai:/gpt-3.5-turbo-16k", parameters="temperature": 0.0, aggregations=["mean", "variance"], greater_is_better=True, ) # Use the custom metric in evaluation results = mlflow.evaluate( logged_model_info.model_uri, eval_data, targets="ground_truth", model_type="question-answering", extra_metrics=[professionalism] ) print(f"Professionalism score: results.metrics['professionalism_mean']")
This custom metric uses GPT-3.5-turbo to score the professionalism of responses, demonstrating how you can leverage LLMs themselves for evaluation.
Advanced LLM Evaluation Techniques
As LLMs become more sophisticated, so do the techniques for evaluating them. Let’s explore some advanced evaluation methods using MLflow.
Retrieval-Augmented Generation (RAG) Evaluation
RAG systems combine the power of retrieval-based and generative models. Evaluating RAG systems requires assessing both the retrieval and generation components. Here’s how you can set up a RAG system and evaluate it using MLflow:
from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.llms import OpenAI # Load and preprocess documents loader = WebBaseLoader(["https://mlflow.org/docs/latest/index.html"]) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) # Create vector store embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(texts, embeddings) # Create RAG chain llm = OpenAI(temperature=0) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever(), return_source_documents=True ) # Evaluation function def evaluate_rag(question): result = qa_chain("query": question) return result["result"], [doc.page_content for doc in result["source_documents"]] # Prepare evaluation data eval_questions = [ "What is MLflow?", "How does MLflow handle experiment tracking?", "What are the main components of MLflow?" ] # Evaluate using MLflow with mlflow.start_run(): for question in eval_questions: answer, sources = evaluate_rag(question) mlflow.log_param(f"question", question) mlflow.log_metric("num_sources", len(sources)) mlflow.log_text(answer, f"answer_question.txt") for i, source in enumerate(sources): mlflow.log_text(source, f"source_question_i.txt") # Log custom metrics mlflow.log_metric("avg_sources_per_question", sum(len(evaluate_rag(q)[1]) for q in eval_questions) / len(eval_questions))
This example sets up a RAG system using LangChain and Chroma, then evaluates it by logging questions, answers, retrieved sources, and custom metrics to MLflow.
The way you chunk your documents can significantly impact RAG performance. MLflow can help you evaluate different chunking strategies:
This script evaluates different combinations of chunk sizes, overlaps, and splitting methods, logging the results to MLflow for easy comparison.
MLflow provides various ways to visualize your LLM evaluation results. Here are some techniques:
You can create custom visualizations of your evaluation results using libraries like Matplotlib or Plotly, then log them as artifacts:
This function creates a line plot comparing a specific metric across multiple runs and logs it as an artifact.
#2023#ai#AI Tools 101#Analysis#API#approach#Artificial Intelligence#azure#azure openai#Behavior#code#col#Collections#communication#Community#comparison#complexity#comprehensive#computing#computing systems#content#credentials#custom metrics#data#data science#databricks#datasets#deploying#deployment#development
0 notes
Text
Dive into the world of DBRX, a state-of-the-art open Large Language Model. With its unique architecture and extensive training data, DBRX is revolutionizing the field of AI. Discover how DBRX is excelling in various tasks and benchmarks, outshining both open and proprietary models.
#DBRX#Databricks#AI#OpenSource#LLM#MoEArchitecture#datascience#machinelearning#artificial intelligence#open source#machine learning#coding#llms#large language model
1 note
·
View note
Text
Real-time Model Oversight: Amazon SageMaker vs Databricks ML Monitoring Features
Model monitoring is crucial in the lifecycle of machine learning models, especially for models deployed in production environments. Model monitoring is not just a "nice-to-have" but is essential to ensure the models' robustness, accuracy, fairness, and reliability in real-world applications. Without monitoring, model predictions can be unreliable, or even detrimental to the business or end-users. As a model builder, how often have you thought about how models’ behavior will change over time? In my professional life, I have seen many production systems managing model retraining life cycle using heuristic, gut feel or scheduled basis, either leading to the wastage of precious resources or performing retraining too late.
This is a ripe problem space as many models have been deployed in production. Hence there are many point solutions such as Great Expectations, Neptune.ai, Fiddler.ai who all boast really cool features either in terms of automatic metrics computation, differentiated statistical methods or Responsible AI hype that has become a real need of time (Thanks to ChatGPT and LLMs). In this Op-ed, I would like to touch upon two systems that I am familiar with and are widely used.
