#AI and Data Engineering
Explore tagged Tumblr posts
kshtizsingh · 6 months ago
Text
Tumblr media
B.Tech CSE with specialization in AI and Data Engineering Course, Career, Fees, Eligibility, Admission 2024
B Tech Computer Science with Specialization in AI and Data Engineering From India s Top Ranked Colleges University In Punjab LPU Check Course Details, Eligibility, Fees, Admission start your career As a Application developer, Data Engineer etc. Read More: https://www.lpu.in/programmes/engineering/b-tech-cse-ai-and-data-engineering
0 notes
lunarreign24 · 3 months ago
Text
Here is the video I made to discuss the book I made to screw with AI
As much as I wanted to describe the book with valor, I had to stop every so often to not make it an angry rant
I hope you like it!
youtube
4 notes · View notes
dickgreyson · 7 months ago
Text
one of my essays from back when i studied philosophy is being put into a good answers guide at my university<3 not one of my good ones but
#its abt the philosophy of conspiracism in the modern day. suuuuuch a blast to write#my prof told me that he was like gasping at the twists and turns of the anti vaccine movement#i was like king have you been living in this world with us. this is just the news peace and love#so fun to like talk abt the moon landing and 911 and just stream of consciousness and someone think its good#bc if i had handed that in as a poltiics paper it would be like snooze you missed these things and its not valuable bc x y z#but this dude had never heard any of it before! loved that#he was like 'to get the full 100 i would have wanted some actual philosophy content in there' and yeah true#gonna talk to the prof tho bc theres a new philosophy of AI unit#and its been running a few years i took it in my last sem of undergrad#and it was so fallacious and like dick sucking of AI engineers#i kept being like true ai or not lets talk abt how this is impacting society NOW since its being CALLED ai#and i kept getting almost failing grades#then my final exam was graded by a different prof and lo and behold it pulled my grade waaaaaaay up#so clearly my writing is. good. and my grasp of AI and the concepts is. good.#that dude was just musk pilled or smth#anyway gonna tell the head of phils to keep an eye lmao#its a core unit for data science students and it has no intellectual credit to it AT ALL imo#its like what happens when ai starts producing more ai and we get deleted from existence and i was like what abt wages girl#im the problem tho
7 notes · View notes
jcmarchi · 17 days ago
Text
Moments Lab Secures $24 Million to Redefine Video Discovery With Agentic AI
New Post has been published on https://thedigitalinsider.com/moments-lab-secures-24-million-to-redefine-video-discovery-with-agentic-ai/
Moments Lab Secures $24 Million to Redefine Video Discovery With Agentic AI
Tumblr media Tumblr media
Moments Lab, the AI company redefining how organizations work with video, has raised $24 million in new funding, led by Oxx with participation from Orange Ventures, Kadmos, Supernova Invest, and Elaia Partners. The investment will supercharge the company’s U.S. expansion and support continued development of its agentic AI platform — a system designed to turn massive video archives into instantly searchable and monetizable assets.
The heart of Moments Lab is MXT-2, a multimodal video-understanding AI that watches, hears, and interprets video with context-aware precision. It doesn’t just label content — it narrates it, identifying people, places, logos, and even cinematographic elements like shot types and pacing. This natural-language metadata turns hours of footage into structured, searchable intelligence, usable across creative, editorial, marketing, and monetization workflows.
But the true leap forward is the introduction of agentic AI — an autonomous system that can plan, reason, and adapt to a user’s intent. Instead of simply executing instructions, it understands prompts like “generate a highlight reel for social” and takes action: pulling scenes, suggesting titles, selecting formats, and aligning outputs with a brand’s voice or platform requirements.
“With MXT, we already index video faster than any human ever could,” said Philippe Petitpont, CEO and co-founder of Moments Lab. “But with agentic AI, we’re building the next layer — AI that acts as a teammate, doing everything from crafting rough cuts to uncovering storylines hidden deep in the archive.”
From Search to Storytelling: A Platform Built for Speed and Scale
Moments Lab is more than an indexing engine. It’s a full-stack platform that empowers media professionals to move at the speed of story. That starts with search — arguably the most painful part of working with video today.