Amazon SageMaker Model Monitor
Amazon SageMaker is AWS’s flagship fully managed ML service to Build, Train, Deploy & “Monitor” Machine Learning models. The service provides click through experience for set up using SageMaker Studio or API experience using SageMaker SDK. SageMaker assumes you to have clean datasets for training and can capture inference request/response based on user defined time interval. The system works for model monitoring if models are the problem, BUT What if Data that is fed to the model is a problem or a pipeline well upstream in ETL pipeline is a problem. AWS provides multiple Data Lake architectures and patterns to stitch end-2-end data and AI systems together but tracking data lineage is easy if not impossible.
The monitoring solution is flexible thanks to SageMaker processing job which is underlying mechanism to execute underlying metrics. SageMaker processing also lets you build your custom container. SageMaker model monitoring is integrated with Amazon SageMaker Clarify and can provide Bias Drift which is important for Responsible AI. Overall SageMaker monitoring does a decent job of alerting when model drifts.
Databricks Lakehouse Monitoring
Let's look at the second contender. Databricks is a fully managed Data and AI platform available across all major clouds and also boasts millions of downloads of MLFlow OSS. I have recently come across Databricks Lakehouse Monitoring which IMO is a really cool paradigm of Monitoring your Data assets.
Let me explain why you should care if you are an ML Engineer or Data Scientist?
Let's say you have built a cool customer segmentation model and deployed it in production. You have started monitoring the model using one of the cool bespoke tools I mentioned earlier which may pop up an alert blaming a Data field. Now What?
✔ How do you track where that field came from cobweb of data ETL pipeline?
✔ How do you find the root cause of the drift?
✔ How do you track where that field came from cobweb of data ETL pipeline?
Here comes Databricks Lakehouse Monitoring to the rescue. Databricks Lakehouse Monitoring lets you monitor all of the tables in your account. You can also use it to track the performance of machine learning models and model-serving endpoints by monitoring inference tables created by the model’s output.
Let's put this in perspective, Data Layer is a foundation of AI. When teams across data and AI portfolios work together in a single platform, productivity of ML Teams, Access to Data assets and Governance is much superior compared to siloed or point solution.
The Vision below essentially captures an ideal Data and Model Monitoring solution. The journey starts with raw data with Bronze -> Silver -> Golden layers. Moreover, Features are also treated as another table (That’s refreshing and new paradigm, Goodbye feature stores). Now you get down to ML brass tacks by using Golden/Feature Tables for Model training and serve that model up.
Databricks recently launched in preview awesome Inference table feature. Imagine all your requests/responses captured as a table than raw files in your object store. Possibilities are limitless if the Table can scale. Once you have ground truth after the fact, just start logging it in Groundtruth Table. Since all this data is being ETLed using Databricks components, the Unity catalog offers nice end-2-end data lineage similar to Delta Live Tables.
Now you can turn on Monitors, and Databricks start computing metrics. Any Data Drift or Model Drift can be root caused to upstream ETL tables or source code. Imagine that you love other tools in the market for monitoring, then just have them crawl these tables and get your own insights.

Looks like Databricks want to take it up the notch by extending Expectations framework in DLT to extend to any Delta Table. Imagine the ability to set up column level constraints and instructing jobs to fail, rollback or default. So, it means problems can be pre-empted before they happen. Can't wait to see this evolution in the next few months.

To summarize, I came up with the following comparison between SageMaker and Databricks Model Monitoring.CapabilityWinnerSageMakerDatabricksRoot cause AnalysisDatabricksConstraint and violations due to concept and model driftExtends RCA to upstream ETL pipelines as lineage is maintainedBuilt-in statisticsSageMakerUses Deque Spark library and SageMaker Clarify for Bias driftUnderlying metrics library is not exposed but most likely Spark libraryDashboardingDatabricksAvailable using SageMaker Studio so it is a mustRedash dashboards are built and can be customized or use your favorite BI tool.AlertingDatabricksNeeds additional configuration using Event BridgeBuilt in alertingCustomizabilityBothUses Processing jobs so customization of your own metricsMost metrics are built-in, but dashboards can be customizedUse case coverageSageMakerCoverage for Tabular and NLP use casesCoverage for tabular use casesEase of UseDatabricksOne-click enablementOne-click enablement but bonus for monitoring upstream ETL tables
Hope you enjoyed the quick read. Hope you can engage Propensity Labs for your next Machine Learning project no matter how hard the problem is, we have a solution. Keep monitoring.
0 notes
Text
What EDAV does:
Connects people with data faster. It does this in a few ways. EDAV:
Hosts tools that support the analytics work of over 3,500 people.
Stores data on a common platform that is accessible to CDC's data scientists and partners.
Simplifies complex data analysis steps.
Automates repeatable tasks, such as dashboard updates, freeing up staff time and resources.
Keeps data secure. Data represent people, and the privacy of people's information is critically important to CDC. EDAV is hosted on CDC's Cloud to ensure data are shared securely and that privacy is protected.
Saves time and money. EDAV services can quickly and easily scale up to meet surges in demand for data science and engineering tools, such as during a disease outbreak. The services can also scale down quickly, saving funds when demand decreases or an outbreak ends.
Trains CDC's staff on new tools. EDAV hosts a Data Academy that offers training designed to help our workforce build their data science skills, including self-paced courses in Power BI, R, Socrata, Tableau, Databricks, Azure Data Factory, and more.
Changes how CDC works. For the first time, EDAV offers CDC's experts a common set of tools that can be used for any disease or condition. It's ready to handle "big data," can bring in entirely new sources of data like social media feeds, and enables CDC's scientists to create interactive dashboards and apply technologies like artificial intelligence for deeper analysis.
4 notes
·
View notes
Text
Google Cloud’s BigQuery Autonomous Data To AI Platform

BigQuery automates data analysis, transformation, and insight generation using AI. AI and natural language interaction simplify difficult operations.
The fast-paced world needs data access and a real-time data activation flywheel. Artificial intelligence that integrates directly into the data environment and works with intelligent agents is emerging. These catalysts open doors and enable self-directed, rapid action, which is vital for success. This flywheel uses Google's Data & AI Cloud to activate data in real time. BigQuery has five times more organisations than the two leading cloud providers that just offer data science and data warehousing solutions due to this emphasis.
Examples of top companies:
With BigQuery, Radisson Hotel Group enhanced campaign productivity by 50% and revenue by over 20% by fine-tuning the Gemini model.
By connecting over 170 data sources with BigQuery, Gordon Food Service established a scalable, modern, AI-ready data architecture. This improved real-time response to critical business demands, enabled complete analytics, boosted client usage of their ordering systems, and offered staff rapid insights while cutting costs and boosting market share.
J.B. Hunt is revolutionising logistics for shippers and carriers by integrating Databricks into BigQuery.
General Mills saves over $100 million using BigQuery and Vertex AI to give workers secure access to LLMs for structured and unstructured data searches.
Google Cloud is unveiling many new features with its autonomous data to AI platform powered by BigQuery and Looker, a unified, trustworthy, and conversational BI platform:
New assistive and agentic experiences based on your trusted data and available through BigQuery and Looker will make data scientists, data engineers, analysts, and business users' jobs simpler and faster.
Advanced analytics and data science acceleration: Along with seamless integration with real-time and open-source technologies, BigQuery AI-assisted notebooks improve data science workflows and BigQuery AI Query Engine provides fresh insights.
Autonomous data foundation: BigQuery can collect, manage, and orchestrate any data with its new autonomous features, which include native support for unstructured data processing and open data formats like Iceberg.
Look at each change in detail.
User-specific agents
It believes everyone should have AI. BigQuery and Looker made AI-powered helpful experiences generally available, but Google Cloud now offers specialised agents for all data chores, such as:
Data engineering agents integrated with BigQuery pipelines help create data pipelines, convert and enhance data, discover anomalies, and automate metadata development. These agents provide trustworthy data and replace time-consuming and repetitive tasks, enhancing data team productivity. Data engineers traditionally spend hours cleaning, processing, and confirming data.
The data science agent in Google's Colab notebook enables model development at every step. Scalable training, intelligent model selection, automated feature engineering, and faster iteration are possible. This agent lets data science teams focus on complex methods rather than data and infrastructure.
Looker conversational analytics lets everyone utilise natural language with data. Expanded capabilities provided with DeepMind let all users understand the agent's actions and easily resolve misconceptions by undertaking advanced analysis and explaining its logic. Looker's semantic layer boosts accuracy by two-thirds. The agent understands business language like “revenue” and “segments” and can compute metrics in real time, ensuring trustworthy, accurate, and relevant results. An API for conversational analytics is also being introduced to help developers integrate it into processes and apps.