Most production teams still rely on filenames, folders, and tribal knowledge to locate content. Moments Lab changes that with plain text search that behaves like Google for your video library. Users can simply type what they’re looking for — “CEO talking about sustainability” or “crowd cheering at sunset” — and retrieve exact clips within seconds.
Key features include:
AI video intelligence: MXT-2 doesn’t just tag content — it describes it using time-coded natural language, capturing what’s seen, heard, and implied.
Search anyone can use: Designed for accessibility, the platform allows non-technical users to search across thousands of hours of footage using everyday language.
Instant clipping and export: Once a moment is found, it can be clipped, trimmed, and exported or shared in seconds — no need for timecode handoffs or third-party tools.
Metadata-rich discovery: Filter by people, events, dates, locations, rights status, or any custom facet your workflow requires.
Quote and soundbite detection: Automatically transcribes audio and highlights the most impactful segments — perfect for interview footage and press conferences.
Content classification: Train the system to sort footage by theme, tone, or use case — from trailers to corporate reels to social clips.
Translation and multilingual support: Transcribes and translates speech, even in multilingual settings, making content globally usable.
This end-to-end functionality has made Moments Lab an indispensable partner for TV networks, sports rights holders, ad agencies, and global brands. Recent clients include Thomson Reuters, Amazon Ads, Sinclair, Hearst, and Banijay — all grappling with increasingly complex content libraries and growing demands for speed, personalization, and monetization.
Built for Integration, Trained for Precision
MXT-2 is trained on 1.5 billion+ data points, reducing hallucinations and delivering high confidence outputs that teams can rely on. Unlike proprietary AI stacks that lock metadata in unreadable formats, Moments Lab keeps everything in open text, ensuring full compatibility with downstream tools like Adobe Premiere, Final Cut Pro, Brightcove, YouTube, and enterprise MAM/CMS platforms via API or no-code integrations.
“The real power of our system is not just speed, but adaptability,” said Fred Petitpont, co-founder and CTO. “Whether you’re a broadcaster clipping sports highlights or a brand licensing footage to partners, our AI works the way your team already does — just 100x faster.”
The platform is already being used to power everything from archive migration to live event clipping, editorial research, and content licensing. Users can share secure links with collaborators, sell footage to external buyers, and even train the system to align with niche editorial styles or compliance guidelines.
From Startup to Standard-Setter
Founded in 2016 by twin brothers Frederic Petitpont and Phil Petitpont, Moments Lab began with a simple question: What if you could Google your video library? Today, it’s answering that — and more — with a platform that redefines how creative and editorial teams work with media. It has become the most awarded indexing AI in the video industry since 2023 and shows no signs of slowing down.
“When we first saw MXT in action, it felt like magic,” said Gökçe Ceylan, Principal at Oxx. “This is exactly the kind of product and team we look for — technically brilliant, customer-obsessed, and solving a real, growing need.”
With this new round of funding, Moments Lab is poised to lead a category that didn’t exist five years ago — agentic AI for video — and define the future of content discovery.
2 notes · View notes
insert-game · 2 months ago
Text
i hate gen AI so much i wish crab raves upon it
2 notes · View notes
govindhtech · 2 months ago
Text
Google Cloud’s BigQuery Autonomous Data To AI Platform
Tumblr media
BigQuery automates data analysis, transformation, and insight generation using AI. AI and natural language interaction simplify difficult operations.
The fast-paced world needs data access and a real-time data activation flywheel. Artificial intelligence that integrates directly into the data environment and works with intelligent agents is emerging. These catalysts open doors and enable self-directed, rapid action, which is vital for success. This flywheel uses Google's Data & AI Cloud to activate data in real time. BigQuery has five times more organisations than the two leading cloud providers that just offer data science and data warehousing solutions due to this emphasis.
Examples of top companies:
With BigQuery, Radisson Hotel Group enhanced campaign productivity by 50% and revenue by over 20% by fine-tuning the Gemini model.