In the BigQuery autonomous data to AI platform, Google Cloud introduced the BigQuery knowledge engine to power assistive and agentic experiences. It models data associations, suggests business vocabulary words, and creates metadata instantaneously using Gemini's table descriptions, query histories, and schema connections. This knowledge engine grounds AI and agents in business context, enabling semantic search across BigQuery and AI-powered data insights.
All customers may access Gemini-powered agentic and assistive experiences in BigQuery and Looker without add-ons in the existing price model tiers!
Accelerating data science and advanced analytics
BigQuery autonomous data to AI platform is revolutionising data science and analytics by enabling new AI-driven data science experiences and engines to manage complex data and provide real-time analytics.
First, AI improves BigQuery notebooks. It adds intelligent SQL cells to your notebook that can merge data sources, comprehend data context, and make code-writing suggestions. It also uses native exploratory analysis and visualisation capabilities for data exploration and peer collaboration. Data scientists can also schedule analyses and update insights. Google Cloud also lets you construct laptop-driven, dynamic, user-friendly, interactive data apps to share insights across the organisation.
This enhanced notebook experience is complemented by the BigQuery AI query engine for AI-driven analytics. This engine lets data scientists easily manage organised and unstructured data and add real-world context—not simply retrieve it. BigQuery AI co-processes SQL and Gemini, adding runtime verbal comprehension, reasoning skills, and real-world knowledge. Their new engine processes unstructured photographs and matches them to your product catalogue. This engine supports several use cases, including model enhancement, sophisticated segmentation, and new insights.
Additionally, it provides users with the most cloud-optimized open-source environment. Google Cloud for Apache Kafka enables real-time data pipelines for event sourcing, model scoring, communications, and analytics in BigQuery for serverless Apache Spark execution. Customers have almost doubled their serverless Spark use in the last year, and Google Cloud has upgraded this engine to handle data 2.7 times faster.
BigQuery lets data scientists utilise SQL, Spark, or foundation models on Google's serverless and scalable architecture to innovate faster without the challenges of traditional infrastructure.
An independent data foundation throughout data lifetime
An independent data foundation created for modern data complexity supports its advanced analytics engines and specialised agents. BigQuery is transforming the environment by making unstructured data first-class citizens. New platform features, such as orchestration for a variety of data workloads, autonomous and invisible governance, and open formats for flexibility, ensure that your data is always ready for data science or artificial intelligence issues. It does this while giving the best cost and decreasing operational overhead.
For many companies, unstructured data is their biggest untapped potential. Even while structured data provides analytical avenues, unique ideas in text, audio, video, and photographs are often underutilised and discovered in siloed systems. BigQuery instantly tackles this issue by making unstructured data a first-class citizen using multimodal tables (preview), which integrate structured data with rich, complex data types for unified querying and storage.
Google Cloud's expanded BigQuery governance enables data stewards and professionals a single perspective to manage discovery, classification, curation, quality, usage, and sharing, including automatic cataloguing and metadata production, to efficiently manage this large data estate. BigQuery continuous queries use SQL to analyse and act on streaming data regardless of format, ensuring timely insights from all your data streams.
Customers utilise Google's AI models in BigQuery for multimodal analysis 16 times more than last year, driven by advanced support for structured and unstructured multimodal data. BigQuery with Vertex AI are 8–16 times cheaper than independent data warehouse and AI solutions.
Google Cloud maintains open ecology. BigQuery tables for Apache Iceberg combine BigQuery's performance and integrated capabilities with the flexibility of an open data lakehouse to link Iceberg data to SQL, Spark, AI, and third-party engines in an open and interoperable fashion. This service provides adaptive and autonomous table management, high-performance streaming, auto-AI-generated insights, practically infinite serverless scalability, and improved governance. Cloud storage enables fail-safe features and centralised fine-grained access control management in their managed solution.
Finaly, AI platform autonomous data optimises. Scaling resources, managing workloads, and ensuring cost-effectiveness are its competencies. The new BigQuery spend commit unifies spending throughout BigQuery platform and allows flexibility in shifting spend across streaming, governance, data processing engines, and more, making purchase easier.
Start your data and AI adventure with BigQuery data migration. Google Cloud wants to know how you innovate with data.