By connecting over 170 data sources with BigQuery, Gordon Food Service established a scalable, modern, AI-ready data architecture. This improved real-time response to critical business demands, enabled complete analytics, boosted client usage of their ordering systems, and offered staff rapid insights while cutting costs and boosting market share.
J.B. Hunt is revolutionising logistics for shippers and carriers by integrating Databricks into BigQuery.
General Mills saves over $100 million using BigQuery and Vertex AI to give workers secure access to LLMs for structured and unstructured data searches.
Google Cloud is unveiling many new features with its autonomous data to AI platform powered by BigQuery and Looker, a unified, trustworthy, and conversational BI platform:
New assistive and agentic experiences based on your trusted data and available through BigQuery and Looker will make data scientists, data engineers, analysts, and business users' jobs simpler and faster.
Advanced analytics and data science acceleration: Along with seamless integration with real-time and open-source technologies, BigQuery AI-assisted notebooks improve data science workflows and BigQuery AI Query Engine provides fresh insights.
Autonomous data foundation: BigQuery can collect, manage, and orchestrate any data with its new autonomous features, which include native support for unstructured data processing and open data formats like Iceberg.
Look at each change in detail.
User-specific agents
It believes everyone should have AI. BigQuery and Looker made AI-powered helpful experiences generally available, but Google Cloud now offers specialised agents for all data chores, such as:
Data engineering agents integrated with BigQuery pipelines help create data pipelines, convert and enhance data, discover anomalies, and automate metadata development. These agents provide trustworthy data and replace time-consuming and repetitive tasks, enhancing data team productivity. Data engineers traditionally spend hours cleaning, processing, and confirming data.
The data science agent in Google's Colab notebook enables model development at every step. Scalable training, intelligent model selection, automated feature engineering, and faster iteration are possible. This agent lets data science teams focus on complex methods rather than data and infrastructure.
Looker conversational analytics lets everyone utilise natural language with data. Expanded capabilities provided with DeepMind let all users understand the agent's actions and easily resolve misconceptions by undertaking advanced analysis and explaining its logic. Looker's semantic layer boosts accuracy by two-thirds. The agent understands business language like “revenue” and “segments” and can compute metrics in real time, ensuring trustworthy, accurate, and relevant results. An API for conversational analytics is also being introduced to help developers integrate it into processes and apps.
In the BigQuery autonomous data to AI platform, Google Cloud introduced the BigQuery knowledge engine to power assistive and agentic experiences. It models data associations, suggests business vocabulary words, and creates metadata instantaneously using Gemini's table descriptions, query histories, and schema connections. This knowledge engine grounds AI and agents in business context, enabling semantic search across BigQuery and AI-powered data insights.
All customers may access Gemini-powered agentic and assistive experiences in BigQuery and Looker without add-ons in the existing price model tiers!
Accelerating data science and advanced analytics
BigQuery autonomous data to AI platform is revolutionising data science and analytics by enabling new AI-driven data science experiences and engines to manage complex data and provide real-time analytics.
First, AI improves BigQuery notebooks. It adds intelligent SQL cells to your notebook that can merge data sources, comprehend data context, and make code-writing suggestions. It also uses native exploratory analysis and visualisation capabilities for data exploration and peer collaboration. Data scientists can also schedule analyses and update insights. Google Cloud also lets you construct laptop-driven, dynamic, user-friendly, interactive data apps to share insights across the organisation.
This enhanced notebook experience is complemented by the BigQuery AI query engine for AI-driven analytics. This engine lets data scientists easily manage organised and unstructured data and add real-world context—not simply retrieve it. BigQuery AI co-processes SQL and Gemini, adding runtime verbal comprehension, reasoning skills, and real-world knowledge. Their new engine processes unstructured photographs and matches them to your product catalogue. This engine supports several use cases, including model enhancement, sophisticated segmentation, and new insights.
Additionally, it provides users with the most cloud-optimized open-source environment. Google Cloud for Apache Kafka enables real-time data pipelines for event sourcing, model scoring, communications, and analytics in BigQuery for serverless Apache Spark execution. Customers have almost doubled their serverless Spark use in the last year, and Google Cloud has upgraded this engine to handle data 2.7 times faster.
BigQuery lets data scientists utilise SQL, Spark, or foundation models on Google's serverless and scalable architecture to innovate faster without the challenges of traditional infrastructure.
An independent data foundation throughout data lifetime
An independent data foundation created for modern data complexity supports its advanced analytics engines and specialised agents. BigQuery is transforming the environment by making unstructured data first-class citizens. New platform features, such as orchestration for a variety of data workloads, autonomous and invisible governance, and open formats for flexibility, ensure that your data is always ready for data science or artificial intelligence issues. It does this while giving the best cost and decreasing operational overhead.
For many companies, unstructured data is their biggest untapped potential. Even while structured data provides analytical avenues, unique ideas in text, audio, video, and photographs are often underutilised and discovered in siloed systems. BigQuery instantly tackles this issue by making unstructured data a first-class citizen using multimodal tables (preview), which integrate structured data with rich, complex data types for unified querying and storage.
Google Cloud's expanded BigQuery governance enables data stewards and professionals a single perspective to manage discovery, classification, curation, quality, usage, and sharing, including automatic cataloguing and metadata production, to efficiently manage this large data estate. BigQuery continuous queries use SQL to analyse and act on streaming data regardless of format, ensuring timely insights from all your data streams.
Customers utilise Google's AI models in BigQuery for multimodal analysis 16 times more than last year, driven by advanced support for structured and unstructured multimodal data. BigQuery with Vertex AI are 8–16 times cheaper than independent data warehouse and AI solutions.
Google Cloud maintains open ecology. BigQuery tables for Apache Iceberg combine BigQuery's performance and integrated capabilities with the flexibility of an open data lakehouse to link Iceberg data to SQL, Spark, AI, and third-party engines in an open and interoperable fashion. This service provides adaptive and autonomous table management, high-performance streaming, auto-AI-generated insights, practically infinite serverless scalability, and improved governance. Cloud storage enables fail-safe features and centralised fine-grained access control management in their managed solution.
Finaly, AI platform autonomous data optimises. Scaling resources, managing workloads, and ensuring cost-effectiveness are its competencies. The new BigQuery spend commit unifies spending throughout BigQuery platform and allows flexibility in shifting spend across streaming, governance, data processing engines, and more, making purchase easier.
Start your data and AI adventure with BigQuery data migration. Google Cloud wants to know how you innovate with data.
2 notes · View notes
lordsmerchantco · 3 months ago
Text
Best SEO Practices 2025: The Ultimate Guide to Ranking Higher
Table of Contents Introduction Why SEO is Important in 2025 Top SEO Trends for 2025 Core SEO Strategies for Higher Rankings Content Optimization for 2025 Technical SEO Best Practices Link Building and Off-Page SEO Mobile and Voice Search Optimization AI and Automation in SEO User Experience (UX) and Core Web Vitals Experiments and Case Studies FAQs People Also Ask (PAA) Knowledge…
2 notes · View notes
lezmooshie · 5 months ago
Text
Tumblr media
Tinkering with my personal website again
Tumblr media
Above screenie is zoomed out to capture everything. Anyone wanna guess which blinkies I made? Also, the Twitter blinkie just takes you to my BSky lol (on purpose).
Tumblr media Tumblr media Tumblr media Tumblr media
Several of the images were put together by me! I can teach pretty much anything in tech, this is just the stuff that I thought of.
Tumblr media Tumblr media
I made the floppy-disk icons myself, with some help from wifey on getting the text to render as part of the SVGs!
2 notes · View notes
ajokeaboutadog · 9 months ago
Text
Tumblr media
Bitch, I thought you were dead.
4 notes · View notes
bigleapblog · 9 months ago
Text
Your Guide to B.Tech in Computer Science & Engineering Colleges
Tumblr media
In today's technology-driven world, pursuing a B.Tech in Computer Science and Engineering (CSE) has become a popular choice among students aspiring for a bright future. The demand for skilled professionals in areas like Artificial Intelligence, Machine Learning, Data Science, and Cloud Computing has made computer science engineering colleges crucial in shaping tomorrow's innovators. Saraswati College of Engineering (SCOE), a leader in engineering education, provides students with a perfect platform to build a successful career in this evolving field.