#technology#technews#govindhtech#news#technologynews#BigQuery autonomous data to AI platform#BigQuery#autonomous data to AI platform#BigQuery platform#autonomous data#BigQuery AI Query Engine
2 notes
·
View notes
Text
PART TWO
The six men are one part of the broader project of Musk allies assuming key government positions. Already, Musk’s lackeys—including more senior staff from xAI, Tesla, and the Boring Company—have taken control of the Office of Personnel Management (OPM) and General Services Administration (GSA), and have gained access to the Treasury Department’s payment system, potentially allowing him access to a vast range of sensitive information about tens of millions of citizens, businesses, and more. On Sunday, CNN reported that DOGE personnel attempted to improperly access classified information and security systems at the US Agency for International Development and that top USAID security officials who thwarted the attempt were subsequently put on leave. The Associated Press reported that DOGE personnel had indeed accessed classified material.“What we're seeing is unprecedented in that you have these actors who are not really public officials gaining access to the most sensitive data in government,” says Don Moynihan, a professor of public policy at the University of Michigan. “We really have very little eyes on what's going on. Congress has no ability to really intervene and monitor what's happening because these aren't really accountable public officials. So this feels like a hostile takeover of the machinery of governments by the richest man in the world.”Bobba has attended UC Berkeley, where he was in the prestigious Management, Entrepreneurship, and Technology program. According to a copy of his now-deleted LinkedIn obtained by WIRED, Bobba was an investment engineering intern at the Bridgewater Associates hedge fund as of last spring and was previously an intern at both Meta and Palantir. He was a featured guest on a since-deleted podcast with Aman Manazir, an engineer who interviews engineers about how they landed their dream jobs, where he talked about those experiences last June.
Coristine, as WIRED previously reported, appears to have recently graduated from high school and to have been enrolled at Northeastern University. According to a copy of his résumé obtained by WIRED, he spent three months at Neuralink, Musk’s brain-computer interface company, last summer.Both Bobba and Coristine are listed in internal OPM records reviewed by WIRED as “experts” at OPM, reporting directly to Amanda Scales, its new chief of staff. Scales previously worked on talent for xAI, Musk’s artificial intelligence company, and as part of Uber’s talent acquisition team, per LinkedIn. Employees at GSA tell WIRED that Coristine has appeared on calls where workers were made to go over code they had written and justify their jobs. WIRED previously reported that Coristine was added to a call with GSA staff members using a nongovernment Gmail address. Employees were not given an explanation as to who he was or why he was on the calls.
Farritor, who per sources has a working GSA email address, is a former intern at SpaceX, Musk’s space company, and currently a Thiel Fellow after, according to his LinkedIn, dropping out of the University of Nebraska—Lincoln. While in school, he was part of an award-winning team that deciphered portions of an ancient Greek scroll.AdvertisementKliger, whose LinkedIn lists him as a special adviser to the director of OPM and who is listed in internal records reviewed by WIRED as a special adviser to the director for information technology, attended UC Berkeley until 2020; most recently, according to his LinkedIn, he worked for the AI company Databricks. His Substack includes a post titled “The Curious Case of Matt Gaetz: How the Deep State Destroys Its Enemies,” as well as another titled “Pete Hegseth as Secretary of Defense: The Warrior Washington Fears.”Killian, also known as Cole Killian, has a working email associated with DOGE, where he is currently listed as a volunteer, according to internal records reviewed by WIRED. According to a copy of his now-deleted résumé obtained by WIRED, he attended McGill University through at least 2021 and graduated high school in 2019. An archived copy of his now-deleted personal website indicates that he worked as an engineer at Jump Trading, which specializes in algorithmic and high-frequency financial trades.Shaotran told Business Insider in September that he was a senior at Harvard studying computer science and also the founder of an OpenAI-backed startup, Energize AI. Shaotran was the runner-up in a hackathon held by xAI, Musk’s AI company. In the Business Insider article, Shaotran says he received a $100,000 grant from OpenAI to build his scheduling assistant, Spark.