Whether you're passionate about coding, software development, or the latest advancements in AI, pursuing a B.Tech in Computer Science and Engineering at SCOE can open doors to endless opportunities.
Why Choose B.Tech in Computer Science and Engineering?
Choosing a B.Tech in Computer Science and Engineering isn't just about learning to code; it's about mastering problem-solving, logical thinking, and the ability to work with cutting-edge technologies. The course offers a robust foundation that combines theoretical knowledge with practical skills, enabling students to excel in the tech industry.
At SCOE, the computer science engineering courses are designed to meet industry standards and keep up with the rapidly evolving tech landscape. With its AICTE Approved, NAAC Accredited With Grade-"A+" credentials, the college provides quality education in a nurturing environment. SCOE's curriculum goes beyond textbooks, focusing on hands-on learning through projects, labs, workshops, and internships. This approach ensures that students graduate not only with a degree but with the skills needed to thrive in their careers.
The Role of Computer Science Engineering Colleges in Career Development
The role of computer science engineering colleges like SCOE is not limited to classroom teaching. These institutions play a crucial role in shaping students' futures by providing the necessary infrastructure, faculty expertise, and placement opportunities. SCOE, established in 2004, is recognized as one of the top engineering colleges in Navi Mumbai. It boasts a strong placement record, with companies like Goldman Sachs, Cisco, and Microsoft offering lucrative job opportunities to its graduates.
The computer science engineering courses at SCOE are structured to provide a blend of technical and soft skills. From the basics of computer programming to advanced topics like Artificial Intelligence and Data Science, students at SCOE are trained to be industry-ready. The faculty at SCOE comprises experienced professionals who not only impart theoretical knowledge but also mentor students for real-world challenges.
Highlights of the B.Tech in Computer Science and Engineering Program at SCOE
Comprehensive Curriculum: The B.Tech in Computer Science and Engineering program at SCOE covers all major areas, including programming languages, algorithms, data structures, computer networks, operating systems, AI, and Machine Learning. This ensures that students receive a well-rounded education, preparing them for various roles in the tech industry.
Industry-Relevant Learning: SCOE’s focus is on creating professionals who can immediately contribute to the tech industry. The college regularly collaborates with industry leaders to update its curriculum, ensuring students learn the latest technologies and trends in computer science engineering.
State-of-the-Art Infrastructure: SCOE is equipped with modern laboratories, computer centers, and research facilities, providing students with the tools they need to gain practical experience. The institution’s infrastructure fosters innovation, helping students work on cutting-edge projects and ideas during their B.Tech in Computer Science and Engineering.
Practical Exposure: One of the key benefits of studying at SCOE is the emphasis on practical learning. Students participate in hands-on projects, internships, and industry visits, giving them real-world exposure to how technology is applied in various sectors.
Placement Support: SCOE has a dedicated placement cell that works tirelessly to ensure students secure internships and job offers from top companies. The B.Tech in Computer Science and Engineering program boasts a strong placement record, with top tech companies visiting the campus every year. The highest on-campus placement offer for the academic year 2022-23 was an impressive 22 LPA from Goldman Sachs, reflecting the college’s commitment to student success.
Personal Growth: Beyond academics, SCOE encourages students to participate in extracurricular activities, coding competitions, and tech fests. These activities enhance their learning experience, promote teamwork, and help students build a well-rounded personality that is essential in today’s competitive job market.
What Makes SCOE Stand Out?
With so many computer science engineering colleges to choose from, why should you consider SCOE for your B.Tech in Computer Science and Engineering? Here are a few factors that make SCOE a top choice for students:
Experienced Faculty: SCOE prides itself on having a team of highly qualified and experienced faculty members. The faculty’s approach to teaching is both theoretical and practical, ensuring students are equipped to tackle real-world challenges.