Are you a current or former employee with the Office of Personnel Management or another government agency impacted by Elon Musk? We’d like to hear from you. Using a nonwork phone or computer, contact Vittoria Elliott at [email protected] or securely at velliott88.18 on Signal.“To the extent these individuals are exercising what would otherwise be relatively significant managerial control over two very large agencies that deal with very complex topics,” says Nick Bednar, a professor at University of Minnesota’s school of law, “it is very unlikely they have the expertise to understand either the law or the administrative needs that surround these agencies.”Sources tell WIRED that Bobba, Coristine, Farritor, and Shaotran all currently have working GSA emails and A-suite level clearance at the GSA, which means that they work out of the agency’s top floor and have access to all physical spaces and IT systems, according a source with knowledge of the GSA’s clearance protocols. The source, who spoke to WIRED on the condition of anonymity because they fear retaliation, says they worry that the new teams could bypass the regular security clearance protocols to access the agency’s sensitive compartmented information facility, as the Trump administration has already granted temporary security clearances to unvetted people.This is in addition to Coristine and Bobba being listed as “experts” working at OPM. Bednar says that while staff can be loaned out between agencies for special projects or to work on issues that might cross agency lines, it’s not exactly common practice.“This is consistent with the pattern of a lot of tech executives who have taken certain roles of the administration,” says Bednar. “This raises concerns about regulatory capture and whether these individuals may have preferences that don’t serve the American public or the federal government.��
These men just stole the personal information of everyone in America AND control the Treasury. Link to article.
Akash Bobba
Edward Coristine
Luke Farritor
Gautier Cole Killian
Gavin Kliger
Ethan Shaotran
Spread their names!
#freedom of the press#elon musk#elongated muskrat#american politics#politics#news#america#trump administration
148K notes
·
View notes
Text
Advanced Analytics Market Trends, Size, Share & Forecast to 2032
The Advanced Analytics Market was valued at USD 62.2 Billion in 2023 and is expected to reach USD 554.3 Billion by 2032, growing at a CAGR of 24.54% from 2024-2032.
Advanced Analytics Market is witnessing transformative growth as businesses increasingly adopt data-driven decision-making strategies. The demand for predictive, prescriptive, and diagnostic analytics is soaring across sectors including healthcare, finance, manufacturing, and retail. Organizations are leveraging advanced analytics tools to enhance operational efficiency, gain competitive advantages, and deliver personalized customer experiences. As digital transformation accelerates globally, the integration of artificial intelligence (AI), machine learning (ML), and big data technologies further propels the market’s evolution, shaping the future of enterprise intelligence.
Advanced Analytics Market continues to gain momentum with the proliferation of cloud-based analytics platforms and real-time data processing capabilities. Enterprises are focusing on agile analytics solutions to meet evolving consumer expectations and complex business environments. The convergence of analytics with Internet of Things (IoT), robotic process automation (RPA), and blockchain is expanding the possibilities of data insight and actionability, unlocking new growth avenues across industries.
Get Sample Copy of This Report: https://www.snsinsider.com/sample-request/5908
Market Keyplayers:
Microsoft – Power BI
IBM – IBM Watson Analytics
SAP – SAP Analytics Cloud
Oracle – Oracle Analytics Cloud
Google – Google Cloud BigQuery
SAS Institute – SAS Viya
AWS (Amazon Web Services) – Amazon QuickSight
Tableau (Salesforce) – Tableau Desktop
Qlik – Qlik Sense
TIBCO Software – TIBCO Spotfire
Alteryx – Alteryx Designer
Databricks – Databricks Lakehouse Platform
Cloudera – Cloudera Data Platform (CDP)
Domo – Domo Business Cloud
Zoho – Zoho Analytics
Market Analysis
The advanced analytics market is driven by the increasing need for real-time decision-making, risk management, and performance optimization. Key industry players are investing in innovative technologies and strategic partnerships to stay competitive. The rise in structured and unstructured data from multiple digital touchpoints has amplified the demand for sophisticated analytical tools. Furthermore, government and enterprise investments in digital infrastructure are accelerating the deployment of advanced analytics solutions across emerging economies.
Market Trends
Growing adoption of AI and ML-powered analytics for enhanced data interpretation
Surge in demand for cloud-based analytics platforms due to scalability and flexibility
Expansion of self-service analytics tools for non-technical users
Integration of predictive analytics in supply chain and risk management functions
Increasing use of natural language processing (NLP) in business intelligence
Shift towards augmented analytics to automate insight generation
Strong focus on data governance, privacy, and regulatory compliance
Market Scope
The market spans a wide array of applications including fraud detection, customer analytics, marketing optimization, financial forecasting, and operational analytics. It serves multiple industries such as BFSI, IT & telecom, retail & e-commerce, healthcare, manufacturing, and government. With the expansion of IoT devices and connected systems, the scope continues to widen, enabling deeper, real-time insights from diverse data streams. Small and medium enterprises are also emerging as significant contributors as advanced analytics becomes more accessible and cost-effective.
Market Forecast
The advanced analytics market is expected to continue its upward trajectory driven by innovation, increased digital maturity, and widespread application. Continued advancements in edge computing, neural networks, and federated learning will shape the next phase of analytics evolution. Organizations are likely to prioritize investments in unified analytics platforms that offer scalability, security, and end-to-end visibility. The market outlook remains robust as businesses focus on leveraging analytics not just for insights, but as a strategic enabler of growth, resilience, and customer engagement.
Access Complete Report: https://www.snsinsider.com/reports/advanced-analytics-market-5908
Conclusion
The rise of the advanced analytics market signals a paradigm shift in how data is harnessed to unlock strategic business value. From real-time insights to predictive foresight, the impact of analytics is becoming foundational to every industry. As technology progresses, the market is poised for a future where data isn’t just a tool—but the engine of innovation, agility, and transformation. Organizations ready to embrace this shift will be the frontrunners in tomorrow’s digital economy.
About Us:
SNS Insider is one of the leading market research and consulting agencies that dominates the market research industry globally. Our company's aim is to give clients the knowledge they require in order to function in changing circumstances. In order to give you current, accurate market data, consumer insights, and opinions so that you can make decisions with confidence, we employ a variety of techniques, including surveys, video talks, and focus groups around the world.
Contact Us:
Jagney Dave - Vice President of Client Engagement
Phone: +1-315 636 4242 (US) | +44- 20 3290 5010 (UK)
0 notes
Text
Stimulate Your Success with AI Certification Courses from Ascendient Learning
Artificial Intelligence is transforming industries worldwide. From finance and healthcare to manufacturing and marketing, AI is at the heart of innovation, streamlining operations, enhancing customer experiences, and predicting market trends with unprecedented accuracy. According to Gartner, 75% of enterprises are expected to shift from piloting AI to operationalizing it by 2024. However, a significant skills gap remains, with only 26% of businesses confident they have the AI talent required to leverage AI's full potential.
Ascendient Learning closes this skills gap by providing cutting-edge AI certification courses from leading vendors. With courses designed to align with the practical demands of the marketplace, Ascendient ensures professionals can harness the power of AI effectively.
Comprehensive AI and Machine Learning Training for All Skill Levels
Ascendient Learning’s robust portfolio of AI certification courses covers a broad spectrum of disciplines and vendor-specific solutions, making it easy for professionals at any stage of their AI journey to advance their skills. Our training categories include:
Generative AI: Gain practical skills in building intelligent, creative systems that can automate content generation, drive innovation, and unlock new opportunities. Popular courses include Generative AI Essentials on AWS and NVIDIA's Generative AI with Diffusion Models.
Cloud-Based AI Platforms: Learn to leverage powerful platforms like AWS SageMaker, Google Cloud Vertex AI, and Microsoft Azure AI for scalable machine learning operations and predictive analytics.
Data Engineering & Analytics: Master critical data preparation and management techniques for successful AI implementation. Courses such as Apache Spark Machine Learning and Databricks Scalable Machine Learning prepare professionals to handle complex data workflows.
AI Operations and DevOps: Equip your teams with continuous deployment and integration skills for machine learning models. Our courses in Machine Learning Operations (MLOps) ensure your organization stays agile, responsive, and competitive.
Practical Benefits of AI Certification for Professionals and Organizations
Certifying your workforce in AI brings measurable, real-world advantages. According to recent studies, organizations that invest in AI training have reported productivity improvements of up to 40% due to streamlined processes and automated workflows. Additionally, companies implementing AI strategies often significantly increase customer satisfaction due to enhanced insights, personalized services, and more thoughtful customer interactions.
According to the 2023 IT Skills and Salary Report, AI-certified specialists earn approximately 30% more on average than non-certified colleagues. Further, certified professionals frequently report enhanced job satisfaction, increased recognition, and faster career progression.
Customized Learning with Flexible Delivery Options
Instructor-Led Virtual and Classroom Training: Expert-led interactive sessions allow participants to benefit from real-time guidance and collaboration.
Self-Paced Learning: Learn at your convenience with comprehensive online resources, interactive exercises, and extensive practice labs.
Customized Group Training: Tailored AI training solutions designed specifically for your organization's unique needs, delivered at your site or virtually.