Strong Industry Connections: The college maintains strong relationships with leading tech companies, ensuring that students have access to internship opportunities and campus recruitment drives. This gives SCOE graduates a competitive edge in the job market.
Holistic Development: SCOE believes in the holistic development of students. In addition to academic learning, the college offers opportunities for personal growth through various student clubs, sports activities, and cultural events.
Supportive Learning Environment: SCOE provides a nurturing environment where students can focus on their academic and personal growth. The campus is equipped with modern facilities, including spacious classrooms, labs, a library, and a recreation center.
Career Opportunities After B.Tech in Computer Science and Engineering from SCOE
Graduates with a B.Tech in Computer Science and Engineering from SCOE are well-prepared to take on various roles in the tech industry. Some of the most common career paths for CSE graduates include:
Software Engineer: Developing software applications, web development, and mobile app development are some of the key responsibilities of software engineers. This role requires strong programming skills and a deep understanding of software design.
Data Scientist: With the rise of big data, data scientists are in high demand. CSE graduates with knowledge of data science can work on data analysis, machine learning models, and predictive analytics.
AI Engineer: Artificial Intelligence is revolutionizing various industries, and AI engineers are at the forefront of this change. SCOE’s curriculum includes AI and Machine Learning, preparing students for roles in this cutting-edge field.
System Administrator: Maintaining and managing computer systems and networks is a crucial role in any organization. CSE graduates can work as system administrators, ensuring the smooth functioning of IT infrastructure.
Cybersecurity Specialist: With the growing threat of cyberattacks, cybersecurity specialists are essential in protecting an organization’s digital assets. CSE graduates can pursue careers in cybersecurity, safeguarding sensitive information from hackers.
Conclusion: Why B.Tech in Computer Science and Engineering at SCOE is the Right Choice
Choosing the right college is crucial for a successful career in B.Tech in Computer Science and Engineering. Saraswati College of Engineering (SCOE) stands out as one of the best computer science engineering colleges in Navi Mumbai. With its industry-aligned curriculum, state-of-the-art infrastructure, and excellent placement record, SCOE offers students the perfect environment to build a successful career in computer science.
Whether you're interested in AI, data science, software development, or any other field in computer science, SCOE provides the knowledge, skills, and opportunities you need to succeed. With a strong focus on hands-on learning and personal growth, SCOE ensures that students graduate not only as engineers but as professionals ready to take on the challenges of the tech world.
If you're ready to embark on an exciting journey in the world of technology, consider pursuing your B.Tech in Computer Science and Engineering at SCOE—a college where your future takes shape.
#In today's technology-driven world#pursuing a B.Tech in Computer Science and Engineering (CSE) has become a popular choice among students aspiring for a bright future. The de#Machine Learning#Data Science#and Cloud Computing has made computer science engineering colleges crucial in shaping tomorrow's innovators. Saraswati College of Engineeri#a leader in engineering education#provides students with a perfect platform to build a successful career in this evolving field.#Whether you're passionate about coding#software development#or the latest advancements in AI#pursuing a B.Tech in Computer Science and Engineering at SCOE can open doors to endless opportunities.#Why Choose B.Tech in Computer Science and Engineering?#Choosing a B.Tech in Computer Science and Engineering isn't just about learning to code; it's about mastering problem-solving#logical thinking#and the ability to work with cutting-edge technologies. The course offers a robust foundation that combines theoretical knowledge with prac#enabling students to excel in the tech industry.#At SCOE#the computer science engineering courses are designed to meet industry standards and keep up with the rapidly evolving tech landscape. With#NAAC Accredited With Grade-“A+” credentials#the college provides quality education in a nurturing environment. SCOE's curriculum goes beyond textbooks#focusing on hands-on learning through projects#labs#workshops#and internships. This approach ensures that students graduate not only with a degree but with the skills needed to thrive in their careers.#The Role of Computer Science Engineering Colleges in Career Development#The role of computer science engineering colleges like SCOE is not limited to classroom teaching. These institutions play a crucial role in#faculty expertise#and placement opportunities. SCOE#established in 2004#is recognized as one of the top engineering colleges in Navi Mumbai. It boasts a strong placement record
2 notes · View notes
jcmarchi · 3 months ago
Text
How Does AI Use Impact Critical Thinking?