Our exclusive AI Skill Factory provides a structured approach to workforce upskilling, ensuring your organization builds lasting AI capability through targeted, practical training.
Trust Ascendient Learning’s Proven Track Record
Ascendient Learning partners with the industry’s leading AI and ML vendors, including AWS, Microsoft, Google Cloud, NVIDIA, IBM, Databricks, and Oracle. As a result, all our certification courses are fully vendor-authorized, ensuring training reflects the most current methodologies, tools, and best practices.
Take Action Today with Ascendient Learning
AI adoption is accelerating rapidly, reshaping industries and redefining competitive landscapes. Acquiring recognized AI certifications is essential to remain relevant and valuable in this new era.
Ascendient Learning provides the comprehensive, practical, and vendor-aligned training necessary to thrive in the AI-powered future. Don’t wait to upgrade your skills or empower your team.
Act today with Ascendient Learning and drive your career and your organization toward unparalleled success.
For more information, visit: https://www.ascendientlearning.com/it-training/topics/ai-and-machine-learning
0 notes
Text
Unlocking the Potential of AI: How Databricks Dolly is Democratizing LLMs
As the world continues to generate massive amounts of data, artificial intelligence (AI) is becoming increasingly important in helping businesses and organizations make sense of it all. One of the biggest challenges in AI development is the creation of la
As the world continues to generate massive amounts of data, artificial intelligence (AI) is becoming increasingly important in helping businesses and organizations make sense of it all. One of the biggest challenges in AI development is the creation of large language models that can process and analyze vast amounts of text data. That’s where Databricks Dolly comes in. This new project from…
View On WordPress
#AI#ChatGPT#Databricks#Databricks Dolly#Democratizing the LLM#Hugging Face#Large Language Model#LLM#Open Source LLM Model
2 notes
·
View notes
Text
Partner with a Leading Data Analytics Consulting Firm for Business Innovation and Growth
Partnering with a leading data analytics consulting firm like Dataplatr empowers organizations to turn complex data into strategic assets that drive innovation and business growth. At Dataplatr, we offer end-to-end data analytics consulting services customized to meet the needs of enterprises and small businesses alike. Whether you're aiming to enhance operational efficiency, personalize customer experiences, or optimize supply chains, our team of experts delivers actionable insights backed by cutting-edge technologies and proven methodologies.
Comprehensive Data Analytics Consulting Services
At Dataplatr, we offer a full spectrum of data analytics consulting services, including:
Data Engineering: Designing and implementing robust data architectures that ensure seamless data flow across your organization.
Data Analytics: Utilizing advanced analytical techniques to extract meaningful insights from your data, facilitating data-driven strategies.
Data Visualization: Creating intuitive dashboards and reports that present complex data in an accessible and actionable format.
Artificial Intelligence: Integrating AI solutions to automate processes and enhance predictive analytics capabilities.
Data Analytics Consulting for Small Businesses
Understanding the challenges faced by small and mid-sized enterprises, Dataplatr offers data analytics consulting for small business solutions that are:
Scalable Solutions: It helps to grow with your business, ensuring long-term value.
Cost-Effective: Providing high-quality services that fit within your budget constraints.
User-Friendly: Implementing tools and platforms that are easy to use, ensuring quick adoption and minimal disruption.
Strategic Partnerships for Enhanced Data Solutions
Dataplatr has established strategic partnerships with leading technology platforms to enhance our service offerings:
Omni: Combining Dataplatr’s data engineering expertise with Omni’s business intelligence platform enables instant data exploration without high modeling costs, providing a foundation for actionable insights.
Databricks: Our collaboration with Databricks uses their AI insights and efficient data governance, redefining data warehousing standards with innovative lakehouse architecture for superior performance and scalability.
Looker: Partnering with Looker allows us to gain advanced analytics capabilities, ensuring clients can achieve the full potential of their data assets.
Why Choose Dataplatr?
Dataplatr stands out as a trusted data analytics consulting firm due to its deep expertise, personalized approach, and commitment to innovation. Our team of seasoned data scientists and analytics professionals brings extensive cross-industry experience to every engagement, ensuring that clients benefit from proven knowledge and cutting-edge practices. We recognize that every business has unique challenges and goals, which is why our solutions are always customized to align with your specific needs. Moreover, we continuously stay ahead of technological trends, allowing us to deliver innovative data strategies that drive measurable results and long-term success. Explore more about how Dataplatr empowers data strategy consulting services for your specific business needs.
0 notes