New Post has been published on https://thedigitalinsider.com/how-does-ai-use-impact-critical-thinking/
How Does AI Use Impact Critical Thinking?
Tumblr media Tumblr media
Artificial intelligence (AI) can process hundreds of documents in seconds, identify imperceptible patterns in vast datasets and provide in-depth answers to virtually any question. It has the potential to solve common problems, increase efficiency across multiple industries and even free up time for individuals to spend with their loved ones by delegating repetitive tasks to machines.    
However, critical thinking requires time and practice to develop properly. The more people rely on automated technology, the faster their metacognitive skills may decline. What are the consequences of relying on AI for critical thinking?
Study Finds AI Degrades Users’ Critical Thinking 
The concern that AI will degrade users’ metacognitive skills is no longer hypothetical. Several studies suggest it diminishes people’s capacity to think critically, impacting their ability to question information, make judgments, analyze data or form counterarguments. 
A 2025 Microsoft study surveyed 319 knowledge workers on 936 instances of AI use to determine how they perceive their critical thinking ability when using generative technology. Survey respondents reported decreased effort when using AI technology compared to relying on their own minds. Microsoft reported that in the majority of instances, the respondents felt that they used “much less effort” or “less effort” when using generative AI.  
Knowledge, comprehension, analysis, synthesis and evaluation were all adversely affected by AI use. Although a fraction of respondents reported using some or much more effort, an overwhelming majority reported that tasks became easier and required less work. 
If AI’s purpose is to streamline tasks, is there any harm in letting it do its job? It is a slippery slope. Many algorithms cannot think critically, reason or understand context. They are often prone to hallucinations and bias. Users who are unaware of the risks of relying on AI may contribute to skewed, inaccurate results. 
How AI Adversely Affects Critical Thinking Skills
Overreliance on AI can diminish an individual’s ability to independently solve problems and think critically. Say someone is taking a test when they run into a complex question. Instead of taking the time to consider it, they plug it into a generative model and insert the algorithm’s response into the answer field. 
In this scenario, the test-taker learned nothing. They didn’t improve their research skills or analytical abilities. If they pass the test, they advance to the next chapter. What if they were to do this for everything their teachers assign? They could graduate from high school or even college without refining fundamental cognitive abilities. 
This outcome is bleak. However, students might not feel any immediate adverse effects. If their use of language models is rewarded with better test scores, they may lose their motivation to think critically altogether. Why should they bother justifying their arguments or evaluating others’ claims when it is easier to rely on AI? 
The Impact of AI Use on Critical Thinking Skills 
An advanced algorithm can automatically aggregate and analyze large datasets, streamlining problem-solving and task execution. Since its speed and accuracy often outperform humans, users are usually inclined to believe it is better than them at these tasks. When it presents them with answers and insights, they take that output at face value. Unquestioning acceptance of a generative model’s output leads to difficulty distinguishing between facts and falsehoods. Algorithms are trained to predict the next word in a string of words. No matter how good they get at that task, they aren’t really reasoning. Even if a machine makes a mistake, it won’t be able to fix it without context and memory, both of which it lacks.
The more users accept an algorithm’s answer as fact, the more their evaluation and judgment skew. Algorithmic models often struggle with overfitting. When they fit too closely to the information in their training dataset, their accuracy can plummet when they are presented with new information for analysis. 
Populations Most Affected by Overreliance on AI 
Generally, overreliance on generative technology can negatively impact humans’ ability to think critically. However, low confidence in AI-generated output is related to increased critical thinking ability, so strategic users may be able to use AI without harming these skills. 
In 2023, around 27% of adults told the Pew Research Center they use AI technology multiple times a day. Some of the individuals in this population may retain their critical thinking skills if they have a healthy distrust of machine learning tools. The data must focus on populations with disproportionately high AI use and be more granular to determine the true impact of machine learning on critical thinking. 
Critical thinking often isn’t taught until high school or college. It can be cultivated during early childhood development, but it typically takes years to grasp. For this reason, deploying generative technology in schools is particularly risky — even though it is common. 
Today, most students use generative models. One study revealed that 90% have used ChatGPT to complete homework. This widespread use isn’t limited to high schools. About 75% of college students say they would continue using generative technology even if their professors disallowed it. Middle schoolers, teenagers and young adults are at an age where developing critical thinking is crucial. Missing this window could cause problems. 
The Implications of Decreased Critical Thinking
Already, 60% of educators use AI in the classroom. If this trend continues, it may become a standard part of education. What happens when students begin to trust these tools more than themselves? As their critical thinking capabilities diminish, they may become increasingly susceptible to misinformation and manipulation. The effectiveness of scams, phishing and social engineering attacks could increase.  
An AI-reliant generation may have to compete with automation technology in the workforce. Soft skills like problem-solving, judgment and communication are important for many careers. Lacking these skills or relying on generative tools to get good grades may make finding a job challenging. 
Innovation and adaptation go hand in hand with decision-making. Knowing how to objectively reason without the use of AI is critical when confronted with high-stakes or unexpected situations. Leaning into assumptions and inaccurate data could adversely affect an individual’s personal or professional life.
Critical thinking is part of processing and analyzing complex — and even conflicting — information. A community made up of critical thinkers can counter extreme or biased viewpoints by carefully considering different perspectives and values. 
AI Users Must Carefully Evaluate Algorithms’ Output 
Generative models are tools, so whether their impact is positive or negative depends on their users and developers. So many variables exist. Whether you are an AI developer or user, strategically designing and interacting with generative technologies is an important part of ensuring they pave the way for societal advancements rather than hindering critical cognition.
2 notes · View notes
careerlaunchpad · 9 months ago
Text
Tumblr media
Cognizance IIT Roorkee Internship and Training Program
Registration Link : https://forms.gle/E2cHdnjyzYytKxC39
3 notes · View notes
truebusiness · 10 months ago
Text
Exploring Quantum Leap Sort: A Conceptual Dive into Probabilistic Sorting Created Using AI
In the vast realm of sorting algorithms, where QuickSort, MergeSort, and HeapSort reign supreme, introducing a completely new approach is no small feat. Today, we’ll delve into a purely theoretical concept—Quantum Leap Sort—an imaginative algorithm created using AI that draws inspiration from quantum mechanics and probabilistic computing. While not practical for real-world use, this novel…
2 notes · View notes
algo2ace · 1 year ago
Text
🚀 Exploring Kafka: Scenario-Based Questions 📊
Dear community, As Kafka continues to shape modern data architectures, it's crucial for professionals to delve into scenario-based questions to deepen their understanding and application. Whether you're a seasoned Kafka developer or just starting out, here are some key scenarios to ponder: 1️⃣ **Scaling Challenges**: How would you design a Kafka cluster to handle a sudden surge in incoming data without compromising latency? 2️⃣ **Fault Tolerance**: Describe the steps you would take to ensure high availability in a Kafka setup, considering both hardware and software failures. 3️⃣ **Performance Tuning**: What metrics would you monitor to optimize Kafka producer and consumer performance in a high-throughput environment? 4️⃣ **Security Measures**: How do you secure Kafka clusters against unauthorized access and data breaches? What are some best practices? 5️⃣ **Integration with Ecosystem**: Discuss a real-world scenario where Kafka is integrated with other technologies like Spark, Hadoop, or Elasticsearch. What challenges did you face and how did you overcome them? Follow : https://algo2ace.com/kafka-stream-scenario-based-interview-questions/
#Kafka #BigData #DataEngineering #TechQuestions #ApacheKafka #BigData #Interview
2 notes · View notes
emerging-jew · 1 year ago
Text
Cloud modernization is out, generative AI is in
3 notes · View notes
phantomtrax · 1 year ago
Text
every time someone conflates miku/vocaloid/synth v with other voice AI i (vocaloid autist) get an aneurysm
3 notes · View notes